
Zhang and Zheng Advances in Difference Equations  (2017) 2017:270 
DOI 10.1186/s13662-017-1329-5

R E S E A R C H Open Access

Lyapunov type inequalities
for the Riemann-Liouville fractional
differential equations of higher order
Laihui Zhang and Zhaowen Zheng*

*Correspondence:
zhwzheng@126.com
School of Mathematical Sciences,
Qufu Normal University, Qufu,
Shandong 273165, People’s
Republic of China

Abstract
In this paper, some new Lyapunov type inequalities will be presented for
Riemann-Liouville fractional differential equations of the form

(Dα
a x)(t) + p(t)

∣
∣x(t)

∣
∣
μ–1

x(t) + q(t)
∣
∣x(t)

∣
∣
γ –1

(t)x(t) = f (t),

where α ∈ (n – 1,n] (n≥ 3), p, q, f are real-valued functions and 0 < γ < 1 <μ < n.

Keywords: Lyapunov type inequality; Riemann-Liouville fractional differential
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1 Introduction
First, we consider the Hill equation

x′′(t) + v(t)x(t) =  (.)

with the boundary conditions

x(a) = x(b) = , (.)

where v : [a, b] → R is a real-valued function. Lyapunov [] discovered that if the boundary
value problem (.)-(.) has a nontrivial solution, then

∫ b

a

∣
∣v(s)

∣
∣ds >


b – a

. (.)

In [], Wintner substituted the function ‘|v(s)|’ with ‘v+(s)’ and he got the following in-
equality:

∫ b

a
v+(s) ds >


b – a

. (.)
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Inequality (.) was generalized by Hartman [] as follows:

∫ b

a
(b – s)(s – a)v+(s) ds > b – a. (.)

Lyapunov inequality is widely used in investigating the qualitative properties such as
oscillation and spectral properties for differential equations and difference equations (see
[–] for details). In recent years, there have been many literature works concerning the
Lyapunov type inequality. On the one hand, some authors study Lyapunov type inequali-
ties of integer-order linear differential equations, nonlinear differential equations or sys-
tems of differential equations. For example, Xianhua Tang and Meirong Zhang [] studied
the general linear Hamiltonian system

u′(t) = JH(t)u(t), u ∈ Rn, (.)

where

J =

(

 In

–In 

)

is the standard symplectic matrix and

H(t) =

(

–C(t) AT (t)
A(t) B(t)

)

is a symplectic matrix-valued function which is locally Lebesgue integrable. They obtained
corresponding Lyapunov type inequalities. On the other hand, Lyapunov type inequalities
of the fractional differential equations are studied by more and more researchers, see [–
] and the references cited therein for details. Recently, Cabrera et al. [] studied the
nonlocal fractional boundary value problem of order α ∈ (, ]

Dα
a x(t) + q(t)x(t) = , a < t < b,

x(a) = x′(a) = , x′(b) = x(ξ ),

where a < ξ < b,  ≤ β(ξ – a)α– < (α – )(b – a)α–, and q : [a, b] → R is a real-valued
continuous function.

In , Agarwal and Özbekler obtained Lyapunov type inequalities in [] for the frac-
tional forced nonlinear differential equations of order α ∈ (, ]

(

Dα
a
)

(t) + p(t)
∣
∣x(t)

∣
∣
μ–x(t) + q(t)

∣
∣x(t)

∣
∣
γ –(t)x(t) = f (t), (.)

subject to the Dirichlet (-point) boundary conditions

x(a) = x(b) = , (.)

where p, q, f ∈ C[t,∞) and the constants satisfy  < γ <  < μ < . Moreover, the function
p, q and the forcing term f have no sign restrictions. They obtained that if x(t) �=  in (a, b),



Zhang and Zheng Advances in Difference Equations  (2017) 2017:270 Page 3 of 20

then

(∫ b

a

[

(b – t)(t – a)α–][μp+(t) + γq+(t) +
∣
∣f (t)

∣
∣
]

dt
)

×
(∫ b

a

[

(b – t)(t – a)α–][p+(t) + q+(t)
]

dt
)

>
�(α)


(b – a)α–, (.)

where the constants μ and γ are the same as in [, Theorem .].
In this paper, we consider the Riemann-Liouville fractional differential equation with

mixed nonlinearities of order α ∈ (n – , n] for n ≥ 

(

Dα
a x

)

(t) + p(t)
∣
∣x(t)

∣
∣
μ–x(t) + q(t)

∣
∣x(t)

∣
∣
γ –(t)x(t) = f (t), (.)

where p, q, f ∈ C[t,∞) and the constants satisfy  < γ <  < μ < n (n ≥ ). Equation (.)
subjects to the following two kinds of boundary conditions, respectively:

x(a) = x′(a) = x′′(a) = · · · = x(n–)(a) = x(b) = , (.)

and the boundary conditions

x(a) = x′(a) = x′′(a) = · · · = x(n–)(a) = x′(b) = . (.)

