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Abstract
In this paper, a diffusive and delayed virus dynamics model with Crowley-Martin
incidence function and CTL immune response is investigated. By constructing the
Lyapunov functionals, the threshold conditions on the global stability of the
infection-free, immune-free and interior equilibria are established if the space is
assumed to be homogeneous. We show that the infection-free equilibrium is globally
asymptotically stable if the basic reproductive number R0 ≤ 1; the immune-free
equilibrium is globally asymptotically stable if the immune reproduction number and
the basic reproduction number satisfy R1 ≤ 1 < R0; the interior equilibrium is globally
asymptotically stable if R1 > 1.
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1 Introduction
Nowadays, virus infection is related to the global health problems. Many diseases which
are caused by viruses, such as hepatitis B virus (HBV), human immunodeficiency virus
(HIV), hepatitis C virus (HCV), have drawn the attention of researchers. Based on the
virus infection models proposed in [–], several different mathematical models which
are valuable to obtaining comprehensive views to the virus dynamics have been investi-
gated, for example, in a form of ordinary differential equations (ODEs) [, –], delayed
differential equations (DDEs) [–, , , , ], partial differential equations (PDEs) [,
–] and fractional-order differential equations (FODEs) [–]. Nowak and Bangham
[] pointed out the basic virus infection model which plays a critical role in understanding
the virus replication dynamics in vivo. They considered the following basic mathematical
model for uninfected host cells u, infected host cells w, free virus v and the magnitude of
the CTL response z:

du(t)
dt

= λ – du(t) – βu(t)v(t),

dw(t)
dt

= βu(t)v(t) – hw(t) – pw(t)z(t),
()
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dv(t)
dt

= kw(t) – μv(t),

dz(t)
dt

= cw(t)z(t) – qz(t),

where the uninfected host cells are produced at rate λ, die at rate d and become infected
at rate β . Infected host cells die at rate h and are killed by the CTL response at rate p. Free
virus is produced from infected cells at rate k and is removed at rate μ. The magnitude of
the CTL response, which expands in response to viral antigen derived from infected cells
at rate c, decays in the absence of antigenic stimulation at rate q.

It should be mentioned here that, in model (), the rate of infection is assumed to be
bilinear, that is, βuv. However, this assumption is not biologically sensible all the time.
Recently, many researchers have performed the virus dynamics models with Crowley-
Martin infection rate (see [, ]). The Crowley-Martin type of functional response, that
is, βuv

(+au)(+bv) , was introduced by Crowley and Martin in [], where a, b are constants. Par-
ticularly, when a = , b = , the Crowley-Martin infection rate becomes bilinear infection
rate. Thus, it is necessary to study virus infection model with Crowley-Martin infection
rate. In addition, based on the epidemiological background, time delays play a critical role
in the virus infection model. To incorporate the intracellular phase of the virus life-cycle,
we assume that virus production occurs after the virus entry by the intracellular delay τ.
The recruitment of virus producing cells at time t is given by the number of uninfected
cells that were newly infected at time t – τ and are still alive at time t (see [, , , ]).
The constant m is assumed to be the death rate for newly infected cells during time pe-
riod [t – τ, t]. e–mτ denotes the surviving rate of infected cells during the delay period.
Virus replication delay τ represents the time necessary for the newly produced viruses to
become mature and then infectious (see [, , ]). The constant n is assumed to be the
death rate of a new virus during time period [t – τ, t]. e–nτ denotes the surviving rate of
a virus during the delay period.

Until now, there has been a large number of works about virus infection models which
considered delays, but in many biological systems, the species under consideration may
disperse spatially as well as evolve in time (see []). As a matter of fact, many models
ignored the spatial mobility of cells and viruses. Recently, many authors argued that the
virus moves freely in body and follows the Fickian diffusion (see []) and investigated the
global stability properties of virus infection models with diffusion in [, –, ]. But the
research is relatively small, a lot of work needs to be further done to provide theoretical
evidence for controlling disease.

