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Abstract
This paper deals with the existence and approximate controllability for a class of
fractional nonlocal control systems governed by abstract fractional evolution
equations with multiple delays. Under some weaker assumptions, the existence as
well as the approximate controllability is established by using fixed point theory. An
example is given to illustrate the applicability of the abstract results.
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1 Introduction
Since the fractional differential equations have extensive physical background and realistic
mathematical model, the theory has considerably developed in recent years; see [–] and
the references therein. And the nonlocal initial conditions have better effects in applica-
tions than the classical ones; see [, , , , –] and the references therein. Therefore,
the theory of fractional nonlocal differential equations has been a research field of focus
in recent years.

Controllability of deterministic and stochastic dynamical control systems in infinite-
dimensional spaces is well-developed in which the details can be found in various papers;
see [, –, , , ]. Several authors [, , ] investigated the exact controllability of
control systems represented by nonlinear fractional evolution equations using fixed point
approach. Debbouche and Baleanu [] established the exact null controllability result for
a class of fractional integro-differential control systems governed by nonlinear fractional
evolution equations with nonlocal initial conditions in Banach spaces. Liang and Yang
[] investigated the exact controllability for a class of fractional integro-differential con-
trol systems represented by nonlinear fractional evolution equations involving specific
nonlocal functions. Sakthivel et al. [] studied the exact controllability for a class of frac-
tional neutral control systems governed by abstract nonlinear fractional neutral evolution
equations.

However, in infinite-dimensional spaces, the concept of exact controllability is usually
too strong []. Therefore, it is necessary to present a weaker concept of controllability,
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namely approximate controllability for nonlinear control systems. In the recent literature,
the approximate controllability of nonlinear fractional evolution systems has not yet been
sufficiently studied. More precisely, there are limited papers regarding the approximate
controllability of abstract nonlinear fractional evolution systems under different condi-
tions [, , , ]. Kumar and Sukavanam [] obtained a new set of sufficient conditions
of approximate controllability for a class of semilinear fractional control systems involving
delay. Mahmudov and Zorlu [] established the sufficient conditions of approximate con-
trollability for certain classes of abstract fractional evolution control systems. Sakthival et
al. [] investigated the approximate controllability for a class of nonlinear fractional dy-
namical systems governed by abstract fractional evolution equations with nonlocal con-
ditions.

However, to the best of our knowledge, the approximate controllability for nonlinear
fractional nonlocal control systems governed by abstract fractional evolution equations
involving multiple delays and compact analysis semigroup has not been investigated yet
and it is also the motivation of this paper. In this paper, we consider the existence and
approximate controllability for fractional nonlocal control system

⎧
⎨

⎩

Dqx(t) = Ax(t) + f (t, x(t), x(t – τ), . . . , x(t – τn)) + Bu(t), t ∈ J := [, T],

x(t) + g(x) = ϕ(t), t ∈ [–r, ],
(.)

where Dq is Caputo fractional derivative of order q ∈ (, ), T >  is a constant, A gen-
erates a compact analytic semigroup S(t) (t ≥ ) of uniformly bounded linear operator,
u ∈ L(J , Y ) is a control, Y is a Banach space, B : Y → Xα is a linear bounded operator,
τ, τ, . . . , τn are positive constants, r = max{τ, τ, . . . , τn}, ϕ : [–r, ] → Xα is continuous, f
and g are given functions and will be specified later. The space Xα will be specified later.

The rest of this paper is organized as follows. In Section , some preliminaries are given
on fractional calculus and fractional power of generator of compact analytic semigroup.
In Section , we study the existence of mild solutions for fractional nonlocal control sys-
tem (.). The approximate controllability of fractional nonlocal control system (.) is
discussed in Section . In Section , an example is given to illustrate the applicability of
the abstract results.

2 Preliminaries
Let (X,‖ · ‖) be a Banach space. Throughout this paper, we always assume that A : D(A) ⊂
X → X generates a compact analytic semigroup S(t) (t ≥ ) of uniformly bounded linear
operator in X. Then there exists a constant M ≥  such that ‖S(t)‖ ≤ M for all t ≥ . Let
 ∈ ρ(A). Then

A–α :=


�(α)

∫ ∞


tα–S(t) dt

for some  < α < . Thus, we define Aα by Aα = (A–α)– with D(Aα) = A–α(X). Let Xα be
the Banach space of D(Aα) with norm ‖x‖α := ‖Aαx‖ for any x ∈ D(Aα). Denote by Sα(t)
the restriction of S(t) to Xα for all t ≥ . Then Sα(t) (t ≥ ) is a C-semigroup in Xα and
‖Sα(t)‖α ≤ ‖S(t)‖ for all t ≥ . To prove our main results, the following lemmas are needed.