Obviously, it is easy to see that equation (.) has two special forms; one is the forced
‘sub-linear’ (p(t) = ) fractional equation

(

Dα
a x

)

(t) + q(t)
∣
∣x(t)

∣
∣
γ –(t)x(t) = f (t);  < γ < , (.)

and the other is the forced ‘super-linear’ (q(t) = ) fractional equation

(

Dα
a x

)

(t) + p(t)
∣
∣x(t)

∣
∣
μ–x(t) = f (t);  < μ < n. (.)

Besides, from boundary conditions (.), it is noted that a < b and a, b are consecutive
zeros.

To our best knowledge, there has been no such papers relating to equation (.) with
higher order α ∈ (n–, n] (n ≥ ). We will give Lyapunov type inequalities for the fractional
differential equations (.), (.) and (.) under the boundary conditions (.) and
(.) with the help of the Green’s function. The results relating to the boundary conditions
(.) and (.) are a new type of Lyapunov type inequalities.

We first give some preliminary results about fractional calculus and some lemmas corre-
sponding to the boundary conditions (.) and (.) in Section . In Section , we provide
two lemmas that are essential in the proof of our results. In addition, we state and prove
Lyapunov type inequalities for equations (.), (.) and (.) under the boundary con-
ditions (.) or (.), respectively. To make our paper more rigorous, we discuss the case
when n (n ≥ ) is a positive even integer and obtain corresponding results. Besides, we
give an example about an eigenvalue problem. Finally, Section  is devoted to concluding
remarks.
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2 Preliminaries
At first, we give the concept of fractional integral defined on [a, b].

Definition . Let α ≥  and f be a real function defined on [a, b]. The Riemann-Liouville
integral of order α is defined by (I

a f )(t) = f (t) and

(

Iα
a f

)

(t) =


�(α)

∫ t

a
(t – s)α–f (s) ds

for t ∈ [a, b], where α is a positive constant.

Definition . The Riemann-Liouville fractional derivative of order α ≥  is defined by

(

D
af

)

(t) = f (t)

and

(

Dα
a f

)

(t) =
(

Dm
a Im–αf

)

(t)

for α > , where m is the smallest integer greater than or equal to α.

To obtain our results, we introduce the following lemmas.

Lemma . ([]) Assume that f ∈ C(a, b) ∩ L(a, b). Then

Iα
a Dα

a f (t) = f (t) + c(t – a)α– + c(t – a)α– + · · · + cn(t – a)α–n

for t ∈ [a, b], where ci ∈ R, i = , , . . . , n, and n = [α] + .

Corresponding to the boundary conditions (.), the following lemmas are essential.

Lemma . ([]) A function x(t) is a solution of the following equation of order α ∈
(n – , n] (n ≥ ):

(

Dα
a x

)

(t) + H(t) = , a < t < b (.)

with the boundary conditions (.) if and only if x(t) satisfies the integral equation

x(t) =
∫ b

a
g(t, s)H(s) ds,

where

g(t, s) =


�(α)

⎧

⎨

⎩

(t–a)α–

(b–a)α– × (b – s)α– – (t – s)α–, a ≤ s ≤ t ≤ b,
(t–a)α–

(b–a)α– × (b – s)α–, a ≤ t ≤ s ≤ b
(.)

is the Green’s function of the boundary value problem (.) and (.).
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Lemma . ([]) The Green’s function (.) satisfies the following properties:
(i) g(t, s) ≥  for all a ≤ s, t ≤ b;

(ii)

max
t∈[a,b]

g(t, s) = g
(

s∗, s
)

=
(s – a)α–(b – s)α–

�(α)(b – a)α–[ – ( b–s
b–a ) α–

α– ]α–
,

where s∗ = s–a( b–s
b–a )

α–
α–

–( b–s
b–a )

α–
α–

;

(iii)

max
s∈[a,b]

g
(

s∗, s
)

=
(b – a)α–

�(α)
zα–
α ( – zα)α–

( – z
α–
α–
α )α–

,

where zα is the unique zero of the nonlinear equation z α–
α– – z +  =  in the

interval zα ∈ (, ( α–
α– ) α–

α– ).

Similarly, we need the following lemmas corresponding to the boundary conditions
(.).

Lemma . A function x(t) is a solution of equation (.) with boundary conditions (.)
if and only if x(t) satisfies the integral equation

x(t) =
∫ b

a
G(t, s)H(s) ds,

where

G(t, s) =


�(α)

⎧

⎨

⎩

(t–a)α–

(b–a)α– × (b – s)α– – (t – s)α–, a ≤ s ≤ t ≤ b,
(t–a)α–

(b–a)α– × (b – s)α–, a ≤ t ≤ s ≤ b
(.)

is the Green’s function of the boundary value problem (.) and (.).

Proof By Lemma ., the general solutions to the boundary value problem (.) and (.)
in [a, b] can be represented as

x(t) = c(t – a)α– + c(t – a)α– + · · · + cn(t – a)α–n –


�(α)

∫ t

a
(t – s)α–H(s) ds (.)

for constants ci (i = , , . . . , n).
By the boundary conditions

x(a) = x′(a) = x′′(a) = · · · = x(n–)(a) = ,

we obtain c = c = · · · = cn = .
Hence

x(t) = c(t – a)α– –


�(α)

∫ t

a
(t – s)α–H(s) ds.
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Since

x′(t) = c(α – )(t – a)α– –
α – 
�(α)

∫ t

a
(t – s)α–H(s) ds,

the boundary condition x′(b) =  implies

c(b – a)α– –


�(α)

∫ b

a
(b – s)α–H(s) ds = .