In this paper, motivated by the work of [, , ], we further neglect the mobility of
susceptible cells, infected cells and immune cells and consider a delayed virus infection
model with Crowley-Martin infection rate and spatial diffusion:

∂u
∂t

= λ – du(x, t) –
βu(x, t)v(x, t)

( + au(x, t))( + bv(x, t))
,

∂w
∂t

= e–mτ
βu(x, t – τ)v(x, t – τ)

( + au(x, t – τ))( + bv(x, t – τ))
– hw(x, t) – pw(x, t)z(x, t),

∂v
∂t

= D�v(x, t) + ke–nτ w(x, t – τ) – μv(x, t),

∂z
∂t

= cw(x, t)z(x, t) – qz(x, t)

()
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for t > , x ∈ � ⊂R
n with the initial conditions

u(x, θ ) = φ(x, θ ) ≥ , w(x, θ ) = φ(x, θ ) ≥ ,

v(x, θ ) = φ(x, θ ) ≥ , z(x, θ ) = φ(x, θ ) ≥ , x ∈ �̄, θ ∈ [–τ , ],
()

and the homogeneous Neumann boundary conditions

∂v
∂�n = , t > , x ∈ ∂�, ()

where u(x, t), w(x, t), v(x, t) and z(x, t) represent the densities of uninfected cells, infected
cells, free virus and immune cells at location x and time t, respectively. The Laplacian op-
erator and the diffusion coefficient are denoted by � and D, respectively. τ = max{τ, τ}, �
is a connected, bounded domain in R

n with smooth boundary ∂�. ∂
∂�n denotes the outward

normal derivative on ∂�. φi(x, θ ) (i = , , , ) are nonnegative and Hölder continuous in
�̄ × [–τ , ]. The boundary conditions in () imply that the virus particles do not move
across the boundary ∂�.

In this paper, the purpose is to investigate the dynamical properties of model (), ex-
pressly the stability of equilibria. Our paper is organized as follows. In the next section,
we discuss the positivity and boundedness of solutions, the threshold values and the ex-
istence of equilibria of model (). In Section , by constructing Lyapunov functionals, we
establish global stability of all equilibria of model (). In Section , we further illustrate
the dynamical behavior by numerical simulations. In the last section, we give brief con-
clusions.

2 Positivity, boundedness and equilibrium
In this section, our main purpose is to prove the existence, positivity and boundedness of
solutions of model ().

Theorem . For any given initial data satisfying condition (), there exists a unique solu-
tion of model () defined on [, +∞), and this solution remains nonnegative and bounded
for all t ≥ .

Proof By standard existence theory [–], it is easy to establish the local existence of
the unique solution (u(x, t), w(x, t), v(x, t), z(x, t)) of model () for x ∈ � and t ∈ [, Tmax],
where Tmax is the maximal existence time for solution of the model ().

It is not hard to see that  = (, , , ) and M = (M, M, M, M) are a pair of coupled
lower-upper solutions to model (), where M, M, M and M satisfy

M = max

{
λ

d
, sup

–τ≤s≤

∥∥φ(·, s)
∥∥

C(�,R)

}
,

M = max

{
βM

lb
e–mτ , sup

–τ≤s≤

∥∥φ(·, s)
∥∥

C(�,R)

}
,

M = max

{
kβM

μlb
e–(mτ+nτ), sup

–τ≤s≤

∥∥φ(·, s)
∥∥

C(�,R)

}
,

M = max

{
cβM

plb
e–mτ , sup

–τ≤s≤

∥∥φ(·, s)
∥∥

C(�,R)

}
,

()
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and l = min{q, h}. From the comparison principle [], we have  ≤ u(x, t) ≤ M,  ≤
w(x, t) ≤ M,  ≤ v(x, t) ≤ M,  ≤ z(x, t) ≤ M for x ∈ � and t ∈ [, Tmax]. Then u(x, t),
w(x, t), v(x, t) and z(x, t) are bounded on �× [, Tmax). By the standard theory for semilin-
ear parabolic systems [, ], we can deduce that Tmax = +∞. This completes the proof.