Lemma  ([]) A–α is a bounded linear operator in X for any α > .
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Lemma  ([]) AαS(t) is bounded in X for any t >  and there exists a constant Mα > 
such that ‖AαS(t)‖ ≤ Mαt–α .

Lemma  ([]) Sα(t) (t ≥ ) is a compact semigroup in Xα , and hence it is norm-
continuous.

Denote by C([–r, T], Xα) the Banach space of all continuous Xα-valued functions on the
interval [–r, T] with norm ‖x‖C = maxt∈[–r,T] ‖x(t)‖α for any x ∈ C([–r, T], Xα). Similarly,
denote by C([–r, ], Xα) the Banach space of all continuous Xα-valued functions on the
interval [–r, ] with norm ‖x‖C[–r,] = maxt∈[–r,] ‖x(t)‖α for any x ∈ C([–r, ], Xα). In this
paper, we adopt the following definition of the mild solution of fractional nonlocal evolu-
tion equation (.).

Definition  By the mild solution of fractional nonlocal evolution equation (.), we mean
a function x ∈ C([–r, T], Xα) satisfying initial condition x(t) + g(x) = ϕ(t), t ∈ [–r, ] and
integral equation

x(t) = U(t)
(
ϕ() – g(x)

)
+

∫ t


(t – s)q–V (t – s)

[
F(x)(s) + Bu(s)

]
ds, t ∈ J ,

where F(x)(s) = f (s, x(s), x(s – τ), . . . , x(s – τn)), the operators {U(t)}t≥ and {V (t)}t≥ are
defined by

U(t)x =
∫ ∞


ηq(θ )S

(
tqθ

)
x dθ , V (t)x = q

∫ ∞


θηq(θ )S

(
tqθ

)
x dθ ,  < q < ,

where

ηq(θ ) =

q
θ

–– 
q ρq

(
θ

– 
q
)
,

ρq(θ ) =

π

∞∑

n=

(–)n–θ–qn– �(nq + )
n!

sin(nπq), θ ∈ (,∞).

It is well known that ηq(θ ) ≥  for all θ ∈ (,∞) and

∫ ∞


ηq(θ ) dθ = ,

∫ ∞


θηq(θ ) dθ =


�( + q)

.

Lemma  ([, ]) The operators {U(t)}t≥ and {V (t)}t≥ satisfy the following properties:
(i) For fixed t ≥  and any x ∈ Xα , ‖U(t)x‖α ≤ M‖x‖α ,‖V (t)x‖α ≤ M

�(q)‖x‖α .

(ii) For fixed t >  and any x ∈ X , ‖V (t)x‖α ≤ Cαt–qα‖x‖, where Cα = Mαq�(–α)
�(+q(–α)) .

(iii) U(t) and V (t) are strongly continuous for all t ≥ .
(iv) U(t) and V (t) are norm-continuous in X for t > .
(v) U(t) and V (t) are compact operators in X for t > .

(vi) For every t > , the restriction of U(t) to Xα and the restriction of V (t) to Xα are
norm-continuous.

(vii) For every t > . the restriction of U(t) to Xα and the restriction of V (t) to Xα are
compact operators.
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Let x(T ; u) be the state value of fractional nonlocal evolution equation (.) at termi-
nal time T corresponding to control u. Introduce the set R(T) by R(T) := {x(T ; u) : u ∈
L(J , Y )}. R(T) denotes its closure in Xα .

Definition  (Approximate controllability) The fractional nonlocal control system (.)
is called approximately controllable on the interval [–r, T] if R(T) = Xα .

Consider the following linear fractional differential system:

⎧
⎨

⎩

Dqx(t) = Ax(t) + Bu(t), t ∈ [, T],

x() = x ∈ Xα .
(.)

