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Abstract

The main goal of this work is to study an averaging principle for two-time-scales
stochastic partial differential equations with jumps. The solutions of reduced
equations with modified coefficients are derived to approximate the slow
component of the original equation under suitable conditions. It is shown that the
slow component can strongly converge to the solution of the corresponding reduced
equation in the pth-mean. Our key and novel idea is how to cope with the changes
caused by jumps and higher order moments.
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1 Introduction

In practical science and engineering, many complex systems can be described as singu-
larly perturbed systems with separated two-time-scales driven by random perturbations,
for example, chemical reaction dynamics [1], electronic circuits [2] and laser systems [3].
In most cases, people are only interested in investigating the time evolution of the slow
component, but that cannot be done directly, unless we solve the full two-time-scales
equations. Although computers are now very advanced, they cannot deal with such a dis-
parity of scales. Averaging methods can reduce the computational load. In view of this,
the averaging principle, which is an effective tool to analyze the two-time-scales dynami-
cal systems with random perturbations, becomes more and more important and popular
to be applied to reduce the dimensions of the original systems.

The theory of the averaging principle has a long and rich history. Let us mention a few of
them. Khasminskii [4] first proved the averaging principle of stochastic differential equa-
tions (SDEs) driven by Brownian noise. Since then, the averaging principle has been an
active research field on which there is a great deal of literature. Freidlin and Wentzell 5]
provided a mathematically rigorous overview of fundamental stochastic averaging meth-
ods. Golec and Ladde [6] and Xu et al. [7-14] proposed the averaging principle to stochas-
tic dynamical systems in the sense of the mean-square, which implies the convergence in
probability. Furthermore, L2-strong convergence (also called mean-square-strong conver-
gence) in averaging principles for several types of slow-fast stochastic dynamical systems
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driven by Brownian noise has been investigated by Freidlin [5], Golec [15], Wang [16], and
Fuetal [17,18].

In some circumstances, jump type perturbations can capture some large moves and un-
predictable events in such diverse areas as mathematics, finance, statistical physics and life
sciences [19—-34], while purely Brownian type perturbations cannot do so. It is well known
that stochastic partial differential equations (SPDEs) driven by jump type perturbations
may be more appropriate to model a great amount of complex systems, which are widely
used to describe many interesting phenomena in the fields of physics, biology, chemistry,
economics, finance and others [35-41]. Up to now, many scholars have extensively inves-
tigated the existence and uniqueness for solutions of SPDEs driven by jump type perturba-
tions. For example, Albeverio et al. [42] investigated the existence and uniqueness of mild
solutions to stochastic heat equations driven by Poisson jumps. Hausenblas [43] consid-
ered the existence and uniqueness of mild solutions to SPDEs of the jump type. A series of
useful theories and methods have been presented to explore SPDEs driven by jumps (see
[19, 39]), and among them, the averaging method has been an important and useful tool
to reduce SPDEs driven by jumps. Givon [44] established an averaging principle for two-
time-scales jump-diffusion processes in the sense of the mean-square. Quite recently, Xu
and Miao [45] established a L2-strong averaging principle for slow-fast SPDEs driven by
Poisson random measures. Pei et al. [46] considered the averaging principle for stochastic
hyperbolic- parabolic equations driven by Poisson random measures with slow and fast
time-scales.

However, the work on the averaging principle mainly discussed I.2-strong convergence
for two-time-scales jump-diffusion processes, which does not involve I.” (p > 2)-strong
convergence in general. Generally, people need to estimate the higher order moments
which possess a good robustness and can be applied in computations in statistics, finance
and other fields. To the best of the authors’ knowledge, the averaging principle for two-
time-scales SPDEs with jumps has not been considered in I” (p > 2)-strong convergence.
Therefore, based on the above discussion, an attempt will be made to establish an averag-
ing principle for two-time-scales SPDEs driven by jumps in IL” (p > 2)-strong convergence.
In this paper, our key and novelty is how to cope with the changes caused by jumps and
higher order moments. It is drastically different because of the appearance of the jumps.

The paper is organized as follows. In Section 2, we present some notations and the for-
mulation of the problem. In Section 3, the main result is stated. We derive the stochastic
averaging principle for two-time-scales SPDEs driven by jumps in I’ (p > 2)-strong con-

vergence.