In the following, we will discuss the existence of equilibria of model (). Model () always
has an infection-free equilibrium E = (u, , , ), where u = λ

d . The basic reproduction
number is given by

R =
βkλ

μh(d + aλ)emτ+nτ
. ()

We can rewrite R in the following form:

R = k · 
μ

· e–nτ · β · λ
d

 + a · λ
d

· e–mτ · 
h

.

Here, k is the rate of new virus particles produced by infected cells, 
μ

is the surviving pe-

riod of virus, e–nτ is the surviving rate of a new virus in time period [t –τ, t], β· λ
d

+a· λ
d

denotes
the newly infected cells which are infected by the first virus, e–mτ is the surviving rate of
newly infected cells in time period [t – τ, t], and 

h is the surviving period of infected cells.
Therefore, we easily see that R denotes the average number of the free viruses released
by the infected cells which are infected by the first virus.

If R > , there exists a unique immune-free equilibrium E = (u, w, v, ), where u is a
positive root of the following equation:

abkdu +
(
βk + bkd – abkλ – aμhemτ+nτ

)
u –

(
bkλ + μhemτ+nτ

)
= ,

and w = μenτ
kb (R∗ – ), v = 

b (R∗ – ) if and only if

R∗ =
βku

hμ( + au)emτ+nτ
> .

Also, an immune response reproduction number is

R =
c
q

w =
cμenτ

qkb
(
R∗ – 

)
.

Note that when R >  model () has a unique immune-free equilibrium E = (u, w, v, ).
This shows that virus infection is successful and the numbers of free viruses and infected
cells at equilibrium E are v and w, respectively. Furthermore, we have that 

q is the aver-
age life-span of CTL cells and c is the rate at which the CTL response is produced. Hence,
R denotes the average number of the CTL immune cells activated by infected cells when
virus infection is successful.

If R > , then model () has a unique interior equilibrium E = (u, w, v, z), where u

is a positive root of the following equation:

(
aμcd + abkqde–nτ

)
u +

(
βkqe–nτ + dμc + bkqde–nτ – aμcλ – abkqλe–nτ

)
u

–
(
λμc + bkqλe–nτ

)
= ,
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and

w =
q
c

, v =
ke–nτ

μ
w, z =

λ – du – hwemτ

pwemτ
. �

3 Stability analysis
In this section, we investigate the global stability of equilibria for model (), namely,
infection-free equilibrium E, immune-free equilibrium E and interior equilibrium E

of model (), respectively. For the sake of convenience, we let y = y(x, t) and yτi = y(x, t – τi)
for any y ∈ {u, w, v, z} and i ∈ , .

3.1 Stability of equilibrium E0

Theorem . If R ≤ , then the infection-free equilibrium E of model () is globally
asymptotically stable.

Proof Construct a Lyapunov functional

W (t) =
∫

�

(
W(x, t) + W(x, t)

)
dx,

where

W(x, t) =
u

 + au

(
u
u

–  – ln
u
u

)
+ emτ w +

hemτ+nτ

k
v +

pemτ

c
z,

W(x, t) =
∫ τ



βuθ vθ

( + auθ )( + bvθ )
dθ + hemτ

∫ τ


wθ dθ .