Let

�T
 =

∫ T


(T – s)q–V (T – s)BB∗V ∗(T – s) ds : Xα → Xα ,

R
(
ε,�T


)

=
(
εI + �T


)– : Xα → Xα , ε > ,

where B∗ and V ∗(t) denote the adjoint of B and V (t), respectively. It is well known that �T


is a linear bounded operator and ‖R(ε,�T
 )‖ ≤ 

ε
.

Lemma  ([]) The linear fractional differential system (.) is approximately control-
lable on the interval [, T] if and only if εR(ε,�T

 ) →  as ε → + in the strong operator
topology.

Definition  Let E be a Banach space with norm ‖ · ‖E . A mapping Q : E → E is called a
nonlinear contraction if there exists a continuous and nondecreasing function φ : R+ →
R

+ satisfying

‖Qx – Qy‖E ≤ φ
(‖x – y‖E

)

for all x, y ∈ E with φ(τ ) < τ for τ > .

Remark  It is clear if φ(τ ) ≡ kτ for some k ∈ (, ), the nonlinear contraction mapping
degenerates into contraction mapping.

Lemma  ([]) Let E be a Banach space and let Q, Q : E → E be two operators satisfy-
ing

(a) Q is a nonlinear contraction, and
(b) Q is completely continuous.

Then either
(i) the operator equation x = Qx + Qx has a solution, or

(ii) the set � := {x ∈ E : λ(Qx + Qx) = x,  < λ < } is unbounded.

Lemma  ([]) Let σ >  and let a(t) be a nonnegative nondecreasing function locally in-
tegrable on  ≤ t < b (some b ≤ +∞) and a(t) be a nonnegative nondecreasing continuous
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function defined on  ≤ t < b, a(t) ≤ M̃ (constant). Suppose that x(t) is nonnegative and
local integrable on  ≤ t < b with

x(t) ≤ a(t) + a(t)
∫ t


(t – s)σ–x(s) ds.

Then

x(t) ≤ a(t)
∞∑

k=

(a(t)�(σ )tσ )k

�(kσ + )
,  ≤ t < b.

3 Existence of mild solutions
We make the following assumptions:

(H) The function f : J × Xn+
α → X is continuous and there exist positive constants

β,β, . . . ,βn and K ≥  such that

∥
∥f (t,ν,ν, . . . ,νn)

∥
∥ ≤

n∑

i=

βi‖νi‖α + K , t ∈ J , (ν,ν, . . . ,νn) ∈ Xn+
α .

(H) The function g : C([–r, T], Xα) → Xα is continuous and there exists a constant L ≥
M such that

∥
∥g(x) – g(y)

∥
∥

α
≤ ‖x – y‖C

L + ‖x – y‖C
, x, y ∈ C

(
[–r, T], Xα

)
.

Remark  The condition (H) can be replaced by the condition
(H)′ The function f : J × Xn+

α → X is continuous and there exist functions β i ∈
L(J ,R+), i = , , . . . , n and nondecreasing function � : [, +∞) → (, +∞) such that

∥
∥f

(
t, x(t), x(t – τ), . . . , x(t – τn)

)∥
∥ ≤

n∑

i=

β i(t)�
(∥
∥x(t – τi)

∥
∥

α

)
,

for any t ∈ J , x ∈ C([–r, T], Xα), where τ = .
By (H)′, we have

∥
∥f

(
t, x(t), x(t – τ), . . . , x(t – τn)

)∥
∥ ≤

n∑

i=

‖β i‖L�
(∥
∥x(t – τi)

∥
∥

α

)
.

Let �(r) = r for some r > . Then (H)′ ⇒ (H) with βi = ‖β i‖L and K = . Since (H)′

would not be an essential generalization, we only consider (H) in the following.

Define an operator Q : C([–r, T], Xα) → C([–r, T], Xα) by

(Qx)(t) =

⎧
⎨

⎩

ϕ(t) – g(x), t ∈ [–r, ],

U(t)(ϕ() – g(x)), t ∈ J .
(.)

Lemma  If the assumption (H) holds, Q is a nonlinear contraction.
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Proof Let x, y ∈ C([–r, T], Xα). For t ∈ [–r, ], we have

∥
∥(Qx)(t) – (Qy)(t)

∥
∥

α
=

∥
∥g(x) – g(y)

∥
∥

α
≤ ‖x – y‖C

L + ‖x – y‖C
≤ M‖x – y‖C

L + ‖x – y‖C
.