2 Preliminaries

Let (2, F,P) be a complete probability space with a natural filtration {F;};~¢ satisfying
the usual conditions. We fix [ > 0 arbitrarily, and we denote D := (0,/), i.e., D is a fixed,
open, bounded interval of the real line R. Let H be a Hilbert space L.2(D) equipped with
the inner product (-, -}y and the corresponding norm || - ||. Let T > 0 be fixed arbitrarily. In

this paper, we are concerned with the following SPDEs driven by both Brownian motions



Guo et al. Advances in Difference Equations (2017) 2017:275 Page 3 of 23

and Poisson random measures:

BLO - AX(E) +f(XE (&), i (€)) +g(X; (€)W}

OGN d2),
oYy (§) — lAYtE(S) + %F(Xf(g)’ }/[E(S)) + %G(th(%'),Ytg(g))Wf

at &
+ [, HXE (8), YE (§), 2)N5 (¢, d2),
Xf(g):Yf(g):(), (S:t)eaDX(O:T]:
X5(8) = Xo(8) e H, Yi(E)=Yo(§)eH, &eD,

(2.1)

for ¢ >0 and (§,t) € D x [0, T], where the coefficients f(x,7) : R x R —> R, g(x) : R — R,
h(x,2) :RXZ— R, F(x,9) : RxR - R,G(x,7) : RxR - R,H(x,7,2) : RxRxZ — Rare
all real-valued measurable functions. The detailed conditions for them will be given in the
next section. {th}tzo and {Wtz}tzo are mutually independent real-valued {F;};>0-Wiener
processes. Next, we explicate the Poisson random measures Ni(dt,dz) and N§ (dt,dz). Let
(Z,B(Z)) be a given measurable space and v(dz) be a o -finite measure on it. Let ng' i=1,2
be two countable subsets of R,. Furthermore, let pl, ¢ € Dy, be a stationary F;-adapted
Poisson point process on Z with characteristic v, and let p?, t € D, be a stationary J;-
adapted Poisson point process on Z with characteristic ;. Denote by N i(dt, dz) the Poisson
counting measure associated with pi, i.e.,

NitA):= Y Ia(p), i=12.

Seri S<t
Let us denote the two corresponding compensated martingale measures
Ni(dt, dz) := N'(dt, dz) — v(dz) dt
and

- 1
N (dt, dz) := N*(dt,dz) — —v(dz) dt.
e

Let us define an abstract A = 9¢¢ with zero Dirichlet boundary conditions. Let {ex(&)}xen
be a complete orthonormal system of eigenvectors in H such that, for k=1,2,...,

Aey = —axer,  exlop=0,
withO<oy <y < - <ag<---.
Let V be a Sobolev space H(l) of order one with zero Dirichlet boundary conditions, which

is densely and continuously injected in the Hilbert space H. Identifying H with its dual
space, we obtain the Gelfand triple

VCH=H"CV".
Owing to Poincaré’s inequality, we obtain
(Au,u) = = V| < —en |lu])?, (22)

where (-, ) denotes a dual pair of (V, V*).
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Note that the Green’s function S(&, ¢, £) for the deterministic equation (3/9t— A)X (¢, &) =
0 can be expressed as

o]

S(E ¢, t)= ) e er(®)e(?).

k=1

Recall that the associated Green’s operator is defined, for any A(§) € H, by

SIAGE) = fD SECOAR)AE = 3 e ey (€) lex, A

k=1

It is straightforward that {S,},>¢ are contractive semigroups on H and ||S;A(§)]| < |A(§)]-

To give precise results, it is convenient to look at the equations in an abstract setting,
where system (2.1) can be rewritten as

dXt = [AXE +f(XE, YE) dt + g(XE) AW} + [, h(XE, 2Ny (dt, dz),

dY; = HAYS + F(XE, YE)lde + - G(XE, YE) dW7 23)
+ [, HXE, YE, 2)N5 (dt, dz),

Xo e H, Y()GH.

We now introduce the definition of mild solutions of system (2.3).

Definition 2.1 A natural way to give a rigorous meaning to (2.3) is in terms of the follow-
ing integral equations:

XZ = XoSi + [y Se-of (X2, YE) ds + [y Se-sg(XE) AW}
+f0t & Si_sh(X?_,2)Ni(ds, dz),

YE = YoSue + 1 fo SteaseFXE Yo ds + I [ Si-sye GXE, Y) AW e
+ [y Ste-sye HXE, Y, 2)N3 (ds, dz).

Moreover, according to It6’s formula [39, 47], for ¢ € [0, T], p > 1, the following equalities
hold:

I P =1 2 [ P, )
+2p fo e R v, X ds
vap [ () )
captp) [ ) s
e [0 2 [ - e atas a2
e [0 )1 - x| a s

~2p /O /Z X172 1(XE, 2), XE )y v(d2) dis (2.5)
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and
2 t _

e =waiir s 2 [ e P ar vi)as
2p ! € ||2p-2 " € .
L e e ), s
2p [* € 112p-2 € e\ we )
2 [l e v, ), aw
20(p-1) (" ep2e- e
22D [ 6, v ds
/ / Y5+ X Yo 2) |7 = v | )5 s, o)

1
+g/ fZ[HY§+H (X5, Y5, 2) | = [ Y | o) ds
0

t
_ 2?19 / / H YSG ||217—2(H(XS€1 YSE,Z), Y: >Hv(dz) ds. (2.6)
0 JZ

Convention The letter C, with or without subscripts, will denote positive constants
whose value may change in different occasions. We will write the dependence of constants
on parameters explicitly if it is essential.

