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Abstract
In a previous work, it was shown that Faber-Pandharipande-Zagier and Miki’s
identities can be derived from a polynomial identity which in turn follows from a
Fourier series expansion of sums of products of Bernoulli functions. Motivated by this
work, we consider three types of sums of finite products of Genocchi functions and
derive Fourier series expansions for them. Moreover, we will be able to express each
of them in terms of Bernoulli functions.
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1 Introduction
As is well known, the Bernoulli polynomials Bm(x) are given by the generating function

t
et – 

ext =
∞∑

m=

Bm(x)
tm

m!
.

The Genocchi polynomials Gm(x) are given by the generating function

t
et + 

ext =
∞∑

m=

Gm(x)
tm

m!
(see [–]). (.)

The first few Genocchi polynomials are as follows:

G(x) = , G(x) = , G(x) = x – ,

G(x) = x – x, G(x) = x – x + ,

G(x) = x – x + x, G(x) = x – x + x – .

(.)

From the relation Gm(x) = mEm–(x)(m ≥ ), the following facts are obtained:

deg Gm(x) = m –  (m ≥ ), Gm = mEm– (m ≥ ),

G = , G = , Gm+ =  (m ≥ ), and Gm �=  (m ≥ ).
(.)
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In addition, we have

d
dx

Gm(x) = mGm–(x) (m ≥ ),

Gm(x + ) + Gm(x) = mxm– (m ≥ ).
(.)

From these, we immediately obtain

Gm() + Gm() = δm, (m ≥ ) (.)

and

∫ 


Gm(x) dx =


m + 

(
Gm+() – Gm+()

)

=


m + 
(
–Gm+() + δm,

)

=

⎧
⎨

⎩
 if m is even,

– 
m+ Gm+ if m is odd.

(.)

For any real number x, we let 〈x〉 = x – [x] ∈ [, ) denote the fractional part of x.
In this paper, we will consider three types of sums of finite products of Genocchi func-

tions and derive the Fourier series expansions for them. Moreover, we will be able to ex-
press each of them in terms of Bernoulli functions Bm(〈x〉):

() αm(〈x〉) =
∑

i+···+ir=m,i,...,ir≥ Gi (〈x〉) · · ·Gir (〈x〉)(m > r ≥ );
() βm(〈x〉) =

∑
i+···+ir=m,i,...,ir≥


i!···ir ! Gi (〈x〉) · · ·Gir (〈x〉)(m > r ≥ );

() γm(〈x〉) =
∑

i+···+ir=m,i,...,ir≥


i···ir Gi (〈x〉) · · ·Gir (〈x〉)(m > r ≥ ).
For elementary facts about Fourier analysis, the reader may refer to any book (for exam-

ple, see [, ]).
As to γm(〈x〉), we note that the polynomial identity (.) follows immediately from The-

orems . and ., which are in turn derived from the Fourier series expansion of γm(〈x〉).
∑

i+···+ir=m,i,...,ir≥


ii · · · ir

Gi (x)Gi (x) · · ·Gir (x)

=

m

�m+ +

m

m–r∑

j=

(
m
j

)
�m–j+Bj(x), (.)

where, for l > r,

�l =
∑

≤a≤r

(
r
a

)
(–)ar–a

∑

i+···+ia=l+a–r,i,...,ia≥

Gi Gi · · ·Gia
ii · · · ia

–
∑

i+···+ir=l,i,...,ir≥

Gi Gi · · ·Gir
ii · · · ir

. (.)

The obvious polynomial identities can be derived also for αm(〈x〉) and βm(〈x〉) from The-
orems . and ., and Theorems . and ., respectively. It is noteworthy that from the
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Fourier series expansion of the function

m–∑

k=


k(m – k)

Bk
(〈x〉)Bm–k

(〈x〉) (.)

we can derive the Faber-Pandharipande-Zagier identity (see [, –]) and the Miki iden-
tity (see [–]). In case of r = , γm(〈x〉) =

∑m–
k=


k(m–k) Gk(〈x〉)Gm–k(〈x〉), and hence our

problem here is a natural extension of the previous work, which leads to a simple proof for
the important Faber-Pandharipande-Zagier and Miki identities (see [, ]). We will give
an outline below, and this may be viewed as the main motivation for the present study.