For t ∈ [, T], we have

∥
∥(Qx)(t) – (Qy)(t)

∥
∥

α
=

∥
∥U(t)

(
ϕ() – g(x)

)
– U(t)

(
ϕ() – g(y)

)∥
∥

α

≤ M
∥
∥g(x) – g(y)

∥
∥

α
≤ M‖x – y‖C

L + ‖x – y‖C
.

This implies that

‖Qx – Qy‖C ≤ M‖x – y‖C

L + ‖x – y‖C
.

Let φ(r) = Mr
L+r . Then φ : R+ → R

+ is continuous and nondecreasing and φ(r) < r for r > .
Hence Q is a nonlinear contraction in C([–r, T], Xα). This completes the proof. �

For any ε >  and h ∈ Xα , define a control u(t) := u(t; x) by

u(t; x) = B∗V ∗(T – t)R
(
ε,�T


)
[

h – U(T)
(
ϕ() – g(x)

)

–
∫ T


(T – s)q–V (T – s)F(x)(s) ds

]

.

Then, from assumptions (H) and (H), we have

∥
∥Bu(t; x)

∥
∥

α
≤ Lu, (.)

where

Lu =

ε

LB
∥
∥A–α

∥
∥
[‖h‖α + M‖ϕ‖C[–r,] + M

(
 +

∥
∥g()

∥
∥

α

)]

+
LBMKTq

ε�(q + )
+

LBM
ε�(q)

n∑

i=

∫ T


(T – s)q–βi

∥
∥x(s – τi)

∥
∥

α
ds,

LB = ‖B‖α sup
t∈J

∥
∥B∗V ∗(T – t)

∥
∥.

Define an operator Q : C([–r, T], Xα) → C([–r, T], Xα) by

(Qx)(t) =

⎧
⎨

⎩

, t ∈ [–r, ],
∫ t

 (t – s)q–V (t – s)[F(x)(s) + Bu(s; x)] ds, t ∈ J .
(.)

Lemma  If the assumptions (H) and (H) hold, Q is completely continuous.

Proof By the assumptions (H) and (H), it is easy to prove that Q : C([–r, T], Xα) →
C([–r, T], Xα) is continuous. So, it remains to prove that Q is a compact operator on
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C([–r, T], Xα). The case t ≤  is trivial. Thus, let t ∈ (, T] be fixed. For each δ ∈ (, t),ρ > 
and x ∈ Br := {x ∈ C([–r, T], Xα) : ‖x‖C ≤ r}, r > , we define Qδ,ρ

 by

(
Qδ,ρ

 x
)
(t) =

∫ t–δ


(t – s)q–

∫ ∞

ρ

qθηq(θ )S
(
(t – s)qθ

)[
F(x)(s) + Bu(s; x)

]
dθ ds

= S
(
δqρ

)
∫ t–δ


(t – s)q–

∫ ∞

ρ

qθηq(θ )S
(
(t – s)qθ – δqρ

)

× [
F(x)(s) + Bu(s; x)

]
dθ ds.

Then the set {(Qδ,ρ
 x)(t) : x ∈ Br} is relatively compact in Xα because of Lemma . By (H),

(H) and (.), we have

∥
∥(Qx)(t) –

(
Qδ,ρ

 x
)
(t)

∥
∥

α

≤
∥
∥
∥
∥

∫ t


(t – s)q–

∫ ρ


qθηq(θ )S

(
(t – s)qθ

)(
F(x)(s) + Bu(s; x)

)
dθ ds

∥
∥
∥
∥

α

+
∥
∥
∥
∥

∫ t

t–δ

(t – s)q–
∫ ∞

ρ

qθηq(θ )S
(
(t – s)qθ

)(
F(x)(s) + Bu(s; x)

)
dθ ds

∥
∥
∥
∥

α

≤ MαTq(–α)

 – α

( n∑

i=

βir + K

)∫ ρ


θ –αηq(θ ) dθ

+ MTqLu

∫ ρ


θηq(θ ) dθ

+ Cα

( n∑

i=

βir + K

)∫ t

t–δ

(t – s)q(–α)– ds

+
MLuδ

q

�(q + )
.