We have

∂W(x, t)
∂t

+
∂W(x, t)

∂t

=


 + au

(
 –

u

u

)
∂u
∂t

+ emτ
∂w
∂t

+
hemτ+nτ

k
∂v
∂t

+
pemτ

c
∂z
∂t

+
βuv

( + au)( + bv)
–

βuτ vτ

( + auτ )( + bvτ )
+ hemτ w – hemτ wτ

=


 + au

(
 –

u

u

)(
λ – du –

βuv
( + au)( + bv)

)
+

hemτ+nτ

k
D�v

–
hμemτ+nτ

k
v –

pqemτ

c
z +

βuv
( + au)( + bv)

= –
d(u – u)

u( + au)
–


 + au

βuv
( + au)( + bv)

+


 + au

βuv
( + au)( + bv)

+
βuv

( + au)( + bv)
–

hμemτ+nτ

k
v –

pq
c

emτ z +
hemτ+nτ

k
D�v

= –
d(u – u)

u( + au)
+

 + au
 + au

βuv
( + au)( + bv)

–
hμemτ+nτ

k
v

–
pq
c

emτ z +
hemτ+nτ

k
D�v.
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Calculating the derivative of W (t) along the positive solution of model (), we get

dW (t)
dt

= –
∫

�

d(u – u)

u( + au)
dx +

∫
�

βuv
( + au)( + bv)

dx

–
∫

�

hμemτ+nτ

k
v dx –

∫
�

pqemτ

c
z dx

+
∫

�

hemτ+nτ

k
D�v dx

= –
∫

�

d(u – u)

u( + au)
dx +

∫
�

hμemτ+nτ v
k( + bv)

(R – ) dx

–
∫

�

hμbemτ+nτ

k( + bv)
v dx –

∫
�

pqemτ

c
z dx

+
∫

�

hemτ+nτ

k
D�v dx.

Owing to the divergence theorem and the homogeneous Neumann boundary conditions
(), we obtain

∫
�

�v dx =
∫

∂�

∂v
∂�n dx = .

Thus, we further have

dW (t)
dt

= –
∫

�

d(u – u)

u( + au)
dx +

∫
�

hμemτ+nτ v
k( + bv)

(R – ) dx

–
∫

�

hμbemτ+nτ

k( + bv)
v dx –

∫
�

pqemτ

c
z dx.

Therefore, dW (t)
dt ≤  if R ≤ . We have dW (t)

dt =  if and only if u = u, w = , v =  and z = .
It follows that the largest invariant set {(u, w, v, z) ∈ R

+ : dW (t)
dt = } is the singleton E. By

using LaSalle’s invariance principle [], we see that the equilibrium E of model () is
globally asymptotically stable when R ≤ . �

3.2 Stability of equilibrium E1

Theorem . If R ≤  < R, then the immune-free equilibrium E of model () is globally
asymptotically stable.

Proof Let G(x, t) = g(x, t) –  – ln g(x, t). We have that G(x, t) ≥  for all g(x, t) >  and
G(x, t) =  if and only if g(x, t) = . Define a Lyapunov functional

V (t) =
∫

�

(
V(x, t) + hwV(x, t)

)
dx,

where

V(x, t) = e–mτ

(
u – u –

∫ u

u

 + aθ

 + au

u

θ
dθ

)
+ wG

(
w
w

)
+

henτ

k
vG

(
v
v

)
+

p
c

z,

V(x, t) =
∫ τ


G

(
e–mτβuθ vθ

hw( + auθ )( + bvθ )

)
dθ +

∫ τ


G

(
wθ

w

)
dθ .
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We have

∂V(x, t)
∂t

= e–mτ

(
 –

 + au
 + au

u

u

)
∂u
∂t

+
(

 –
w

w

)
∂w
∂t

+
henτ

k

(
 –

v

v

)
∂v
∂t

+
p
c

∂z
∂t

,

∂V(x, t)
∂t

=
e–mτβuv

hw( + au)( + bv)
–

e–mτβuτ vτ

hw( + auτ )( + bvτ )

+ ln
uτ vτ

( + auτ )( + bvτ )
( + au)( + bv)

uv

+
w – wτ

w
+ ln

wτ

w
.