The following polynomial identity follows immediately from the Fourier series expan-
sion of the function in (.):

m–∑

k=


k(m – k)

Bk(x)Bm–k(x)

=


m

(
Bm +




)
+


m

m–∑

k=


m – k

(
m
k

)
Bm–kBk(x) +


m

Hm–Bm(x) (m ≥ ), (.)

where Hm =
∑m

j=

j are the harmonic numbers.

Simple modification of (.) yields

m–∑

k=


k(m – k)

Bk(x)Bm–k(x) +


m – 
B(x)Bm–(x)

=

m

m∑

k=


k

(
m
k

)
BkBm–k(x) +


m

Hm–Bm(x)

+


m – 
B(x)Bm– (m ≥ ). (.)

Letting x =  in (.) gives a slightly different version of the well-known Miki identity
(see []):

m–∑

k=


k(m – k)

BkBm–k

=

m

m∑

k=


k

(
m
k

)
BkBm–k +


m

Hm–Bm (m ≥ ). (.)

Setting x = 
 in (.) with Bm = ( –m–

m– )Bm = (–m – )Bm = Bm( 
 ), we have

m–∑

k=


k(m – k)

BkBm–k

=

m

m∑

k=


k

(
m
k

)
BkBm–k +


m

Hm–Bm (m ≥ ), (.)



Kim et al. Advances in Difference Equations  (2017) 2017:268 Page 4 of 17

which is the Faber-Pandharipande-Zagier identity (see []). Some of the different proofs
of Miki’s identity can be found in [, –]. Miki in [] exploits a formula for the Fer-
mat quotient ap–a

p modulo p, Shiratani-Yokoyama in [] employs p-adic analysis, Gessel
in [] bases his work on two different expressions for Stirling numbers of the second
kind S(n, k), and Dunne-Schubert in [] uses the asymptotic expansion of some spe-
cial polynomials coming from the quantum field theory computations. As we can see,
all of these proofs are quite involved. On the other hand, our proof of Miki’s and Faber-
Pandharipande-Zagier’s identities follow from the polynomial identity (.), which in
turn follows immediately from the Fourier series expansion of (.), together with the el-
ementary manipulations outlined in (.)-(.). Some related recent work can be found
in [, –].

2 The first type of sums of finite products
In this section, we will derive the Fourier series of the first type of sums of products of
Genocchi functions. Let us denote

αm(x) =
∑

i+···+ir=m,i,...,ir≥

Gi (x)Gi (x) · · ·Gir (x) (m > r ≥ ). (.)

Here the sum runs over all positive integers i, . . . , ir with i + · · · + ir = m, (m > r ≥ ). Note
here that degαm(x) = m – r ≥ . Then we will consider the function

αm
(〈x〉) =

∑

i+···+ir=m,i,...,ir≥

Gi
(〈x〉)Gi

(〈x〉) · · ·Gir
(〈x〉) (m > r ≥ ), (.)

defined on R, which is periodic with period . The Fourier series of αm(〈x〉) is

∞∑

n=–∞
A(m)

n eπ inx, (.)

where

A(m)
n =

∫ 


αm

(〈x〉)e–π inx dx =
∫ 


αm(x)e–π inx dx. (.)

Before proceeding, we note the following:

α′
m(x) =

∑

i+···+ir=m,i≥,i,...,ir≥

iGi–(x)Gi (x) · · ·Gir (x)

+ · · · +
∑

i+···+ir=m,i,...,ir–≥,ir≥

irGi (x) · · ·Gir– Gir–(x)

=
∑

i+···+ir=m–,i,...,ir≥

(i + )Gi (x)Gi (x) · · ·Gir (x)

+ · · · +
∑

i+···+ir=m–,i,...,ir≥

(ir + )Gi (x)Gi (x) · · ·Gir (x)

= (m + r – )
∑

i+···+ir=m–,i,...,ir≥

Gi (x)Gi (x) · · ·Gir (x)

= (m + r – )αm–(x). (.)
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So, α′
m(x) = (m + r – )αm–(x), and from this, we obtain

(
αm+(x)
m + r

)′
= αm(x) (.)

and

∫ 


αm(x) dx =


m + r

(
αm+() – αm+()

)
. (.)