This implies that the set {(Qx)(t) : x ∈ Br} is relatively compact in Xα for all t ∈ (, T].
Hence, we obtain the relative compactness of (QBr)(t) in Xα for all t ∈ [–r, T]. We further
show that the operator Q is equicontinuous in C([–r, T], Xα). For x ∈ C([–r, T], Xα), if
ν ∈ [, T), we have

∥
∥(Qx)(ν) – (Qx)()

∥
∥

α

≤ Cα

∫ ν


(ν – s)q(–α)–

n∑

i=

βi
∥
∥x(s – τi)

∥
∥

α
ds

+
MLuν

q

�(q + )
+

CαKνq(–α)

q( – α)

→ 

as ν → . Hence, it is only necessary to consider the case t > . For  < t < t ≤ T , denote

I =
∥
∥
∥
∥

∫ t


(t – s)q–[V (t – s) – V (t – s)

][
F(x)(s) + Bu(s; x)

]
ds

∥
∥
∥
∥

α

,

I =
∥
∥
∥
∥

∫ t



[
(t – s)q– – (t – s)q–]V (t – s)

[
F(x)(s) + Bu(s; x)

]
ds

∥
∥
∥
∥

α

,
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I =
∥
∥
∥
∥

∫ t

t

(t – s)q–V (t – s)
[
F(x)(s) + Bu(s; x)

]
ds

∥
∥
∥
∥

α

.

By assumptions (H), (H) and (.), we can find

I ≤ Cα

∫ t



∣
∣(t – s)q– – (t – s)q–∣∣(t – s)–qα

∥
∥F(x)(s)

∥
∥ds

+
MLu[tq

 – tq
 – (t – t)q]

�(q + )
,

I ≤ Cα

∫ t

t

(t – s)q(–α)–∥∥F(x)(s)
∥
∥ds

+
MLu(t – t)q

�(q + )
.

This implies that Ii → , i = ,  as t – t → . For t >  and η ∈ (, t) small enough, we
have

I ≤
∫ t–η


(t – s)q–∥∥

[
V (t – s) – V (t – s)

][
F(x)(s) + Bu(s; x)

]∥
∥

α
ds

+
∫ t

t–η

(t – s)q–∥∥
[
V (t – s) – V (t – s)

][
F(x)(s) + Bu(s; x)

]∥
∥

α
ds

≤
∫ t–η


(t – s)q–∥∥F(x)(s)

∥
∥ds sup

s∈[,t–η]

∥
∥V (t – s) – V (t – s)

∥
∥

α

+
Lu(tq

 – ηq)
q

sup
s∈[,t–η]

∥
∥V (t – s) – V (t – s)

∥
∥

α

+ Cα

∫ t

t–η

(t – s)q–(t – s)–qα
∥
∥F(x)(s)

∥
∥ds

+ Cα

∫ t

t–η

(t – s)q(–α)–∥∥F(x)(s)
∥
∥ds

+
MLuη

q

�(q + )
.

Since compact semigroup is equicontinuous semigroup, it follows that I →  as t – t →
 and η → . Therefore, from the inequality

∥
∥(Qx)(t) – (Qx)(t)

∥
∥

α
≤ I + I + I,

we see that the operator Q is equicontinuous in C([–r, T], Xα). Hence, by the Ascoli-
Arzela theorem, Q is a compact operator in C([–r, T], Xα). This completes the proof. �

Theorem  Assume that the conditions (H) and (H) hold. Then the fractional nonlocal
control system (.) has at least one mild solution.

Proof Define two operators Q, Q : C([–r, T], Xα) → C([–r, T], Xα) as in (.) and (.).
By Lemma  and , it follows that all the conditions of Lemma  are satisfied and a direct
application of Lemma  shows that either the conclusion (i) or the conclusion (ii) holds.
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We next show that the conclusion (ii) is not possible. Equivalently, we prove that the set
� := {x ∈ C([–r, T], Xα) : λ(Qx + Qx) = x,  < λ < } is bounded.

Let x ∈ C([–r, T], Xα) satisfy the operator equation x = λ(Qx + Qx) for some λ ∈ (, ).
Then, for any t ∈ [–r, ], by assumption (H), we have

∥
∥x(t)

∥
∥

α
≤ ‖ϕ‖C[–r,] +

∥
∥g(x)

∥
∥

α
≤ ‖ϕ‖C[–r,] +  +

∥
∥g()

∥
∥

α
� M.