This shows

c =


�(α)(b – a)α–

∫ b

a
(b – s)α–H(s) ds.

Then

x(t) =
(t – a)α–

�(α)(b – a)α–

∫ b

a
(b – s)α–H(s) ds –


�(α)

∫ t

a
(t – s)α–H(s) ds

=


�(α)

∫ t

a

[
(t – a)α–

(b – a)α– (b – s)α– – (t – s)α–
]

H(s) ds

+


�(α)

∫ b

t

[
(t – a)α–

(b – a)α– (b – s)α–
]

H(s) ds

=
∫ b

a
G(t, s)H(s) ds,

which completes the proof. �

Lemma . The Green’s function (.) satisfies the following properties:
(i) G(t, s) ≥  for all a ≤ s, t ≤ b;

(ii) G(t, s) is non-decreasing about the first variable;
(iii)

 ≤ G(a, s) ≤ G(t, s) ≤ G(b, s) =


�(α)
(b – s)α–(s – a), (t, s) ∈ [a, b] × [a, b].

Lemma . ([]) Let ϕ(s) = 
�(α) (b – s)α–(s – a), s ∈ (a, b). Then

max
{

ϕ(s) : a ≤ s ≤ b
}

= ϕ
(

s∗∗) =


�(α)
(α – )α–

(
b – a
α – 

)α–

,

where s∗∗ = b+(α–)a
α– .

3 Main results
Throughout this section we shall denote u± = max{±u, }. At the beginning, we introduce
the following lemmas.

Lemma . Let A > , B ≥  be real numbers. For z ≥ , we have

Azn – Bzα ≥ –(n – α)α
α

n–α n
n

α–n A
α

α–n B
n

n–α (.)

for any α ∈ (, n] (n ≥ ).
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Proof Let

F(z) = Azn – Bzα , z ≥ .

It is clear that (.) is obvious when z =  or B = . By direct computation, we obtain
F ′(z) =  and F ′′(z) > . Hence F attains its minimum at z = ( αB

nA ) 
n–α if B ≥  and

Fmin = F
((

αB
nA

) 
n–α

)

= A
((

αB
nA

) 
n–α

)n

– B
((

αB
nA

) 
n–α

)α

= –(n – α)α
α

n–α n
n

α–n A
α

α–n B
n

n–α .

So (.) holds. Note that inequality (.) is strict if B > . �

Lemma . If A, B ∈ R+ and C ∈ R, then the function f (x) = Axn – Bx + C has a minimal
value point at x = ( B

nA ) 
n– when n is a positive even number.

Proof Since

f ′(x) = nAxn– – B =
( n–√nAx – n–√B

)

gn–(x),

where the function gn–(x) is a polynomial of degree n – , we obtain x = ( B
nA ) 

n– is a
stagnation point. By direct computation, we get f ′′(x) = nAxn– ≥  and limx→∞ f (x) = +∞.
Thus the proof of the lemma is completed. �

Now we show and prove our results relating to the boundary conditions (.).

Theorem . Let x(t) be a positive solution of the boundary value problem (.)-(.) in
(a, b). Then

(∫ b

a

[

(b – s)(s – a)
]α–

[

 –
(

b – s
b – a

) α–
α–

]–α
[

μp+(s) + γq+(s) + f –(s)
]

ds
)

×
(∫ b

a

[

(b – s)(s – a)
]α–

[

 –
(

b – s
b – a

) α–
α–

]–α
[

p+(s) + q+(s)
]

ds
) 

n–

>
[

�(α)(b – a)α–] n
n– (n – )n

n
–n , (.)

where μ = (n –μ)μ
μ

n–μ n
n

μ–n and γ = (n –γ )γ
γ

n–γ n
n

γ –n and zα is the same as in Lemma ..

Proof Set x(t) to be a positive solution of the boundary value problem (.)-(.). From
Lemma ., x(t) can be represented as

x(t) =
∫ b

a
g(t, s)

[

p(s)xμ(s) + q(s)xγ (s) – f (s)
]

ds. (.)
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Let x(c) = maxt∈(a,b) x(t). It is clear from Lemma . that

 ≤ g(t, s) ≤ g
(

s∗, s
)

=


�(α)

[
(b – s)(s – a)

b – a

]α–[

 –
(

b – s
b – a

) α–
α–

]–α

. (.)

Then, making use of (.)-(.), we have

x(c) =
∫ b

a
g(c, s)

[

p(s)xμ(s) + q(s)xγ (s) – f (s)
]

ds

≤
∫ b

a
g(c, s)

[

p+(s)xμ(s) + q+(s)xγ (s) + f –(s)
]

ds

≤
∫ b

a
g
(

s∗, s
)[

p+(s)xμ(s) + q+(s)xγ (s) + f –(s)
]

ds

=


�(α)(b – a)α–

∫ b

a

[

(b – s)(s – a)
]α–

[

 –
(

b – s
b – a

) α–
α–

]–α

× [

p+(s)xμ(s) + q+(s)xγ (s) + f –(s)
]

ds

≤ Pxμ(c) + Qxγ (c) + F, (.)

where

P =


�(α)(b – a)α–

∫ b

a

[

(b – s)(s – a)
]α–

[

 –
(

b – s
b – a

) α–
α–

]–α

p+(s) ds,

Q =


�(α)(b – a)α–

∫ b

a

[

(b – s)(s – a)
]α–

[

 –
(

b – s
b – a

) α–
α–

]–α

q+(s) ds,

and

F =


�(α)(b – a)α–

∫ b

a

[

(b – s)(s – a)
]α–

[

 –
(

b – s
b – a

) α–
α–

]–α

f –(s) ds.