Now, we need to give some dissipative conditions [46] to ensure the ergodicity for the
fast motion and global Lipschitz condition, and the growth condition to ensure the exis-

tence and uniqueness for (2.3).

Assumption 1 The coefficients of (2.3) are globally Lipschitz continuous in x, y, i.e.,
Vx1,%2,91,¥2 € R, there exist six positive constants C, Cy, Cy, Cr, Cg, Cy. We have

|f (e, y1) —f(xz»y2)|2 < Cr(l%r = %21 + 1 = 321%),
|g(x1) — g(x2)|* < Colorr — 222,

‘/MMJ%hmJWW&hKMM—mM 722
Z

and

|F(x1,01) —F(xz,y2)|2 < Ce(lvr — x> + 131 - 221%),

|Gx1, 1) - G(xz,yz)’2 < Co (%1 = %21” + [y1 — 21%),

/ |H (%1, 91,2) = H(%2,92,2)|"W(dz) < Ch (v = %217 + [y1 = 2l?), g >2.
z
Remark 2.2 From Assumption 1, for all x, y; € R, it immediately follows that

Gy |* + g |* + [ F G | + | G|
<2(Cy + Cy + Cr + Cg) (Il 11 + In1I%)

2(|£(0,0)* + |g(0)|* + |F(0,0)|* +|G(0,0)|),
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/ |1(x1,2) | *w(dz) < 2‘7_1/ 110, 2)||"v(dz) + 277 Cpllx1 1%,

VA 7

/Mm%MMMQHﬂmwmewﬂﬂwmmm,Rz
7 Z

so we set

K3 = max{2(Cy + Cy + Cr + Ca), 2(|f(0,0)|* + |(0)|* + |F(0,0)|” + |G(0,0)[*) },

Ky = max{zq‘I/ |(0,2) ||qv(dz),2q‘1Ch},
z

Ks =max{2q1 / |F(0,0,2) ||qv(dz),2qch},
z

and then we have
| + [gGe | + |E@L )| + |Gl | < Ks(1+ Il + 1),

é%%@WW@S@OW&M,qZZ
/Z [Hew,y1,2) | "v(dz) < Ks(L+ [lall? + Iy 119), g > 2.

Assumption 2 f is globally bounded.
Assumption 3 7 =03 — Cr — Cg — Cy > 0, where o is the decay rate of A.

Remark 2.3 Assumption 3 is a strong dissipative condition, and it is very important to
prove the ergodicity for the fast motion. The detailed proofs will be given in Appendix A.

It is easy to see that, complying with Assumption 1, and in terms of Remark 2.3, (2.3)
has unique mild solutions [39, 40].

3 Averaging principle for two-time-scales SPDEs with jumps
In this section, we first prove two key lemmas and then present the main result of the

paper.

Lemma 3.1 Let Assumptions 1-3 be satisfied. For any T > 0 there exists a positive constant
Cp,r >0, p>1such that for any € € (0,1),

E sup H)(t6 Hzp <C,r.
0<t<T
Proof For || X£ %, by the energy identities (2.5), we have
t
e =il 2p [ s
0

t
vap [P ), ) s

t
2o [ DX gt ) o
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1) [ D ax) e
[ 0 s - e st
o [ 1021 - x| aar s

o [ [ 1 e aar s

o
= [1Xol + > T,
By Assumption 1 and Assumption 3, Young’s inequality and (2.2), we have
Xl + T+ T2 + TT% < X | — 200 /0 x| ds+c, fo e ds
<ciq | Ixfras

For ¢, I/, according to the binomial theorem, we calculate the coefficients in the ex-
pansion of (a + b))%,

2 W 2 % 2
(a+b)? =Cla* + CPa® b+ Cla*2b*

2p 232p-2 2p 2p-1 2p 1 2p
+ot G pa b0 + Gy ab™ ™ + Gy b7, (3.1)

where C k=0,1,2,...,2p. So, by Assumption 3 and Young’s inequality,

Vk|1
H6+H7 / [ ‘X€+h Xe HZP ”Xg”Zp] (d2) ds
_219/ _/;”X;H2p—2(h(X;,z),Xf)Hv(dz)ds
0
2p ¢ ' |
=Soc [ e 2) | vaads
i=2 0 JZ

t
< cp/ < | ds + C.
0
Then we obtain

E sup ||Xf”2p§C+Cpf E Sup ”XGH P s+ E sup 12+ E sup IT°.
0

0<s<t 0<s<t 0<s<t

Now, by Young’s inequality and the BDG inequality, we find

E sup Hf < CE{/ / ||)(E +h ||2p ||X5H2P] v(dz)d }2

0<s<t
t 2p ) %
= (Zcfpux;uzp-‘w 1) o
0 i=1
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LY . )
cculX [ [ b1 o o
i=1