We put �m = αm() – αm(), for m > r. Then we have

�m = αm() – αm()

=
∑

i+···+ir=m,i,...,ir≥

(
Gi ()Gi () · · ·Gir () – Gi Gi · · ·Gir

)

=
∑

i+···+ir=m,i,...,ir≥

(
(–Gi + δi,) · · · (–Gir + δir ,) – Gi · · ·Gir

)

=
∑

≤a≤r

(
r
a

) ∑

i+···+ia=m+a–r,i,...,ia≥

(–)ar–aGi · · ·Gia

–
∑

i+···+ir=m,i,...,ir≥

Gi Gi · · ·Gir , (.)

where we understand that, for a = , the inner sum is rδm,r . Observe here that the sums
over all i + · · · + ir = m (i, . . . , ir ≥ ) of any term with a of –Gie and b of δif , ( ≤ e, f ≤
r, a + b = r) all give

∑

i+···+ir=m,i,...,ir≥

(–Gi ) · · · (–Gia )(δia+,) · · · (δia+b ,)

=
∑

i+···+ia=m+a–r,i,...,ia≥

(–)ar–aGi · · ·Gia . (.)

Note that, as i + · · · + ia = m + a – r > a, the above sum is not empty. From the definition
of �m, we have

αm() = αm() ⇐⇒ �m = ,
∫ 


αm(x) dx =


m + r

�m+.
(.)

Now, we want to determine the Fourier coefficients A(m)
n .

Case : n �= . We have

A(m)
n =

∫ 


αm(x)e–π inx dx

= –


π in
[
αm(x)e–π inx]

 +


π in

∫ 


α′

m(x)e–π inx dx

= –


π in
(
αm() – αm()

)
+

m + r – 
π in

∫ 


αm–(x)e–π inx dx
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=
m + r – 

π in
A(m–)

n –


π in
�m

=
m + r – 

π in

(
m + r – 

π in
A(m–)

n –


π in
�m–

)
–


π in

�m

=
(m + r – )

(π in) A(m–)
n –

∑

j=

(m + r – )j–

(π in)j �m–j+

= · · ·

=
(m + r – )m–r

(π in)m–r A(r)
n –

m–r∑

j=

(m + r – )j–

(π in)j �m–j+

= –


m + r

m–r∑

j=

(m + r)j

(π in)j �m–j+, (.)

where

A(r)
n =

∫ 


e–π inx dx = . (.)

Case : n = . We have

A(m)
 =

∫ 


αm(x) dx =


m + r

�m+. (.)

We recall the following facts about Bernoulli functions Bm(〈x〉):
(a) for m ≥ ,

Bm
(〈x〉) = –m!

∞∑

n=–∞,n�=

eπ inx

(π in)m , (.)

(b) for m = ,

–
∞∑

n=–∞,n�=

eπ inx

π in
=

⎧
⎨

⎩
B(〈x〉) for x ∈ Z

c,

 for x ∈ Z,
(.)

where Zc = R–Z. αm(〈x〉) (m > r ≥ ) is piecewise C∞. Moreover, αm(〈x〉) is continuous for
those positive integers m > r with �m =  and discontinuous with jump discontinuities at
integers for those positive integers m > r with �m �= . Assume first that �m = , for a pos-
itive integer m > r. Then αm() = αm(). Hence αm(〈x〉) is piecewise C∞, and continuous.
Thus, the Fourier series of αm(〈x〉) converges uniformly to αm(〈x〉), and

αm
(〈x〉)

=


m + r
�m+ +

∞∑

n=–∞,n�=

(
–


m + r

m–r∑

j=

(m + r)j

(π in)j �m–j+

)
eπ inx

=


m + r
�m+ +


m + r

m–r∑

j=

(
m + r

j

)
�m–j+

(
–j!

∞∑

n=–∞,n�=

eπ inx

(π in)j

)
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=


m + r
�m+ +


m + r

m–r∑

j=

(
m + r

j

)
�m–j+Bj

(〈x〉)

+ �m ×
⎧
⎨

⎩
B(〈x〉) for x ∈ Z

c,

 for x ∈ Z.
(.)