Besides, when A = B = , inequality (.) in Lemma . suggests that

xμ(c) < xn(c) + μ

and

xγ (c) < xn(c) + γ.

Combining these inequalities and inequality (.), we find that the following inequality

(P + Q)xn(c) – x(c) + μP + γQ + F >  (.)

holds if and only if

(μP + γQ + F)(P + Q)


n– > (n – )n
n

–n ,

which is the same as (.). The proof of Theorem . is finished. �
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Remark  From Lemma ., we know that

max
s∈[a,b]

g
(

s∗, s
)

=
(b – a)α–

�(α)
zα–
α ( – zα)α–

( – z
α–
α–
α )α–

.

Hence, the following corollary is obvious.

Corollary . Let x(t) be a positive solution of the boundary value problem (.)-(.) in
(a, b). Then

(∫ b

a

[

p+(s) + q+(s)
]

ds
) 

n–
(∫ b

a

[

μp+(s) + γq+(s) + f –(s)
]

ds
)

> (n – )n
n

–n

[
�(α)

(b – a)α–

] n
n–

[
( – z α–

α– )α–

zα–
α ( – zα)α–

] n
n–

,

where the constants μ, γ and zα are the same as in Theorem ..

The following conclusions are given for equations (.) and (.).

Corollary . Let x(t) be a positive solution of the boundary value problem (.) and (.)
in (a, b). Then

(i) Hartman type inequality:

(∫ b

a

[

(b – s)(s – a)
]α–

[

 –
(

b – s
b – a

) α–
α–

]–α
[

γq+(s) + f –(s)
]

ds
)

×
(∫ b

a

[

(b – s)(s – a)
]α–

[

 –
(

b – s
b – a

) α–
α–

]–α

q+(s) ds
) 

n–

>
[

�(α)(b – a)α–] n
n– (n – )n

n
–n ;

(ii) Lyapunov type inequality:

(∫ b

a
q+(s) ds

) 
n–

(∫ b

a

[

γq+(s) + f –(s)
]

ds
)

> (n – )n
n

–n

[
�(α)

(b – a)α–

] n
n–

[
( – z α–

α– )α–

zα–
α ( – zα)α–

] n
n–

,

where the constants γ and zα are the same as in Theorem ..

Corollary . Let x(t) be a positive solution of the boundary value problem (.) and
(.) in (a, b). Then

(i) Hartman type inequality:

(∫ b

a

[

(b – s)(s – a)
]α–

[

 –
(

b – s
b – a

) α–
α–

]–α
[

μp+(s) + f –(s)
]

ds
)

×
(∫ b

a

[

(b – s)(s – a)
]α–

[

 –
(

b – s
b – a

) α–
α–

]–α

p+(s) ds
) 

n–

>
[

�(α)(b – a)α–] n
n– (n – )n

n
–n ;
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(ii) Lyapunov type inequality:

(∫ b

a
p+(s) ds

) 
n–

(∫ b

a

[

μp+(s) + f –(s)
]

ds
)

> (n – )n
n

–n

[
�(α)

(b – a)α–

] n
n–

[
( – z α–

α– )α–

zα–
α ( – zα)α–

] n
n–

,

where the constants μ and zα are the same as in Theorem ..

Next, the results relating to boundary conditions (.) will be introduced and proved.

Theorem . (Hartman type inequality) Let x(t) be a positive solution of equation (.)
satisfying the boundary conditions (.) in (a, b). Then

(∫ b

a

[

(b – s)α–(s – a)
][

μp+(s) + γq+(s) + f –(s)
]

ds
)

×
(∫ b

a

[

(b – s)α–(s – a)
][

p+(s) + q+(s)
]

ds
) 

n–

> �(α)
n

n– (n – )n
n

–n , (.)

where μ and γ are the same as in Theorem ..

Proof Set x(t) to be a positive solution of equation (.) with (.). From Lemma ., x(t)
can be represented as

x(t) =
∫ b

a
G(t, s)

[

p(s)xμ(s) + q(s)xγ (s) – f (s)
]

ds. (.)

Let x(c) = maxt∈(a,b) x(t). It is clear from Lemma . that

 ≤ G(a, s) ≤ G(t, s) ≤ G(b, s) =


�(α)
(b – s)α–(s – a). (.)