By using the equilibrium equation, we get λ = du + emτ hw, hμenτ
k = hw

v
and βuv

(+au)(+bv) =
hwemτ . Thus, we have

∂V(x, t)
∂t

+ hw
∂V(x, t)

∂t

= e–mτ
∂u
∂t

+
∂w
∂t

+
henτ

k
∂v
∂t

+
p
c

∂z
∂t

+ hw
∂V(x, t)

∂t

– e–mτ
 + au
 + au

u

u
∂u
∂t

–
w

w
∂w
∂t

–
henτ

k
v

v
∂v
∂t

= e–mτ (du – du) + hw –
hμenτ

k
v –

pq
c

z

+ hw ln
uτ vτ

( + auτ )( + bvτ )
( + au)( + bv)

uv

+ hw ln
wτ

w
+

henτ

k
D�v – e–mτ

u

u
 + au
 + au

du

+ e–mτ
 + au
 + au

du –
u

u
 + au
 + au

hw +
v
v

 + bv

 + bv
hw

+ hw

(
 –

w

w
uτ

u

vτ

v

( + au)( + bv)
( + auτ )( + bvτ )

)

+ pwz + hw

(
 –

wτ

w

v

v

)
–

henτ

k
v

v
D�v

= –
de–mτ (u – u)

u( + au)
+ hw

(
– –

v
v

+
v
v

 + bv

 + bv
+

 + bv
 + bv

)

+ hw

(
 –

w

w
uτ

u

vτ

v

( + au)( + bv)
( + auτ )( + bvτ )

–
u

u
 + au
 + au

–
wτ

w

v

v
–

 + bv
 + bv

)
+ pz

(
w –

q
c

)

+ hw ln
uτ vτ

( + auτ )( + bvτ )
( + au)( + bv)

uv
wτ

w

+
henτ

k
D�v –

henτ

k
v

v
D�v

= –
de–mτ

u( + au)
(u – u) –

bhw

v( + bv)( + bv)
(v – v)
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+ hw

(
 –

w

w
uτ

u

vτ

v

( + au)( + bv)
( + auτ )( + bvτ )

–
u

u
 + au
 + au

–
wτ

w

v

v
–

 + bv
 + bv

)
+ pz

(
w –

q
c

)

+ hw ln
uτ vτ

( + auτ )( + bvτ )
( + au)( + bv)

uv
wτ

w

+
henτ

k
D�v –

henτ

k
v

v
D�v

due to

ln
uτ vτ

( + auτ )( + bvτ )
( + au)( + bv)

uv
wτ

w

= ln
u

u
 + au
 + au

+ ln
wτ

w

v

v
+ ln

 + bv
 + bv

+ ln
wuτ vτ

wuv

( + au)( + bv)
( + auτ )( + bvτ )

.

Then we have

∂V(x, t)
∂t

+ hw
∂V(x, t)

∂t

= –
de–mτ

u( + au)
(u – u) –

bhw

v( + bv)( + bv)
(v – v) – hw

(
G

(
u( + au)
u( + au)

)

+ G
(

wτ v

wv

)
+ G

(
 + bv
 + bv

)
+ G

(
wuτ vτ ( + au)( + bv)
wuv( + auτ )( + bvτ )

))

+ pz
(

w –
q
c

)
+

henτ

k
D

(
 –

v

v

)
�v.

We know that

∫
�

	v dx = ,
∫

�

	v
v

dx =
∫

�

‖∇v‖

v dx.

Thus,

dV (t)
dt

=
∫

�

(
∂V(x, t)

∂t
+ hw

∂V(x, t)
∂t

)
dx

= –
∫

�

de–mτ (u – u)

u( + au)
dx –

∫
�

bhw(v – v)

v( + bv)( + bv)
dx

– hw

∫
�

(
G

(
u( + au)
u( + au)

)
+ G

(
wτ v

wv

)
+ G

(
wuτ vτ ( + au)( + bv)
wuv( + auτ )( + bvτ )

)

+ G
(

 + bv
 + bv

))
dx +

∫
�

pz
(

w –
q
c

)
dx +

hDenτ v

k

∫
�

‖∇v‖

v dx.