Now, we can state our first result.

Theorem . For each positive integer l, with l > r, we let

�l =
∑

≤a≤r

(
r
a

) ∑

i+···+ia=l+a–r,i,...,ia≥

(–)ar–aGi · · ·Gia

–
∑

i+···+ir=l,i,...,ir≥

Gi · · ·Gir . (.)

Assume that �m = , for a positive integer m > r. Then we have the following:
(a)

∑
i+···+ir=m,i,...,ir≥ Gi (〈x〉) · · ·Gir (〈x〉) has the Fourier series expansion

∑

i+···+ir=m,i,...,ir≥

Gi
(〈x〉) · · ·Gir

(〈x〉)

=


m + r
�m+ +

∞∑

n=–∞,n�=

(
–


m + r

m–r∑

j=

(m + r)j

(π in)j �m–j+

)
eπ inx, (.)

for all x ∈R, where the convergence is uniform,
(b)

∑

i+···+ir=m,i,...,ir≥

Gi
(〈x〉) · · ·Gir

(〈x〉)

=


m + r
�m+ +


m + r

m–r∑

j=

(
m + r

j

)
�m–j+Bj

(〈x〉), (.)

for all x ∈R, where Bj(〈x〉) is the Bernoulli function.

Assume next that �m �= , for a positive integer m > r. Then αm() �= αm(). Hence
αm(〈x〉) is piecewise C∞, and discontinuous with jump discontinuities at integers. The
Fourier series of αm(〈x〉) converges pointwise to αm(〈x〉), for x ∈ Z

c, and it converges to



(
αm() + αm()

)
= αm() +



�m, (.)

for x ∈ Z. Now, we can state our second result.

Theorem . For each positive integer l, with l > r, we let

�l =
∑

≤a≤r

(
r
a

) ∑

i+···+ia=l+a–r,i,...,ia≥

(–)ar–aGi · · ·Gia

–
∑

i+···+ir=l,i,...,ir≥

Gi · · ·Gir . (.)
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Assume that �m �= , for a positive integer m > r. Then we have the following:
(a)


m + r

�m+ +
∞∑

n=–∞,n�=

(
–


m + r

m–r∑

j=

(m + r)j

(π in)j �m–j+

)
eπ inx

=

⎧
⎨

⎩

∑
i+···+ir=m,i,...,ir≥ Gi (〈x〉) · · ·Gir (〈x〉) for x ∈ Z

c,
∑

i+···+ir=m,i,...,ir≥ Gi · · ·Gir + 
�m for x ∈ Z,

(.)

(b)


m + r

�m+ +


m + r

m–r∑

j=

(
m + r

j

)
�m–j+Bj

(〈x〉)

=
∑

i+···+ir=m,i,...,ir≥

Gi
(〈x〉) · · ·Gir

(〈x〉), for x ∈ Z
c,

(.)


m + r

�m+ +


m + r

m–r∑

j=

(
m + r

j

)
�m–j+Bj

(〈x〉)

=
∑

i+···+ir=m,i,...,ir≥

Gi · · ·Gir +


�m, x ∈ Z.

(.)

3 The second type of sums of finite products
Let βm(x) =

∑
i+···+ir=m,i,...,ir≥


i!···ir ! Gi (x) · · ·Gir (x) (m > r ≥ ). Here the sum runs over all

positive integers i, . . . , ir with i + · · · + ir = m (r ≥ ). Then we will consider the function

βm
(〈x〉) =

∑

i+···+ir=m,i,...,ir≥


i! · · · ir !

Gi
(〈x〉) · · ·Gir

(〈x〉), (.)

defined on R, which is periodic with period . The Fourier series of βm(〈x〉) is

∞∑

n=–∞
B(m)

n eπ inx, (.)

where

B(m)
n =

∫ 


βm

(〈x〉)e–π inx dx =
∫ 


βm(x)e–π inx dx. (.)