Then, making use of (.)-(.), we have

x(c) =
∫ b

a
G(c, s)

[

p(s)xμ(s) + q(s)xγ (s) – f (s)
]

ds

≤
∫ b

a
G(c, s)

[

p+(s)xμ(s) + q+(s)xγ (s) + f –(s)
]

ds

≤
∫ b

a
G(b, s)

[

p+(s)xμ(s) + q+(s)xγ (s) + f –(s)
]

ds

=


�(α)

∫ b

a
(b – s)α–(s – a)

[

p+(s)xμ(s) + q+(s)xγ (s) + f –(s)
]

ds

≤ Pxμ(c) + Qxγ (c) + F, (.)



Zhang and Zheng Advances in Difference Equations  (2017) 2017:270 Page 11 of 20

where

P =


�(α)

∫ b

a
(b – s)α–(s – a)p+(s) ds,

Q =


�(α)

∫ b

a
(b – s)α–(s – a)q+(s) ds,

and

F =


�(α)

∫ b

a
(b – s)α–(s – a)f –(s) ds.

Besides, when A = B = , inequality (.) in Lemma . suggests that

xμ(c) < xn(c) + μ,

and

xγ (c) < xn(c) + γ.

Combining these inequalities and inequality (.), we find that the following inequality

(P + Q)xn(c) – x(c) + μP + γQ + F >  (.)

holds if and only if

(μP + γQ + F)(P + Q)


n– > (n – )n
n

–n ,

which is the same as (.). Hence the proof of Theorem . is completed. �

Remark  From Lemmas . and ., it is easy to see that

max
s∈[a,b]

G(b, s) =


�(α)
(α – )α–(b – a)α–(α – )–α .

Thus, Lyapunov type inequality of the boundary value problem (.) and (.) can be
obtained.

Corollary . (Lyapunov type inequality) Let x(t) be a positive solution of the boundary
value problem (.) and (.) in (a, b). Then

(∫ b

a

[

p+(s) + q+(s)
]

ds
) 

n–
(∫ b

a

[

μp+(s) + γq+(s) + f –(s)
]

ds
)

> �(α)
n

n– (n – )n
n

–n
[

(α – )α–(b – a)α–(α – )–α
] n

–n ,

where the constants μ and γ are the same as in Theorem ..

As before, the following conclusions are given for two equations (.) and (.).
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Corollary . Let x(t) be a positive solution of the boundary value problem (.)-(.) in
(a, b). Then

(i) Hartman type inequality:

(∫ b

a

[

(b – s)α–(s – a)
][

γq+(s) + f –(s)
]

ds
)(∫ b

a

[

(b – s)α–(s – a)
]

q+(s) ds
) 

n–

> �(α)
n

n– (n – )n
n

–n ;

(ii) Lyapunov type inequality:

(∫ b

a

[

γq+(s) + f –(s)
]

ds
)(∫ b

a
q+(s) ds

) 
n–

> �(α)
n

n– (n – )n
n

–n
[

(α – )α–(b – a)α–(α – )–α
] n

–n ,

where the constant γ is the same as in Theorem ..

Corollary . Let x(t) be a positive solution of the boundary value problem (.) and
(.) in (a, b). Then

(i) Hartman type inequality:

(∫ b

a

[

(b – s)α–(s – a)
][

μp+(s) + f –(s)
]

ds
)(∫ b

a

[

(b – s)α–(s – a)
]

p+(s) ds
) 

n–

> �(α)
n

n– (n – )n
n

–n ;

(ii) Lyapunov type inequality:

(∫ b

a
p+(s) ds

) 
n–

(∫ b

a

[

μp+(s) + f –(s)
]

ds
)

> �(α)
n

n– (n – )n
n

–n
[

(α – )α–(b – a)α–(α – )–α
] n

–n ,

where the constant μ is the same as in Theorem ..

When n (n ≥ ) is a positive even integer, the above theorems are valid for all invari-
ant solutions of equations (.), (.) and (.) under the boundary conditions (.)
or (.). Now the results corresponding to the boundary conditions (.) are presented
when n (n ≥ ) is a positive even integer.

Theorem . Let x(t) be a negative solution of the boundary value problem (.)-(.)
in (a, b). Then

(∫ b

a

[

(b – s)(s – a)
]α–

[

 –
(

b – s
b – a

) α–
α–

]–α
[

μp+(s) + γq+(s) + f +(s)
]

ds
)

×
(∫ b

a

[

(b – s)(s – a)
]α–

[

 –
(

b – s
b – a

) α–
α–

]–α
[

p+(s) + q+(s)
]

ds
) 

n–

>
[

�(α)(b – a)α–] n
n– (n – )n

n
–n , (.)

where μ and γ are the same as in Theorem ..
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Proof If x(t) is a negative solution of equation (.), then –x(t) is a positive solution of

(

Dα
a x

)

(t) + p(t)
∣
∣x(t)

∣
∣
μ–x(t) + q(t)

∣
∣x(t)

∣
∣
γ –x(t) = –f (t). (.)