Also, R ≤  implies that w ≤ q
c . Therefore, if R ≤  < R, we can obtain dV (t)

dt ≤ . Ob-
viously, dV (t)

dt =  if and only if u = u, w = w, v = v and z = . It follows that the largest
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invariant set {(u, w, v, z) ∈ R
+ : dV (t)

dt = } is the singleton E. By LaSalle’s invariance princi-
ple [], we finally conclude that the equilibrium E is globally asymptotically stable when
R ≤  < R. �

3.3 Stability of equilibrium E2

Theorem . If R > , then the interior equilibrium E of model () is globally asymptot-
ically stable.

Proof Consider a Lyapunov functional L(t) as follows:

L(t) =
∫

�

(
L(x, t) + (hw + pwz)L(x, t)

)
dx,

where

L(x, t) = e–mτ

(
u – u –

∫ u

u

 + aθ

 + au

u

θ
dθ

)

+ wG
(

w
w

)
+

enτ v(h + pz)
k

G
(

v
v

)
+

pz

c
G

(
z
z

)
,

L(x, t) =
∫ τ


G

(
e–mτβuθ vθ

(hw + pwz)( + auθ )( + bvθ )

)
dθ +

∫ τ


G

(
wθ

w

)
dθ .

By calculating the time derivative of L(x, t) and L(x, t), we have

∂L(x, t)
∂t

= e–mτ

(
 –

 + au
 + au

u

u

)
∂u
∂t

+
(

 –
w

w

)
∂w
∂t

+
(h + pz)enτ

k

(
 –

v

v

)
∂v
∂t

+
p
c

(
 –

z

z

)
∂z
∂t

,

and

∂L(x, t)
∂t

=
e–mτβuv

(hw + pwz)( + au)( + bv)
+

w – wτ

w
+ ln

wτ

w

–
e–mτβuτ vτ

(hw + pwz)( + auτ )( + bvτ )

+ ln
uτ vτ

( + auτ )( + bvτ )
( + au)( + bv)

uv
.

Note that the interior equilibrium E(u, w, v, z) satisfies the following equations:

λ – du –
βuv

( + au)( + bv)
= ,

e–mτ
βuv

( + au)( + bv)
– hw – pwz = ,

ke–nτ w – μv = ,

cwz – qz = .

()
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We obtain that λ = du + emτ (hw + pwz), pw
v

= pμ

k , w = q
c and emτ (hw + pwz) =

βuv
(+au)(+bv) . Thus, we have

∂L(x, t)
∂t

+ (hw + pwz)
∂L(x, t)

∂t

= e–mτ
∂u
∂t

+
∂w
∂t

+
(h + pz)enτ

k
∂v
∂t

+
p
c

∂z
∂t

+ (hw + pwz)
∂L(x, t)

∂t
– e–mτ

 + au
 + au

u

u
∂u
∂t

–
w

w
∂w
∂t

–
(h + pz)enτ

k
v

v
∂v
∂t

–
p
c

z

z
∂z
∂t

= e–mτ (du – du) + hw + pwz + pzwτ – (hw + pwz)
v
v

+ (hw + pwz) ln
uτ vτ

( + auτ )( + bvτ )
( + au)( + bv)

uv

+ (hw + pwz)
wτ

w
+

enτ (h + pz)
k

D�v

–
u

u
 + au
 + au

(hw + pwz) + (hw + pwz)
v
v

 + bv

 + bv

– e–mτ
u

u
 + au
 + au

du + e–mτ
 + au
 + au

du

– (hw + pwz)
w

w
uτ

u

vτ

v

( + au)( + bv)
( + auτ )( + bvτ )

+ hw – (hw + pwz)
wτ

w

v

v
+ hw + pwz

–
enτ (h + pz)

k
v

v
D�v – pwz + pwz

= –
de–mτ (u – u)

u( + au)
+ (hw + pwz)

(
– –

v
v

+
v
v

 + bv

 + bv

+
 + bv
 + bv

)
+ (hw + pwz)