Before proceeding, we need to observe the following:

β ′
m(x) =

∑

i+···+ir=m,i,...,ir≥

{
i

i! · · · ir !
Gi–(x)Gi (x) · · ·Gir (x) + · · ·

+
ir

i! · · · ir !
Gi (x) · · ·Gir– (x)Gir–(x)

}

=
∑

i+···+ir=m,i≥,i,...,ir≥


(i – )!i! · · · ir !

Gi–(x)Gi (x) · · ·Gir (x)
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+ · · · +
∑

i+···+ir=m,i,i,...,ir–≥,ir≥


i! · · · ir–!(ir – )!

Gi (x) · · ·Gir– (x)Gir–(x)

=
∑

i+···+ir=m–,i,...,ir≥


i! · · · ir !

Gi (x) · · ·Gir (x)

+ · · · +
∑

i+···+ir=m–,i,...,ir≥


i! · · · ir !

Gi (x) · · ·Gir (x)

= rβm–(x). (.)

Thus β ′
m(x) = rβm–(x), and, from this, we obtain

(
βm+(x)

r

)′
= βm(x) (.)

and

∫ 


βm(x) dx =


r
(
βm+() – βm+()

)
. (.)

For m > r, let

	m = βm() – βm()

=
∑

i+···+ir=m,i,...,ir≥


i! · · · ir !

Gi () · · ·Gir ()

–
∑

i+···+ir=m,i,...,ir≥


i! · · · ir !

Gi · · ·Gir

=
∑

i+···+ir=m,i,...,ir≥


i! · · · ir !

(–Gi + δi,) · · · (–Gir + δir ,)

–
∑

i+···+ir=m,i,...,ir≥


i! · · · ir !

Gi · · ·Gir

=
∑

≤a≤r

(
r
a

) ∑

i+···+ia=m+a–r,i,...,ia≥

(–)ar–a Gi Gi · · ·Gia
i! · · · ia!

–
∑

i+···+ir=m,i,...,ir≥


i! · · · ir !

Gi Gi · · ·Gir , (.)

where we understand that, for a = , the inner sum is rδm,r . Observe that the sums over all
i + · · · + ir = m (i, . . . ir ≥ ) of any term with a of –Gie and b of δif , ( ≤ e, f ≤ r, a + b = r)
all give

∑

i+···+ir=m,i,...,ir≥


i! · · · ir !

(–Gi ) · · · (–Gia )(δia+,) · · · (δia+b ,)

=
∑

i+···+ia=m+a–r,i,...,ia≥

(–)ar–a

i! · · · ia!
Gi · · ·Gia . (.)
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From the definition of 	m, we have

βm() = βm() ⇐⇒ 	m = ,
∫ 


βm(x) dx =


r
	m+.

(.)

Next, we want to determine the Fourier coefficients B(m)
n .

Case : n �= . We have

B(m)
n =

∫ 


βm(x)e–π inx dx

= –


π in
[
βm(x)e–π inx]

 +


π in

∫ 


β ′

m(x)e–π inx dx

= –


π in
(
βm() – βm()

)

+
r

π in

∫ 


βm–(x)e–π inx dx

=
r

π in
B(m–)

n –


π in
	m

=
r

π in

(
r

π in
B(m–)

n –


π in
	m–

)
–


π in

	m

=
(

r
π in

)

B(m–)
n –

∑

j=

rj–

(π in)j 	m–j+

= · · ·

=
(

r
π in

)m–r

B(r)
n –

m–r∑

j=

rj–

(π in)j 	m–j+

= –
m–r∑

j=

rj–

(π in)j 	m–j+, (.)

where

B(r)
n =

∫ 


e–π inx dx = . (.)

Case : n = . We have

B(m)
 =

∫ 


βm(x) dx =


r
	m+. (.)

βm(〈x〉) (m > r ≥ ) is piecewise C∞. Moreover, βm(〈x〉) is continuous for those positive
integers m > r with 	m =  and discontinuous with jump discontinuities at integers for
those integers m > r with 	m �= .

Assume first that 	m = , for a positive integer m > r. Then βm() = βm(). Hence βm(〈x〉)
is piecewise C∞, and continuous. Thus the Fourier series of βm(〈x〉) converges uniformly
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to βm(〈x〉), and

βm
(〈x〉) =


r
	m+ +

∞∑

n=–∞,n�=

(
–

m–r∑

j=

rj–

(π in)j 	m–j+

)
eπ inx

=

r
	m+ +

m–r∑

j=

rj–

j!
	m–j+

(
–j!