TUPRRT
scnz{/ ||Xj||”ds} ..
0

Next, it is easy to see that

; 1
E sup T2 < C]E{f HXSeHALPds}Z +C.
0

0<s<t

Therefore,

t t 1
B s X[ <C G, [ B sup ||X§||2"ds+CE{/ ||X§||4pds}2
0 0<r<s 0

0<s<t

¢ 1
c+C / E sup ||X€||2pds+CE{ sup ;[ / nxg||2pds}2

0<r<s

A

§C+Cpf E sup ”XGHZPds+ -E sup ”XGHZP.
0

0<r<s

Finally, by Gronwall’s inequality, we have

E sup || X¢ ||2p < Ce“T,
0<s<t

This is the proof of Lemma 3.1. O

Lemma 3.2 Let Assumptions1-3 be satisfied. For any T > 0, there exists a positive constant
Cpa1,Cr K. K5,y > 0 such that for any € € (0,1), y > 0,

sup E|Y¢ | < Cpacrioisy-

0<t<T

Proof Due to the energy identity (2.6), we find
t
B[ = iyl + 2 [ ars vias
0
_p ! € || 202 € e €
B [ e ), 1),
_ t
20D [ e e ) s
t
' E]Ef f [1Ys + HOG Y5, 2) | = s | vz ds
2p— 2
g f / [V H (X Y 2), YE), v(de) i
5

2 —
= 1Yol + > &

i=1
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In view of Assumption 1 and Assumption 3, we have

(AYSYE) < - | YE]%,
(P Y)Yy = (FOXE, ) = F(XE,0), Yoy + (FXE,0), Y 62

|60 YOI <60+ x5+ 1X5]).

Then by taking (3.2) and y > 0 small enough for Young’s inequality in the form |ab| <

)/|b|m + Cr,m|ﬂ|%r we have
3 ¢ .
O R A R N A
i=1 0 0

p t 2p p t 2p—2 2
g [y s Be [ ceae P as
0 € Jo

2p(p-1 t _
20D [ e [y ) o

t
< 1o - 2 g [y g
0

4
Cyt
€

C ¢
+ 228 [+
€ 0

By the binomial theorem (3.1), Young’s inequality and Assumption 3, we have

[1]

Ef+

2p ¢ . .
P=r e [ [P s e ds
i=2

2p p
1 . i i
<2k 3 CVE [ e ] ] ds
i=2

4

t C’ t Ct
< Storg [Myepras s 2 [ s
€ 0 € 0 €

With the help of Gronwall’s inequality (see reference [17], p.74), we know there exists a

positive constant Cy, o, c;,i3,k5,y > 0. We have

4

Cp.a1,Cr K3, K: ! 2 G
sup EJ|Y; |7 < ||Yo||2p—WE/‘ sup (v dr+ 24
0

0<s<T 0<r<s
2% _ Cpo CpK3. K5,y T - Cpa1,.Cp.K3. K5,y T
< | YolPPe ( e -1)
= Cp,avaF,KsyK&V'
This is the proof of Lemma 3.2. d

Theorem 3.3 Let Assumptions 1-3 be satisfied. X, denotes the stochastic process deter-
mined by the SPDE

dX, = [AX, + f(X))] dt + g(X,) dW} + / h(X,-,2)Ni(dt, dz).
Z
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Then for T >0, p > 1, we have

E sup ||Xf—)_(¢“2p—>0,
0<t<T

as e — 0.

Proof In order to prove the above theorem Theorem 3.3, we divide the course of the proof
in three steps. In Step 1, ||X} — Xf % will be estimated. We prove the other estimate
||)A(t€ — X;|* in Step 2. Finally, through Step 1 and Step 2, Theorem 3.3 will be ob-
tained.

Step 1. We consider a partition of [0, 7] into intervals of the same length § (§ <1). Then,
for t € [k§, min{(k + 1)8,T}], k =0,1,..., | T/8], we construct auxiliary processes f’f and

X}, by means of the relations

t
Ye=Y5+ 1/ [AY? +F(X,§5,Y‘)]ds+ — | G(X,, Y)dw?
ké

/ks./H st, (ds,dz) (3.3)

and
N t t R t
X§=X0+/ A)(;ds+/f(x[§/3]a,yj)ds+/ g(X¢) aw}
0
// N1 (ds,dz), te][0,T]. (3.4)

To proceed, by the mild solution X} of (2.3), we make the following estimation:

2p
;= X551 < 427 | X (Secss = DI + 427

t
/ Siof (X5, YY) ds
)

2p
42[7—1

/ Sig(XS) dW!