(
 –

u

u
 + au
 + au

–
wτ

w

v

v

–
 + bv
 + bv

–
w

w
uτ

u

vτ

v

( + au)( + bv)
( + auτ )( + bvτ )

)

+ (hw + pwz) ln
uτ vτ

( + auτ )( + bvτ )
( + au)( + bv)

uv
wτ

w

+
(h + pz)enτ

k

(
 –

v

v

)
D�v

= –
de–mτ

u( + au)
(u – u) –

b(hw + pwz)
v( + bv)( + bv)

(v – v)

+ (hw + pwz)
(

 –
u

u
 + au
 + au

–
wτ

w

v

v
–

 + bv
 + bv

–
w

w
uτ

u

vτ

v

( + au)( + bv)
( + auτ )( + bvτ )

)

+ (hw + pwz) ln
uτ vτ

( + auτ )( + bvτ )
( + au)( + bv)

uv
wτ

w
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+
enτ (h + pz)

k

(
 –

v

v

)
D�v

= –
de–mτ

u( + au)
(u – u) –

b(hw + pwz)
v( + bv)( + bv)

(v – v)

– (hw + pwz)
(

G
(

u

u
 + au
 + au

)
+ G

(
wτ

w

v

v

)
+ G

(
 + bv
 + bv

)

+ G
(

w

w
uτ

u

vτ

v

( + au)( + bv)
( + auτ )( + bvτ )

))
+

enτ (h + pz)
k

(
 –

v

v

)
D�v.

Since
∫

�

	v dx = ,
∫

�

	v
v

dx =
∫

�

‖∇v‖

v dx,

we further have

dL(t)
dt

=
∫

�

(
∂L(x, t)

∂t
+ (hw + pwz)

∂L(x, t)
∂t

)
dx

= –
∫

�

de–mτ (u – u)

u( + au)
dx –

∫
�

b(hw + pwz)(v – v)

v( + bv)( + bv)
dx

– (hw + pwz)
(

G
(

u

u
 + au
 + au

)
+ G

(
wτ

w

v

v

)
+ G

(
 + bv
 + bv

)

+ G
(

w

w
uτ

u

vτ

v

( + au)( + bv)
( + auτ )( + bvτ )

))

–
(h + pz)Denτ v

k

∫
�

‖∇v‖

v dx.

Therefore, we have dL(t)
dt ≤  when R > . dL(t)

dt =  if and only if u = u, w = w, v = v

and z = z. It follows that the largest invariant set {(u, w, v, z) ∈ R
+ : dL(t)

dt = } is the single-
ton E. Based on LaSalle’s invariance principle [], we conclude that the equilibrium E

is globally asymptotically stable when R > . �

4 Numerical simulations
In the previous section, we analyzed the global stability of a model of virus infection with
diffusion and time delay. The object of this section is to further illustrate the obtained the-
oretical results by some numerical simulations. The Runge-Kutta scheme of fourth order
is applied for the reaction part and an explicit Euler scheme for the diffusion part of the
PDE. Next, we consider model () with the homogeneous Neumann boundary conditions

∂v
∂�n = , t > , x = , , ()

and the initial conditions

u(x, θ ) = φ(x, θ ) ≥ , w(x, θ ) = φ(x, θ ) ≥ ,

v(x, θ ) = φ(x, θ ) ≥ , z(x, θ ) = φ(x, θ ) ≥ , x ∈ [, ], θ ∈ [–τ , ].
()

In model (), we choose β , c, q, τ, τ as free parameters, and all remaining parameters
are fixed as in Table .
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In Figures ,  and , (a), (b), (c) and (d) denote time-series figures of u(x, t), w(x, t), v(x, t)
and z(x, t).