∞∑

n=–∞,n�=

eπ inx

(π in)j

)

=

r
	m+ +

m–r∑

j=

rj–

j!
	m–j+Bj

(〈x〉) + 	m ×
⎧
⎨

⎩
B(〈x〉) for x ∈ Z

c,

 for x ∈ Z.
(.)

Now, we can state our first result.

Theorem . For each positive integer l, with l > r, we let

	l =
∑

≤a≤r

(
r
a

)
(–)ar–a

∑

i+···+ia=l+a–r,i,...,ia≥

Gi Gi · · ·Gia
i!i! · · · ia!

–
∑

i+···+ir=l,i,...,ir≥

Gi Gi · · ·Gir
i!i! · · · ir !

. (.)

Assume that 	m = , for a positive integer m > r. Then we have the following:
(a)

∑
i+···+ir=m,i,...,ir≥


i!i!···ir Gi (〈x〉)Gi (〈x〉) · · ·Gir (〈x〉) has the Fourier series expansion

∑

i+···+ir=m,i,...,ir≥


i!i! · · · ir !

Gi
(〈x〉)Gi

(〈x〉) · · ·Gir
(〈x〉)

=

r
	m+ +

∞∑

n=–∞,n�=

(
–

m–r∑

j=

rj–

(π in)j 	m–j+

)
eπ inx, (.)

for all x ∈R, where the convergence is uniform,
(b)

∑

i+···+ir=m,i,...,ir≥


i!i! · · · ir

Gi
(〈x〉)Gi

(〈x〉) · · ·Gir
(〈x〉)

=

r
	m+ +

m–r∑

j=

rj–

j!
	m–j+Bj

(〈x〉), (.)

for all x ∈R, where Bj(〈x〉) is the Bernoulli function.

Assume next that 	m �= , for a positive integer m > r. Then βm() �= βm(). Thus βm(〈x〉)
is piecewise C∞, and discontinuous with jump discontinuities at integers. The Fourier
series of βm(〈x〉) converges pointwise to βm(〈x〉), for x ∈ Z

c, and it converges to



(
βm() + βm()

)
= βm() +



	m

=
∑

i+···+ir=m,i,...,ir≥


i!i! · · · ir

Gi Gi · · ·Gir +


	m, (.)

for x ∈ Z. Now, we can state our second theorem.
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Theorem . For each positive integer l, with l > r, we let

	l =
∑

≤a≤r

(
r
a

)
(–)ar–a

∑

i+···+ia=l+a–r,i,...,ia≥

Gi Gi · · ·Gia
i!i! · · · ia!

–
∑

i+···+ir=l,i,...,ir≥

Gi Gi · · ·Gir
i!i! · · · ir !

. (.)

Assume that 	m �= , for a positive integer m > r. Then we have the following:
(a)


r
	m+ +

∞∑

n=–∞,n�=

(
–

m–r∑

j=

rj–

(π in)j 	m–j+

)
eπ inx

=

⎧
⎨

⎩

∑
i+···+ir=m,i,...,ir≥


i!i!···ir ! Gi (〈x〉)Gi (〈x〉) · · ·Gir (〈x〉) for x ∈ Z

c,
∑

i+···+ir=m,i,...,ir≥


i!i!···ir ! Gi Gi · · ·Gir + 
	m for x ∈ Z,

(.)

(b)


r
	m+ +

m–r∑

j=

rj–

j!
	m–j+Bj

(〈x〉)

=
∑

i+···+ir=m,i,...,ir≥


i!i! · · · ir !

Gi
(〈x〉)Gi

(〈x〉) · · ·Gir
(〈x〉), (.)

for x ∈ Z
c, and


r
	m+ +

m–r∑

j=

rj–

j!
	m–j+Bj

(〈x〉)

=
∑

i+···+ir=m,i,...,ir≥


i!i! · · · ir !

Gi Gi · · ·Gir +


	m, (.)

for x ∈ Z.