/ / Si-sh(X¢_,2) Ny (ds, dz)
ks

= 11 +12 +13 +I4, (35)

2p
42[7 1

where I denotes the identity operator.
First of all, since f is globally bounded, by Holder’s inequality and Assumption 3, detailed

computation leads to

2p
EL, = 4771

t
/ Seof (XS, YS)ds
ké
< CJlt - k8|7 / 1 (xs, o) |2 ds

<C|t-ks|%. (3.6)

Page 10 of 23
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Second, from the BDG inequality, Holder’s inequality and Lemma 3.1, it follows that

t p
R TACECSIRY
kS
t
< Cllt - k8|P'E / le(x¢)[*” ds
ks

t
SCW—kMW4/1@+EW¥H”)%
ks
<C|\t - k3. (3.7)

Next, by Kunita’s inequality [19, Theorem 4.4.23], we have

t t p
El, < CE f / ||S£_sh(X§,z)H2pV(dz)ds+CE{ / / ||St_sh(X§,z)||2v(dz)ds}
k8 JZ ks JZ
t
Sm/uwQMm
ké
< C||t - k8| (3.8)

Finally, we will estimate the first term [; of (3.5). To proceed, we define three functions

and establish a key lemma.
Define

t
Tf = /. St—sf(ng; }/:)ds,
0
t
P = / Si-sg(X5)aw},
0
t ~
U = / / Si_sh(XS_, z)Ni(ds, dz).
0 Jz
Since the semigroup {S;};>¢ is analytic, the trajectories of Y;, ®{ and W are Holder
continuous-valued. We will give some estimations of the slow component X} as a value
process in D((—A)%), @ € (0, % .
Remark 3.4 In this paper, we assume that ﬁ <p< ﬁ and « € (0, é).

Lemma 3.5 Foranyt € [0,T] and ﬁ <p< ﬁ, o € (0, é), there exists a constant Cqp,T

such that
]E”Xf “ip = Ca,p,T’

Proof The estimations of Y, ®¢ can be obtained from [17]. Here, we give the proof of the
third term ;. For the third term, by the factorization formula, we have

t
Ui =C, f (t —5)*71S,_ U (s) ds,
0

with US(s) = [5 [,(s = r)*Ss_ h(XE_, 2)Ni(dr, dz).
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Note that, for any ﬁ <p< ﬁ, a € (0, é), we have

t 2,
il <[ [a-ouzol, o]
0

5 t 2p
< Cq sup |[US(s) ||j[ / (t—s5)? ds}
0

0<s<t

< Cup,T SUP H U5 (s) Hzp.
0<s<t

Next, for any ¢ > 0, the operator (—A)*S; is bounded and its operator norm ||(-A)*S;| <
Myt~ [48]. Then, by Kunita’s first inequality [19, Theorem 4.4.23], Holder’s inequality

and Lemma 3.2, we have

2p
B 2 = Copr® sup

0<s<t

/ S / (s = 1) (=A)*Ss_,h(X(_, 2) Ny (dr, dz)
0 JZ

t
< Cupal [ (6= (x5, 2) oy ar

p
' CEU [ s ) P dr]
< Ca,p,TE[OSSliIS)[/Z Hh(Xf’Z) HZPV(dZ):|/ /(S_r)—4pa dr
CD( b % d h d
+ ,p,T|:/(; (s=r) r:| / |:/ || Z)] dr

T
< Cupr /O E[1+ |X<|*]dr

< Copr-
Then, by [S:Xo 17 < 1 Xo[|2?, we have
E|X; [ < Capr.
This is the proof of Lemma 3.5. O

To proceed, we give the estimation of /;. According to [48], there exists a constant C, > 0
such that for all x € D((-A)%),

L = HX/Z;(St—kﬁ - ]1)‘ <

and then, according to Lemma 3.5, we deduce

Ely =47 | X5 (Seks =) Hzp
< 471G, 1t - k8| PE | X |

< Cuprllt — k8| (3.9)
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It then follows from (3.6)-(3.9) that

2,
E||X; - Xgs||” < Caprllt = k817 + Coprlit — K|
< Coprlt — k8|

< Cop, 18", (3.10)
Note that the result also holds for p =1 [45]:
E[X¢ = X5 |° < Cup 8.

Next, from the definitions of Y, (2.3) and }A’f (3.3), by energy identities (2.6), for ¢ €
[k, min{(k +1)8, T}], E|| Y - }A’f 1% will be estimated:

E|Y; - % |”
t
_ 2_pE‘/kB ” Yse _ i‘/se ||217—2(AYse _A?Ss, Yse _ f’;)ds

t
2 [ ) PO B2, T

2D f e PG B) - 6, ) s

€ ye € 2p
: E/M/ | = 70) + (x5, ¥5,2) - H O 55,9
—|lve -t 2”]v(dz)ds

e WA i T

- H(Xg;, Y5,2), YE = Y¢) v(dz) ds

=h+h++Ja+)s.

First of all, from Assumptions 1-3 and Young’s inequality, it is easy to get
c ‘ € € |22 e {e|?
]1+]2+]35;E (15 = X5 [ + [ =¥ ™) as
<= / ||Ye Ye”Zp vtpT(S

2pa+1

Then, by equality (3.1), we have
2p t o o
ootz 3o [ [ v BP0 ) - O ) o ds
Py ks Jz

c z ! € {re||2p-i € € ||¢ e el
< COE [T - Xl - B ds
i=2

t 2 1
< E]E/ lye - 2| ds + Seor®
€ ks €
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Therefore, for ¢ € [k§, min{(k + 1)8, T'}], we obtain

t 2pa+l
EHY;—?;HZ’”ggE/M H)/;_)?;Hzl"dﬂw

C 52p0¢+1 c
< o,p,T 6?6

€

(3.11)

To proceed, we give another key lemma to complete the proof of Step 1.