5 Discussion
In this paper, we propose a delayed virus infection model with diffusion, CTL immune
responses and Crowley-Martin incidence rate. We have showed the global asymptotic sta-
bility of infection-free equilibrium E, immune-free equilibrium E and interior equilib-
rium E. By the analysis, the infection-free equilibrium E is globally asymptotically sta-
ble if R ≤ ; in such circumstances, the viruses are cleared and the infection dies out. If

Table 1 List of parameters

Parameter Definition Value Source

λ production rate of uninfected cells 10 Reference [3]
d death rate of uninfected cells 0.01 Reference [3]
h death rate of infected cells 0.5 References [3, 4]
p CTL effectiveness 1 References [3, 4]
D diffusion coefficient 0.1 Reference [22]
k production rate of free virus 0.4 References [3, 4]
μ clearance rate of free virus 3 Reference [4]
a Crowley-Martin coefficient 0.01 Assumed
b Crowley-Martin coefficient 0.01 Assumed
m death rate for infected cells during [t – τ1, t] 0.01 Assumed
n death rate for new virus during [t – τ2, t] 0.01 Assumed

Figure 1 Taking β = 0.01, c = 0.1, q = 0.12, τ1 = 10, τ2 = 6, we have R0 = 0.2066 < 1, the infection-free
equilibrium E0(1000, 0, 0, 0) is globally asymptotically stable.



Kang et al. Advances in Difference Equations  (2017) 2017:324 Page 13 of 16

Figure 2 Taking β = 0.2, c = 0.01, q = 0.2, τ1 = 5, τ2 = 15, we have R0 = 3.9696 > 1, R1 = 0.9227 < 1 , the
immune-free equilibrium E1(30.5250, 18.4547, 2.1179, 0) is globally asymptotically stable.

R ≤  < R, the immune-free equilibrium E is globally asymptotically stable, it is shown
that immune response would not be activated and virus infection becomes vanished. If
R > , model () has an interior equilibrium E, which is globally asymptotically stable.
Mathematically, in order to find treatment strategies, we have to find the analytical con-
ditions under which trajectories of the model will converge to infection-free equilibrium.
This condition is given in Theorem ., that is, the infection-free equilibrium is globally
asymptotically stable if R = βkλ

μh(d+aλ)emτ+nτ < . This relation relies on parameters β , τ

and τ. That is to say, the variation of these three parameters plays a vital role in disease
treatment, and doctors have to adjust these parameters according to the above relation in
order to eliminate virus infection. The parameters β , τ and τ might be changed as a con-
sequence of disease treatment. The above analysis shows that R increases proportionally
to parameter β and decreases proportionally to parameters τ and τ. Thus, in order to
eliminate the infection, we need to try to increase the value of τ or τ. By decreasing infec-
tion rate β , immune-free and interior equilibria disappear and infection-free equilibrium
will become stable, which implies the virus eradication and that the patient is cured.

Another important issue from medical point of view is to investigate the factors which
cause growth of virus. Mathematically, the relations for existence and stability of interior
equilibrium need to be investigated. This matter is solved in Theorem ., which gives
possible conditions for the existence of interior equilibrium and describes criteria for the
stability of interior equilibrium.
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Figure 3 Taking β = 0.3, c = 0.01, q = 0.15, τ1 = 10, τ2 = 5, we have R0 = 6.2597 > 1, R1 = 1.2303 > 1,
the infection equilibrium only with CTL immune response E2(10.9402, 15, 1.7214, 0.1272) is globally
asymptotically stable.

Mathematical models can help physicians to choose a suitable dosage and check the ef-
fects of their therapeutic action. Virus infection progression has many variations from pa-
tient to patient, which is difficult to obtain by an ordinary differential equation. By choos-
ing a relevant diffusive coefficient, the partial differential equation can be varied to best
fit the real data according to the progression of different patients. Consequently, the clin-
ician can recommend administration of drugs or treatment strategies to each individual
by using the information from the delayed model with the relevant diffusive coefficient.

Our model considers a four-dimensional diffusive virus infection model with intracel-
lular delay, virus replication delay and Crowley-Martin infection rate. It is considered
whether the results also can be extended to five-dimensional diffusive virus infection
model with mitosis transmission and immune delay. We leave this for the future work.
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