4 The third type of sums of finite products
Let γm(x) =

∑
i+···+ir=m,i,...,ir≥


ii···ir Gi (x) · · ·Gir (x) (m > r ≥ ). Here the sum runs over all

positive integers i, . . . , ir , with i + · · ·+ir = m. Before proceeding, we observe the following:

γ ′
m(x) =

∑

i+···+ir=m,i≥,i,...,ir≥


i · · · ir

Gi–(x)Gi (x) · · ·Gir (x)

+ · · ·

+
∑

i+···+ir=m,ir≥,i,...,ir–≥


i · · · ir–

Gi (x) · · ·Gir– (x)Gir–(x)

=
∑

i+···+ir=m–,i,...,ir≥


i · · · ir

Gi (x)Gi (x) · · ·Gir (x)

+ · · ·
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+
∑

i+···+ir=m–,i,...,ir≥


i · · · ir–

Gi (x) · · ·Gir (x)

=
∑

i+···+ir=m–,i,...,ir≥

{


i · · · ir
+


ii · · · ir

+ · · · +


i · · · ir–

}
Gi (x)Gi (x) · · ·Gir (x)

= (m – )
∑

i+···+ir=m–,i,...,ir≥


i · · · ir

Gi (x)Gi (x) · · ·Gir (x)

= (m – )γm–(x). (.)

So, γ ′
m(x) = (m – )γm–(x), and from this, we get

(
γm+(x)

m

)′
= γm(x) (.)

and

∫ 


γm(x) dx =


m

(
γm+() – γm+()

)
. (.)

For m > r, we let

�m = γm() – γm()

=
∑

i+···+ir=m,i,...,ir≥


i · · · ir

(
Gi () · · ·Gir () – Gi · · ·Gir

)

=
∑

i+···+ir=m,i,...,ir≥


i · · · ir

(–Gi + δi,) · · · (–Gir + δir ,)

–
∑

i+···+ir=m,i,...,ir≥


i · · · ir

Gi · · ·Gir

=
∑

≤a≤r

(
r
a

)
(–)ar–a

∑

i+···+ia=m+a–r,i,...,ia≥

Gi G · · ·Gia
i · · · ia

–
∑

i+···+ir=m,i,...,ir≥


i · · · ir

Gi · · ·Gir , (.)

where we understand that, for a = , the inner sum is rδm,r . Note that

γm() = γm() ⇐⇒ �m =  (.)

and

∫ 


γm(x) dx =


m

�m+. (.)

We are now going to consider the function

γm
(〈x〉) =

∑

i+···+ir=m,i,...,ir≥


i · · · ir

Gi
(〈x〉) · · ·Gir

(〈x〉), (.)
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defined on R, which is periodic with period . The Fourier series of γm(〈x〉) is

∞∑

n=–∞
C(m)

n eπ inx, (.)

where

C(m)
n =

∫ 


γm

(〈x〉)e–π inx dx =
∫ 


γm(x)e–π inx dx. (.)

Now, we would like to determine the Fourier coefficients C(m)
n .

Case : n �= . We have

C(m)
n = –


π in

[
γm(x)e–π inx]

 +


π in

∫ 


γ ′

m(x)e–π inx dx

= –


π in
(
γm() – γm()

)
+

m – 
π in

∫ 


γm–(x)e–π inx dx

=
m – 
π in

C(m–)
n –


π in

�m

=
m – 
π in

(
m – 
π in

C(m–)
n –


π in

�m–

)
–


π in

�m

=
(m – )

(π in) C(m–)
n –

∑

j=

(m – )j–

(π in)j �m–j+

= · · ·

=
(m – )m–r

(π in)m–r C(r)
n –

m–r∑

j=

(m – )j–

(π in)j �m–j+

= –

m

m–r∑

j=

(m)j

(π in)j �m–j+. (.)

Note that

C(r)
n =

∫ 


e–π inx dx = . (.)

Case : n = . We have

C(m)
 =

∫ 


γm(x) dx =


m

�m+. (.)

γm(〈x〉), (m > r ≥ ) is piecewise C∞. Moreover, γm(〈x〉) is continuous for those integers
m > r with �m = , and discontinuous with jump discontinuities at integers for those in-
tegers m > r with �m �= .