Lemma 3.6 Foranyt e [0,T], and ﬁ <p< ﬁ, a € (0, %), we have

A 12 82pot+1 c
E sup |[X¢-X;|™” < Copr ec’ 487 )T,
0<t<T €

Proof We begin with

t
Ioxs =R =2 [ s - K2 - ke s - Re)ds

A

t
+2p / s = X200, Y9) = (Xfygogon 1), X5 = K¢y .
Thanks to Lemma 3.6 and (3.11), for any u € [0, T'], we get
t
E sup X - X% <G, / E sup | X< - X< |% ds
0<t<u 0 0=<r=s
u
+ G [ B sup ;- X |
0 0<r<s
t
oG, [ By - i ds
0

= CP/OMIE sup || Xg - Xe ||2p ds + Cpp, 187"

0<r<u

C 82pa+1 c
PD E RS L

€
With the help of Gronwall’s inequality, we have

82pa+1

E sup |X¢ - Xt ||2p Scot,p,T< oS +82pa)eCpT.
0<t<T

This is the proof of Lemma 3.6. d

Step 2. In this step, we will estimate E supy_,.y ||)A(t€ — X,||%. 1t follows from the defini-
tions of X, and X¢ that

t -
K- K= [ Selr 6, 7) -F )] ds
0

+ /0 tst,s[f(xg) —f(X¢)]ds + /0 [st,s[f(f(;) -f(Xy)]ds
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+ /0 Si-s[g(X) - g(X5) [ AWy + f Si-s[g(X5) - e(X)] aw;

0

+/0 /ZSt_s[h(Xs_,z) —h(Xs_,z)]Nl(ds,dz)

+/ /;St_s[h(Xse_,z)—h(Xs_,z)]Nl(ds,dz)

i=1

Using Holder’s inequality, the contractive property of semigroup S;, and the globally Lip-
schitz continuity of f, for any u € [0, T], we obtain

EZ sup ||s.4 (t)HZp <CT/MIE0sup ||Xf —f(f||2pds
0 <rss

j=2,4 0St=u

82poz+l

§Ca,p,r( e 62”“) T, (3.12)

Similarly, it is also easy to derive that the estimate for any u € [0, T],

]EZ sup ||__4 (t)“zP <CT/ E sup ||)A(f —7,||2pds. (3.13)
0 0<r<s

j=3,5 0=t=u

Now, by Kunita’s first inequality [19, Theorem 4.4.23] and Holder’s inequality, we have

2p
E sup |E6(t "=E sup [/ /St—s X¢,z) - h( §_,z)]N1(ds,dz):|
0<t<u

0<t<u

<CE /0 /Z |Ses[m(XE,2) — h(XE,2)] | v(dz) dt

+cp1E[ / ' / ||sts[h(X;,z)—h()%;,z)]||2v(dz)dt]p

<Cpr f E sup |X€—X¢ | ds

0<r<s

82pot+1

C(S +82pa> CpT (314)

= Ca,p,T ( €

and
2
E sup ” 6(t)H ?_R sup |:/ /St_s h(X,_,z) - h(X6 ,z)]Nl(ds,dz):|

<GE /0 /Z IS5 [h (X 2) = (X, 2) ]| v(dz) dt

+c,,E[/" / ISu[H0F,02) — h(Rer2)] v dz)dt}

<Cyr / E sup | X< -X,|* ds. (3.15)

0<r<s
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Next, to deal with the first term, by the boundedness of the functions f, f, we have

£ _ 2p
E sup |E:0)|? <E sup / Suca[f (X £9) ~F(X)] dis
0<t<T 0<t<T|JO
t A B 2
<CrE sup. fo SualF (X V) —F(X9)] dis (3.16)
<t<
For ¢t € [k8, min{(k + 1)8, T'}], we write
(k+1)8 _
=10 - 2 B RSN
k=1 o (k+1) _ _
£y / S (XG) —F(X9)] ds
k=0 VK3
t -
[ Selr g ) - 0) s
s
3
= Z Eu(t).
i=1
From (3.10), it follows that
) k=1 a(ks1)s . . 2
E sup |Su@|’ =F sup |3 / S[F(x5,) —F ()] ds
0<t<u 0<t<u k=0 ks
T 2
<cr [ B -xg
0
< Cy18*, (3.17)
and by Assumption 3, we have
t . B 2
E sup | Eis(d)|” = E sup /kast_s[f(xgs,Y;)— Fxe)] ds
0<t<u 0<t<u
< Cré. (3.18)

Lemma 3.7 Suppose that Assumptions 1-3 hold. Then there is a constant C > 0 such that

we have
(k+1)3 B 2
E sup [En(®)]*=E sup Z / Sueslf (X 75) ~F (X5) s
k=0
1)
S C_;
€

where C is independent of (5, €).