Then, similar to the proof of Theorem ., we know that if equation (.) has a positive
solution, then

x(c) =
∫ b

a
g(c, s)

[

p(s)xμ(s) + q(s)xγ (s) + f (s)
]

ds

≤
∫ b

a
g(c, s)

[

p+(s)xμ(s) + q+(s)xγ (s) + f +(s)
]

ds

≤
∫ b

a
g
(

s∗, s
)[

p+(s)xμ(s) + q+(s)xγ (s) + f +(s)
]

ds

=


�(α)(b – a)α–

∫ b

a

[

(b – s)(s – a)
]α–

[

 –
(

b – s
b – a

) α–
α–

]–α

× [

p+(s)xμ(s) + q+(s)xγ (s) + f +(s)
]

ds

≤ Pxμ(c) + Qxγ (c) + F, (.)

where P and Q are defined in Theorem ., and

F =


�(α)(b – a)α–

∫ b

a

[

(b – s)(s – a)
]α–

[

 –
(

b – s
b – a

) α–
α–

]–α

f +(s) ds.

Repeating the same steps as in Theorem ., we know that

(P + Q)xn(c) – x(c) + μP + γQ + F > , n = k (k ∈ N+) (.)

holds if and only if the minimum of the function f (x) = (P + Q)xn – x + μP + γQ + F

satisfies f (x)min ≥ . From Lemma ., we know that

fmin = f
(


(n(P + Q)) 

n–

)

= (P + Q)


–n n
n

–n ( – n) + μP + γQ + F.

Hence it is necessary that (P + Q) 
–n n n

–n ( – n) + μP + γQ + F >  holds. By direct
computation, inequality (.) is obvious. �

From Theorems . and ., we obtain Theorem . since |f (s)| ≥ max{f +(s), f –(s)}.

Theorem . Let x(t) be a nontrivial solution of the boundary value problem (.)-(.).
If x(t) �=  in (a, b), then

(∫ b

a

[

(b – s)(s – a)
]α–

[

 –
(

b – s
b – a

) α–
α–

]–α
[

μp+(s) + γq+(s) +
∣
∣f (s)

∣
∣
]

ds
)

×
(∫ b

a

[

(b – s)(s – a)
]α–

[

 –
(

b – s
b – a

) α–
α–

]–α
[

p+(s) + q+(s)
]

ds
) 

n–

>
[

�(α)(b – a)α–] n
n– (n – )n

n
–n ,

where μ and γ are the same as in Theorem ..
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Corollary . (Disconjugacy) If

(∫ b

a

[

(b – s)(s – a)
]α–

[

 –
(

b – s
b – a

) α–
α–

]–α
[

μp+(s) + γq+(s) +
∣
∣f (s)

∣
∣
]

ds
)

×
(∫ b

a

[

(b – s)(s – a)
]α–

[

 –
(

b – s
b – a

) α–
α–

]–α
[

p+(s) + q+(s)
]

ds
) 

n–

≤ [

�(α)(b – a)α–] n
n– (n – )n

n
–n ,

holds, then equation (.) is disconjugate in [a, b], where μ and γ are the same as in
Theorem ..

Similarly, Lyapunov type inequality can be easily obtained according to Theorem ..

Corollary . Let x(t) be a negative solution of equation (.) satisfying the boundary
conditions (.) in (a, b). Then

(∫ b

a

[

p+(s) + q+(s)
]

ds
) 

n–
(∫ b

a

[

μp+(s) + γq+(s) + f +(s)
]

ds
)

> (n – )n
n

–n

[
�(α)

(b – a)α–

] n
n–

[
( – z α–

α– )α–

zα–
α ( – zα)α–

] n
n–

,

where μ, γ and zα are the same as in Theorem ..

Based on Corollaries . and ., Corollary . is obvious.

Corollary . Let x(t) be a nontrivial solution of the boundary value problem (.)-
(.). If x(t) �=  in (a, b), then

(∫ b

a

[

p+(s) + q+(s)
]

ds
) 

n–
(∫ b

a

[

μp+(s) + γq+(s) +
∣
∣f (s)

∣
∣
]

ds
)

> (n – )n
n

–n

[
�(α)

(b – a)α–

] n
n–

[
( – z α–

α– )α–

zα–
α ( – zα)α–

] n
n–

,

where μ, γ and zα are the same as in Theorem ..

Corollary . (Disconjugacy) If

(∫ b

a

[

p+(s) + q+(s)
]

ds
) 

n–
(∫ b

a

[

μp+(s) + γq+(s) +
∣
∣f (s)

∣
∣
]

ds
)

≤ (n – )n
n

–n

[
�(α)

(b – a)α–

] n
n–

[
( – z α–

α– )α–

zα–
α ( – zα)α–

] n
n–

holds, then equation (.) is disconjugate in [a, b], where μ, γ and z are the same as in
Theorem ..

As before, we show our results relating to equations (.) and (.) under the boundary
conditions (.) when n (n ≥ ) is a positive even integer.
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Corollary . Let x(t) be a nontrivial solution of the boundary value problem (.) and
(.). If x(t) �=  in (a, b), then

(i) Hartman type inequality:

(∫ b

a

[

(b – s)(s – a)
]α–

[

 –
(

b – s
b – a

) α–
α–

]–α
[

γq+(s) +
∣
∣f (s)

∣
∣
]

ds
)

×
(∫ b

a

[

(b – s)(s – a)
]α–

[

 –
(

b – s
b – a

) α–
α–

]–α

q+(s) ds
) 

n–

>
[

�(α)(b – a)α–] n
n– (n – )n

n
–n ;

(ii) Lyapunov type inequality:

(∫ b

a

[

γq+(s) +
∣
∣f (s)

∣
∣
]

ds
)(∫ b

a
q+(s) ds

) 
n–

> (n – )n
n

–n

[
�(α)

(b – a)α–

] n
n–

[
( – z α–

α– )α–

zα–
α ( – zα)α–

] n
n–

,

where the constants γ and zα are the same as in Theorem ..