For t ≥ , by assumptions (H) and (H), we have

∥
∥x(t)

∥
∥

α
≤ ∥

∥U(t)
(
ϕ() – g(x)

)∥
∥

α
+

∥
∥
∥
∥

∫ t


(t – s)q–V (t – s)F(x)(s) ds

∥
∥
∥
∥

α

+
∥
∥
∥
∥

∫ t


(t – s)q–V (t – s)Bu(s; x) ds

∥
∥
∥
∥

α

≤ C + Cα

n∑

i=

∫ t


(t – s)q(–α)–βi

∥
∥x(s – τi)

∥
∥

α
ds,

where τ =  and C = M‖ϕ‖C[–r,] + M( + ‖g()‖α) + KCαTq(–α)

q(–α) + MLuTq

�(q+) .
Let

ψ(t) = max
s∈[–r,t]

∥
∥x(s)

∥
∥

α
, t ∈ [–r, T].

Then ψ ∈ C([–r, T],R+) and ‖x(t)‖α ≤ ψ(t) for t ∈ [–r, T]. For every t ≥ , by the defini-
tion of ψ , there exists θt ∈ [–r, t] such that ψ(t) = ‖x(θt)‖α .

If –r ≤ θt ≤ , we have

ψ(t) =
∥
∥x(θt)

∥
∥

α
≤ ∥

∥ϕ(θt)
∥
∥

α
+  +

∥
∥g()

∥
∥

α

≤ M‖ϕ‖C[–r,] + M
(
 +

∥
∥g()

∥
∥

α

)

≤ C + Cα

n∑

i=

βi

∫ t


(t – s)q(–α)–ψ(s) ds.

If θt > , we have

ψ(t) =
∥
∥x(θt)

∥
∥

α
≤ C + Cα

∫ θt


(θt – s)q(–α)–

n∑

i=

βi
∥
∥x(s – τi)

∥
∥

α
ds

≤ C + Cα

n∑

i=

βi

∫ θt


(θt – s)q(–α)–ψ(s) ds

≤ C + Cα

n∑

i=

βi

∫ t


(t – s)q(–α)–ψ(s) ds.

Using the well-known singular version of Gronwall inequality [], we can deduce that
there exists a constant M >  such that ψ(t) ≤ M. Thus, for any t ≥ , we have

∥
∥x(t)

∥
∥

α
≤ ψ(t) ≤ M.



Yang and Ibrahim Advances in Difference Equations  (2017) 2017:272 Page 10 of 15

Consequently,

‖x‖C = max
t∈[–r,T]

∥
∥x(t)

∥
∥

α
≤ M + M � M.

This implies that the set � is bounded. Therefore, by Lemma , the operator equation
x = Qx + Qx has at least one fixed point which is the mild solution of the fractional
control system (.) on C([–r, T], Xα). This completes the proof. �

Remark  Even if g(x) ≡  and without control u in the fractional nonlocal control system
(.), Theorem  is still new.

The condition (H) can be replaced by the following condition:
(H)′ The function g : C([–r, T], Xα) → Xα is Lipschitz continuous with constant L ∈

(, 
M ), that is, for any x, y ∈ C([–r, T], Xα), we have

∥
∥g(x) – g(y)

∥
∥

α
≤ L‖x – y‖C .

Theorem  Let the conditions (H) and (H)′ hold. Then the fractional nonlocal control
system (.) has at least one mild solution.

Proof By the condition (H)′, similar to the proof as in Lemma , we obtain

‖Qx – Qy‖C ≤ ML‖x – y‖C , ∀x, y ∈ C
(
[–r, T], Xα

)
.

Let φ(r) = MLr. Then φ : R+ →R
+ is continuous and nondecreasing and φ(r) < r for r > .

Hence Q is a nonlinear contraction on C([–r, T], Xα). The remaining proof is similar to
the proof of Theorem , we omit it here. This completes the proof. �

Remark  In some existing literature, see [, , , ], the authors always assume that
f (t, x) ≤ m(t) with some functions m ∈ L(J ,R+) independent of x, and g is either com-
pletely continuous or Lipschitz continuous and the coefficients satisfy some inequality
conditions. But in Theorems  and , we only assume that the conditions (H) and (H)
(or (H)′) hold. Hence, Theorems  and  greatly extend the main results of [, , , ,
].