Proof See Appendix B. d
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Now, using the above estimation (3.16)-(3.18) and Lemma 3.7, we obtain

€

E sup | Ei(0)]* < C8+Co 6™ + Cry
0<t<u

< Cpr8™ + CT% (3.19)

As regards the above discussion, from (3.12), (3.13) and (3.19), through Gronwall’s in-
equality, it is easy to see that

2pa+1

E sup |5 - X[” < Curt™ 4 CrE 4 co,,p,T<

c
) SZpot) eCpT
0<t<u

+CT/ E sup ||)A(f—)_(,||2pdr.
0

0<r<s
Therefore, by Gronwall’s inequality, we have

62pa+1

E sup | X5 -X,|” < [cﬂa” + CTE + ca,,,,T<

[
ee 8 + SZPQ)eCpT}eCP'T.
0<t=<u

Step 3. According to Step 1 and Step 2, we have
E sup || X} —)_(t||2p =E sup ||X{-X;+X; —)_(tHZP
0<t<T 0<t<T

X -%|*

- T —
<2%7E sup |XF-X¢[|” +2%7'E sup
0<t<T 0<t<T

€ 52pa+1 c
< [CQ,T(SM + CTE + Ca,p,T(—e?B + 82p“>eCPT]eCP’T
€

52po¢+1

c
+ Ca,p,T< e’ + 82P°‘)eCPT

82pa+1

—)

o)

€
< Ca,p,T|:82"‘ + 8% 4 3+ e

Thus, for ¢ € [0, T], selecting § = e+/—In¢, we obtain

E sup HX; —)_(t||2p—> 0,
0<t<T
ase —> 0,t€[0,T].
This is the proof of Theorem 3.6. d

Remark 3.8 To compare with the work of Xu and Miao [45] that the IL2-strong averag-
ing principle for slow-fast SPDEs with Poisson random measures was established, in this
paper, we cope with high order moments which possess a good robustness and can be
applied in computations in statistics, finance and other aspects.

Appendix A
In this appendix, we shall show the ergodicity of the fast equation with frozen slow compo-
nent for the reader’s convenience [46]. For a fixed x € H, consider the problem associated
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with fast motion with frozen show component
dY, = [AY, + F(x, Yy) ]| dt + G(x, Y,) AW, + / H(x,Y:-,2)N(dt, dz), Yo =y, (A1)
z

where W, is a Wiener process, N(dt, dz) is a Poisson random measure with the compen-
sator v(dz) dt, and they are defined on the stochastic basis (€2, F,P). Then, for any fixed
x € Hand any y € H, (A.1) has a unique mild solution which will be denoted by Y;”

Appendix A.1 ([46]) We assume that Assumptions 1-3 hold. Then there exists a constant
C such that

|Ef (2, Y7) = F@)||* < Ce™ (1 + Il + Iy11%),

where n =0y — Cr— Cg — Cy >0, ]_‘ (%) also satisfies the globally Lipschitz condition (As-
sumption 1) and

flx) = /f(x,y)u"(dy), x e H,
H
where u* denotes the unique invariant measure of (A.1).

Proof By the energy equality [45], we get

L]y |7 < 2B, 1) 28 V) - F 00 K7,
+2E(F(%,0),Y;”),, + 2E| G(x, ;) - G(x,0)|* + 2E| G(x,0)|*
+2]E/ |H (x, Y7, 2) - H(x,0,2) || (dz)
+2IE/ ||H(x, 0,2) ||2v(dz)

Z

< 20, E| Y| + (Cr + DE| Y} ||* + CE|F(x,0)|*

+ (@1 -1- Ca GBI+ @ + 2CE] 1
+2E)|Gx, 0)])” + 2E / |Hx,0,2)*v(dz)
Z

< —nE| Y| + C(1+ IxI?),

wheren:al—Cp—Cg—CH>O.

Then by Assumption 1, Assumption 2, Remark 2.3, and the Gronwall inequality, we have

E| Y| < llyle™ + C(1+ [l«]?). (A.2)
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Next, let Y, " be a solution of (A.1) with the initial value Y, = y'. By the energy equality,
we derive

722 -2 = b= o2 [ (8 - 1), 07 - 72
+2 f 1P Y2) - Flo 27 ), Yoo - v ds
02 [166 1) - Glo 1), 720 - ),
[ 166 7) - 6 ) s
of t [ Voo v2,2) - v ) N )

t
' 2/ / (H(x, Y2) - H(x, Y*'), Y2 - Y| _N(ds,d2)
0 JZ

t
' / / |F (s, Y2,2) = H (s, Y2 [P W(d2) ds.
0 Jz
With the aid of (2.2) and Assumptions 1 and 3, we have
By - v | < [y-y e, (A3)
where n = o; — Cr— Cg — Cy.
Note that for any x € H denoted by P} the Markov semigroup associated with (A.1) is
defined by