Corollary . Let x(t) be a nontrivial solution of the boundary value problem (.) and
(.). If x(t) �=  in (a, b), then

(i) Hartman type inequality:

(∫ b

a

[

(b – s)(s – a)
]α–

[

 –
(

b – s
b – a

) α–
α–

]–α
[

μp+(s) +
∣
∣f (s)

∣
∣
]

ds
)

×
(∫ b

a

[

(b – s)(s – a)
]α–

[

 –
(

b – s
b – a

) α–
α–

]–α

p+(s) ds
) 

n–

>
[

�(α)(b – a)α–] n
n– (n – )n

n
–n ;

(ii) Lyapunov type inequality:

(∫ b

a
p+(s) ds

) 
n–

(∫ b

a

[

μp+(s) +
∣
∣f (s)

∣
∣
]

ds
)

> (n – )n
n

–n

[
�(α)

(b – a)α–

] n
n–

[
( – z α–

α– )α–

zα–
α ( – zα)α–

] n
n–

,

where the constants μ and zα are the same as in Theorem ..

Next we present the following conclusions corresponding to the boundary conditions
(.).
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Theorem . (Hartman type inequality) Let x(t) be a negative solution of equation (.)
satisfying the boundary conditions (.) in (a, b). Then

(∫ b

a

[

(b – s)α–(s – a)
][

μp+(s) + γq+(s) + f +(s)
]

ds
)

×
(∫ b

a

[

(b – s)α–(s – a)
][

p+(s) + q+(s)
]

ds
) 

n–
> �(α)

n
n– (n – )n

n
–n ,

where μ and γ are the same as in Theorem ..

Proof Similar to the proof of Theorem .. �

Based on Theorems . and ., we get Theorem ..

Theorem . (Hartman type inequality) Let x(t) be a nontrivial solution of the boundary
value problem (.) and (.). If x(t) �=  in (a, b), then

(∫ b

a

[

(b – s)α–(s – a)
][

μp+(s) + γq+(s) +
∣
∣f (s)

∣
∣
]

ds
)

×
(∫ b

a

[

(b – s)α–(s – a)
][

p+(s) + q+(s)
]

ds
) 

n–
> �(α)

n
n– (n – )n

n
–n ,

where μ and γ are the same as in Theorem ..

As before, we obtain Corollary ..

Corollary . (Lyapunov type inequality) Let x(t) be a negative solution of equation (.)
satisfying the boundary conditions (.) in (a, b). Then

(∫ b

a

[

p+(s) + q+(s)
]

ds
) 

n–
(∫ b

a

[

μp+(s) + γq+(s) + f +(s)
]

ds
)

> �(α)
n

n– (n – )n
n

–n
[

(α – )α–(b – a)α–(α – )–α
] n

–n ,

where μ and γ are the same as in Theorem ..

Based on Corollaries . and ., we get Corollary ..

Corollary . (Lyapunov type inequality) Let x(t) be a nontrivial solution of the bound-
ary value problem (.) and (.). If x(t) �=  in (a, b), then

(∫ b

a

[

p+(s) + q+(s)
]

ds
) 

n–
(∫ b

a

[

μp+(s) + γq+(s) +
∣
∣f (s)

∣
∣
]

ds
)

> �(α)
n

n– (n – )n
n

–n
[

(α – )α–(b – a)α–(α – )–α
] n

–n ,

where μ and γ are the same as in Theorem ..

Similarly, equations (.) and (.) also admit the above conclusions.
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Corollary . Let x(t) be a nontrivial solution of the boundary value problem (.)-
(.). If x(t) �=  in (a, b), then

(i) Hartman type inequality:

(∫ b

a

[

(b – s)α–(s – a)
][

γq+(s) +
∣
∣f (s)

∣
∣
]

ds
)(∫ b

a

[

(b – s)α–(s – a)
]

q+(s) ds
) 

n–

> �(α)
n

n– (n – )n
n

–n ;

(ii) Lyapunov type inequality:

(∫ b

a
q+(s) ds

) 
n–

(∫ b

a

[

γq+(s) +
∣
∣f (s)

∣
∣
]

ds
)

> �(α)
n

n– (n – )n
n

–n
[

(α – )α–(b – a)α–(α – )–α
] n

–n ,

where the constant γ is the same as in Theorem ..

Corollary . Let x(t) be a nontrivial solution of the boundary value problem (.) and
(.). If x(t) �=  in (a, b), then

(i) Hartman type inequality:

(∫ b

a

[

(b – s)α–(s – a)
][

μp+(s) +
∣
∣f (s)

∣
∣
]

ds
)(∫ b

a

[

(b – s)α–(s – a)
]

p+(s) ds
) 

n–

> �(α)
n

n– (n – )n
n

–n ;

(ii) Lyapunov type inequality:

(∫ b

a
p+(s) ds

) 
n–

(∫ b

a

[

μp+(s) +
∣
∣f (s)

∣
∣
]

ds
)

> �(α)
n

n– (n – )n
n

–n
[

(α – )α–(b – a)α–(α – )–α
] n

–n ,

where the constant μ is the same as in Theorem ..