4 Approximate controllability
To prove the approximate controllability of (.), the following assumption is required:

(H) The function f : J × Xn+
α → X is bounded.

(H) The linear fractional control system (.) is approximately controllable.

Theorem  In addition to the assumptions of Theorem , suppose that the conditions (H)
and (H) hold. Then the fractional nonlocal control system (.) is approximately control-
lable.

Proof Let xε be a fixed point of the operator Q + Q on C([–r, T], Xα). By Theorem , xε

is a mild solution of fractional nonlocal control system (.) with control

u(t; xε) = B∗V ∗(T – t)R
(
ε,�T


)
P(xε), t ∈ J ,
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where

P(xε) = h – U(T)
(
ϕ() – g(xε)

)
–

∫ T


(T – s)q–V (T – s)F(xε)(s) ds,

F(xε)(t) = f
(
t, xε(t), xε(t – τ), . . . , xε(t – τn)

)
, t ∈ J .

A direct calculation shows that xε satisfies

xε(T) = h – εR
(
ε,�T


)
P(xε). (.)

Moreover, by the assumption (H), there exists a constant N >  such that

∫ T



∥
∥F(xε)(s)

∥
∥ ds =

∫ T



∥
∥f

(
s, xε(s), xε(s – τ), . . . , xε(s – τn)

)∥
∥ ds ≤ TN.

Consequently, there is a sequence still denoted by {F(xε)(s)} weakly converging to, say,
{F(s)} in L(J , X). Denote

ρ = h – U(T)
(
ϕ() – g(xε)

)
–

∫ T


(T – s)q–V (T – s)F(s) ds.

Now, we have

∥
∥P(xε) – ρ

∥
∥

α
≤

∫ T


(T – s)q–∥∥V (T – s)

(
F(xε)(s) – F(s)

)∥
∥

α
ds

≤ Cα

∫ T


(T – s)q(–α)–∥∥F(xε)(s) – F(s)

∥
∥ds.

By using infinite-dimensional version of the Ascoli-Arzela theorem, we see that the oper-
ator �(·) → ∫ ·

(· – s)q(–α)–�(s) ds : L(J , X) → C(J , X) is compact. Hence, ‖P(xε) – ρ‖α → 
as ε → +. Moreover, by (.), we have

∥
∥xε(T) – h

∥
∥

α
≤ ∥

∥εR
(
ε,�T


)
(ρ)

∥
∥

α
+

∥
∥εR

(
ε,�T


)∥
∥
∥
∥P(xε) – ρ

∥
∥

α

≤ ∥
∥εR

(
ε,�T


)
(ρ)

∥
∥

α
+

∥
∥P(xε) – ρ

∥
∥

α
.

Hence, by Lemma  and (H), we have

∥
∥xε(T) – h

∥
∥

α
→ 

as ε → +. This proves the approximate controllability of fractional nonlocal control sys-
tem (.). This completes the proof. �

Theorem  In addition to the assumptions of Theorem , suppose that the conditions (H)
and (H) hold. Then the fractional nonlocal control system (.) is approximately control-
lable.

Proof The proof is similar to the proof of Theorem , and we omit it here. �
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Remark  Compared with [], the present paper studies the fractional control system
(.) with nonlocal condition and delays, and we suppose that the function f maps J ×Xn+

α

to X. Hence, our results extend some existing results.

5 Existence and approximate controllability of delay parabolic equations
Let � ∈R

N be a bounded domain, whose boundary ∂� is sufficiently smooth. Let

A(z, D)x =
N∑

i,j=

∂

∂zi

(

φij(z)
∂x
∂zj

)

– φ(z)x

be a uniformly elliptic differential operator of divergence form in �. We assume that fol-
lowing conditions are satisfied:

(A) φij ∈ C+μ(�) (i, j = , , . . . , N ) for some μ ∈ (, ), [φij(z)]N×N is a positive definite
symmetric matrix for z ∈ � and there exists a constant � >  such that

N∑

i,j=

φij(z)ηiηj ≥ �|η|, ∀η = (η,η, . . . ,ηN ) ∈R
N , z ∈ �.