P (y)=Ew(v), t>0,ycH,

for any ¥ € Bj(H) in the space of bounded functions on H. We also recall a probability u*
on H, which is called an invariant measure for (P}):¢ if

/p;w,ﬁ:/ wdu*, t>0,
H H

for any bounded function ¥ € B, (H). As in [49, 50], it is possible to show the existence of
the unique invariant measure ©* for the semigroup P, which satisfies

[P @) < @ e,

Furthermore, according to the Lipschitz assumption on f and (A.3), we have

2 2

HEf(x, ) - fH f () (dy)

18 e ) - 5 o (@)

<c [ B - v P (a)

cet [ fy-y| (@)
H

_1,
< Ce 2" (1+ x> + lIyl%).
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This is the proof of Appendix A.1. g

Appendix B
In this appendix, we show the proof of Lemma 3.7 for the reader’s convenience.

First of all, we note that by a time shift transformation, it follows from the definition of
Y? that for s € [0,8], the process %, ; coincides in distribution with the process 1{251’5&
defined by (A.1) in Appendix A. We have

R 1 kd+s 1 ké+s R
Ys’ik(S:Y,f5+g/ Adeu+—/k F(Xpy, Yy du

ks € Jks

1 ké+s . 5

+ — G(X, Y. )dW
\/g s ( ks u) u

ké+s
/ /H XE, Ve ,2) N5 (du, dz)
ks
1 1 (¢ N
=Y + —/ AYqukrS du + _/ F(Xis Yiop) dut
& & Jo
! / G(Xfy, Ve, ) AW
= ' Lyt u
«/E 0 ké ké
S
+/ /H(X,fa,Y;+k5_,z)N28‘*(du,dz), (B.1)
0 Jz

where W2* = W2, - — W2 and p** = p?_, s — pi, are the shifts of W? and p?, respectively.
Let W, be a Wiener process and independent of W2 and ? be a simple Poisson process

and independent of p! and p?. We construct a process Y XeorVis by means of

sle £ ve & 5
y % _ ye /0 AY Y g, /0 F(XEy, Yo" ) dy
sle e ve _
" f G(XEy, Yo 10) 4,
0
sle e ye _
+ / / H(X(5, Yk, 2) Ny (du, dz)
=Y+ - / Yxké Yké / (Xkarl/;/ifS Yks)
8 0
Y
oL [ Gl

+ / / H(XC,, Y5 ) Ry (du, dz), (B.2)
0 Z

where W, = /e W, and p? =P, are the scaled versions of W, and p?, respectively.
By comparison of (B.1) and (B.2), we have

(X5, V2s) ~ (X0, Y00 8), s 10,8), (B.3)

sle

where ~ denotes a coincidence in the distribution sense.
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Proof for Lemma 3.7 To proceed, as for E;;(¢), by (B.3) we have

2

E sup “un(f)| =E sup
0<t<T

(k+1)8 _
Z /k S (65 1) 706 ds

2

/‘6 St—(es+k5 [f(XkS’ se+k6) f(Xkﬁ)]

0

<|T/5]%¢* max E
0<k<|T/§]-1

= |T/5)2%€>

3

X max /DIE{/OSS,_(“M [f (Xzs» se+k5) -f(Xis)] 4 }z‘iS

0<k=<|T/§]-1

=2|T/8)%?

o [ [ s sy

X S'f’(“*k‘s [f(XkS’ re+k6) .}?(Xlis)] deT} dé

3 )
:=2|T/8|%* max //(ﬁ(s,r)dsdr,

0<k=[T/8]-1 Jo

with

T05,0) = [ Setcnn [ (X5 Tss) 7 (15)]
X Se-eesk) [f (Xes Yeeons) —F (Xis) ] dE
-E /D Si—tessk)|f (Xlis’f% Yk&) f(Xis)]
X Secteesa[f (X, Yo '00) - F(X,) ]
& [ {st(,ﬁka)v(xzs,ﬁ%’% 7))
< a0 Y 701

1
2

< {2 [ (om0 775) 701 e

1
2

x {E / (B[S0 enrs [F (X y TRy Fxe)NY dg}
D
< [B]f (g, v o) —p(xe) 1P}
< (BB [, Y20 - pxe) [P

To proceed, by Appendix A.1 and the assumption that f is bound, we get

Jils,7) < C{(L+ E|X5 | + B[ ¥4 )e o) < ced60),
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Therefore, by choosing § = §(¢) such that ¢ is sufficiently large, we have

) )
E sup |En()|® <21T/5% max / / Jils,7) dsdr
0<t<T 0<k=<|T/5]-1 Jo -

25 4 -
§2LT/8J262<——— - +ez"‘3)
ne 1

2
S (2 A
82 ne 772

€
<C-.
-4
This completes the proof of Lemma 3.7. g
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