When γ → – (or μ → +), equation (.) (or equation (.)) reduces to the forced
Riemann-Liouville linear fractional differential equation of order α ∈ (n – , n]

Dα
a x(t) + v(t)x(t) = f (t), (.)

where v(t) = q(t) (or v(t) = p(t)). Since

lim
μ→+

μ = lim
γ→–

γ = (n – )n
n

–n ,

we can also get Lyapunov type inequalities from the above conclusions. Here we take the
following corollaries for instance.

Corollary . Let x(t) be a nontrivial solution of the boundary value problem (.) and
(.) when n (n ≥ ) is a positive even integer. If x(t) �=  in (a, b), then
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(i) Hartman type inequality:

(∫ b

a

[

(b – s)(s – a)
]α–

[

 –
(

b – s
b – a

) α–
α–

]–α
[

(n – )n
n

–n v+(s) +
∣
∣f (s)

∣
∣
]

ds
)

×
(∫ b

a

[

(b – s)(s – a)
]α–

[

 –
(

b – s
b – a

) α–
α–

]–α

v+(s) ds
) 

n–

>
[

�(α)(b – a)α–] n
n– (n – )n

n
–n ; (.)

(ii) Lyapunov type inequality:

(∫ b

a
v+(s) ds

) 
n–

(∫ b

a

[

(n – )n
n

–n v+(s) +
∣
∣f (s)

∣
∣
]

ds
)

> (n – )n
n

–n

[
�(α)

(b – a)α–

] n
n–

[
( – z α–

α– )α–

zα–
α ( – zα)α–

] n
n–

, (.)

where μ, γ and zα are the same as in Theorem ..

Remark  When f (t) ≡  and μ → + (or γ → –), inequalities (.) and (.) coincide
with [, Corollaries . and .]. The authors of [] obtained Lyapunov type inequalities
by means of norms rather than the property of functions in this paper.

Corollary . Let x(t) be a nontrivial solution of the boundary value problem (.) and
(.) when n (n ≥ ) is a positive even integer. If x(t) �=  in (a, b), then

(i) Hartman type inequality:

(∫ b

a

[

(b – s)α–(s – a)
][

(n – )n
n

–n v+(s) +
∣
∣f (s)

∣
∣
]

ds
)

×
(∫ b

a

[

(b – s)α–(s – a)
]

v+(s) ds
) 

n–

> �(α)
n

n– (n – )n
n

–n ;

(ii) Lyapunov type inequality:

(∫ b

a
v+(s) ds

) 
n–

(∫ b

a

[

(n – )n
n

–n v+(s) +
∣
∣f (s)

∣
∣
]

ds
)

> �(α)
n

n– (n – )n
n

–n
[

(α – )α–(b – a)α–(α – )–α
] n

–n ,

where μ and γ are the same as in Theorem ..

Now we present an application of the obtained results to eigenvalue problems.

Example . Consider the following eigenvalue problem:

{

Dα
a x(t) + λx(t) = , a < t < b, n –  < α ≤ n;

x(a) = x′(a) = x′′(a) = · · · = x(n–)(a) = x′(b) = ,
(.)
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where n (n ≥ ) is a positive even integer. If λ is an eigenvalue of the boundary value
problem (.), then

|λ| >
�(α + )(α – )

(b – a)α
. (.)

Proof Suppose that λ is an eigenvalue of the boundary value problem (.), then (.)
has at least one nontrivial continuous solution in (a, b). From Corollary ., we obtain
that

(∫ b

a

[

(b – s)α–(s – a)
]

(n – )n
n

–n |λ|ds
)

×
(∫ b

a

[

(b – s)α–(s – a)
]|λ|ds

) 
n–

> �(α)
n

n– (n – )n
n

–n . (.)

From [], we know that

∫ b

a
(b – s)α–(s – a) ds =

(b – a)α

α(α – )
. (.)

Substituting (.) into inequality (.), it is easy to see that

|λ| >
�(α + )(α – )

(b – a)α
. �

4 Concluding remarks
We conclude this paper with the following remarks. The results obtained in this paper for
equation (.) under the boundary conditions (.) or (.) can be easily generalized to
the Riemann-Liouville fractional forced differential equations of order α ∈ (n–, n] (n ≥ )
with no sign restrictions on coefficients

(

Dα
a x

)

(t) ± p(t)
∣
∣x(t)

∣
∣
μ–x(t) ∓ q(t)

∣
∣x(t)

∣
∣
γ –x(t) = f (t)

or more universally equation of the form

(

Dα
a x

)

(t) +
n

∑

k=

qk(t)
∣
∣x(t)

∣
∣
σk –x(t) = f (t),

where

 < σ < · · · < σm <  < σm+ < · · · < n

and the functions qk (k = , . . . , n) and the forcing term f have no sign restrictions. When
n (n ≥ ) is a positive even integer, we also have corresponding results similar to Corol-
lary .. The reader can easily obtain the formulae of these results.
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