(A) φ ∈ Cμ(�) for some μ ∈ (, ), and φ(z) ≥  on �.
Let X = L(�). Define an operator A : D(A) ⊂ X → X by

Ax = A(z, D)x, D(A) = H(�) ∩ H
(�). (.)

Then, from [], A generates a compact analysis semigroup S(t) (t ≥ ) in X and there
exists a constant M ≥  such that ‖S(t)‖ ≤ M. It is well-known that D(A 

 ) = H
(�).

Under above assumptions we discuss the approximate controllability of delay parabolic
boundary value problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂q

∂tq x(z, t) = A(z, D)x(z, t) + F(z, t, x(z, t), x(z, t – τ), . . . , x(z, t – τn))

+ ωu(z, t), z ∈ �, t ∈ [, T],

x|∂� = ,

x(z, t) = ϕ(z, t) – g(x), z ∈ �, t ∈ [–r, ],

(.)

where ∂q

∂tq is the Caputo fractional partial derivative of order q ∈ (, ), ω >  is a constant,
τ, . . . , τn are positive constants, r = max{τ, . . . , τn},ϕ : � × [–r, ] →R.

By Theorem , we have the following existence result.

Theorem  Assume that the following conditions are satisfied:
(P) The function F : � × [, T] × R

n+ → R is continuous and there exist positive con-
stants β,β, . . . ,βn and K such that

∣
∣F(z, t, ξ, ξ, . . . , ξn)

∣
∣ ≤

n∑

i=

βi|ξi| + K , z ∈ �, t ∈ [, T].

(P) The function g is continuous and there exists a constant L ≥ M such that

∣
∣g(x) – g(y)

∣
∣ ≤ |x – y|

L + |x – y| ,

for all x, y ∈R.
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Then the delay parabolic boundary value problem (.) has at least one mild solution.

By Theorem , we have the following approximate controllability result.

Theorem  In addition to the assumptions of Theorem , suppose that the function F is
bounded and the following condition holds:

(P) The linear fractional control system corresponding to (.) is approximately control-
lable.

Then the delay parabolic boundary value problem (.) is approximately controllable.

By Theorem , we obtain the following theorem.

Theorem  Assume that the conditions (P), (P) and
(P) The function g : C([–r, T], Xα) → Xα is Lipschitz continuous with constant L ∈

(, 
M ).

Then the delay parabolic boundary value problem (.) is approximately controllable.

Example  Consider the approximate controllability of delay parabolic boundary value
problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂



∂t



x(z, t) = A(z, D)x(z, t) + sin t
 + x(z, t) – 

 x(z, t – τ) – 
 x(z, t – τ)

+ u(z, t), z ∈ �, t ∈ [, T],

x|∂� = ,

x(z, t) = ϕ(z, t) –
∑m

k=(–)kγkx(z, k), z ∈ �, t ∈ [–r, ],

(.)

where m ≤ T and γk ∈ R, k = , , . . . , m with
∑m

k= |γk| ≤ 
M .

Let

F
(
z, t, x(z, t), x(z, t – τ), z(z, t – τ)

)
= sin t


+ x(z, t) –




x(z, t – τ) –



x(z, t – τ),

g(x) =
m∑

k=

(–)kγkx(z, k).

Then

∣
∣F

(
z, t, x(z, t), x(z, t – τ), z(z, t – τ)

)∣
∣ ≤  +

∑

k=

k

∣
∣x(z, t – τk)

∣
∣,

∣
∣g(x) – g(y)

∣
∣ ≤

m∑

k=

|γk|
∣
∣x(z, k) – y(z, k)

∣
∣,

where τ = .
Hence, by Theorem , if the linear fractional control system corresponding to (.) is

approximately controllable, then the delay parabolic boundary value problem (.) is ap-
proximately controllable.



Yang and Ibrahim Advances in Difference Equations  (2017) 2017:272 Page 14 of 15

6 Conclusion
In this paper, the approximate controllability of a nonlocal control system governed by
fractional multi-delay evolution equation is investigated. By using fixed point theory and
also the Gronwall-Bellman inequality of fractional order, sufficient conditions of approx-
imate controllability are obtained. As an example, the approximate controllability of frac-
tional multi-delay parabolic boundary value problem is discussed and the abstract result
is applied to a special fractional multi-delay parabolic function.
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