Assume first that �m = , for a positive integer m > r. Then γm() = γm(). Hence γm(〈x〉)
is piecewise C∞, and continuous. So the Fourier series of γm(〈x〉) converges uniformly to
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γm(〈x〉), and

γm
(〈x〉)

=

m

�m+ +
∞∑

n=–∞,n�=

(
–


m

m–r∑

j=

(m)j

(π in)j �m–j+

)
eπ inx

=

m

�m+ +

m

m–r∑

j=

(
m
j

)
�m–j+

(
–j!

∞∑

n=–∞,n�=

eπ inx

(π in)j

)

=

m

�m+ + +

m

m–r∑

j=

(
m
j

)
�m–j+Bj

(〈x〉)

+ �m ×
⎧
⎨

⎩
B(〈x〉) for x ∈ Z

c,

, for x ∈ Z.
(.)

We are now ready to state our first theorem.

Theorem . For each positive integer l, with l > r, we let

�l =
∑

≤a≤r

(
r
a

)
(–)ar–a

∑

i+···+ia=l+a–r,i,...,ia≥

Gi Gi · · ·Gia
ii · · · ia

–
∑

i+···+ir=l,i,...,ir≥

Gi Gi · · ·Gir
ii · · · ir

. (.)

Assume that �m = , for a positive integer m > r. Then we have the following:
(a)

∑
i+···+ir=m,i,...,ir≥


ii···ir Gi (〈x〉)Gi (〈x〉) · · ·Gir (〈x〉) has the Fourier series expansion

∑

i+···+ir=m,i,...,ir≥


ii · · · ir

Gi
(〈x〉)Gi

(〈x〉) · · ·Gir
(〈x〉)

=

m

�m+ +
∞∑

n=–∞,n�=

(
–


m

m–r∑

j=

(m)j

(π in)j �m–j+

)
eπ inx, (.)

for all x ∈R, where the convergence is uniform,
(b) we have

∑

i+···+ir=m,i,...,ir≥


ii · · · ir

Gi
(〈x〉)Gi

(〈x〉) · · ·Gir
(〈x〉)

=

m

�m+ +

m

m–r∑

j=

(
m
j

)
�m–j+Bj

(〈x〉), (.)

for all x ∈R, where Bj(〈x〉) is the Bernoulli function.

Assume next that �m �= , for a positive integer m > r. Then γm() �= γm(). Hence γm(〈x〉)
is piecewise C∞, and discontinuous with jump discontinuities at integers. The Fourier
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series of γm(〈x〉) converges pointwise to γm(〈x〉), for x ∈ Z
c, and it converges to



(
γm() + γm()

)
= γm() +



�m

=
∑

i+···+ir=m,i,...,ir≥


ii · · · ir

Gi Gi · · ·Gir +


�m, (.)

for x ∈ Z. Now, we state our second result.

Theorem . For each positive integer l, with l > r, we let

�l =
∑

≤a≤r

(
r
a

)
(–)ar–a

∑

i+···+ia=l+a–r,i,...,ia≥

Gi Gi · · ·Gia
ii · · · ia

–
∑

i+···+ir=l,i,...,ir≥

Gi Gi · · ·Gir
ii · · · ir

. (.)

Assume that �m �= , for a positive integer m > r. Then we have the following:
(a)


m

�m+ +
∞∑

n=–∞,n�=

(
–


m

m–r∑

j=

(m)j

(π in)j �m–j+

)
eπ inx

=

⎧
⎨

⎩

∑
i+···+ir=m,i,...,ir≥


ii···ir Gi (〈x〉)Gi (〈x〉) · · ·Gir (〈x〉) for x ∈ Z

c,
∑

i+···+ir=m,i,...,ir≥


ii···ir Gi Gi · · ·Gir + 
�m for x ∈ Z,

(.)

(b)


m

�m+ +

m

m–r∑

j=

(
m
j

)
�m–j+Bj

(〈x〉)

=
∑

i+···+ir=m,i,...,ir≥


ii · · · ir

Gi
(〈x〉)Gi

(〈x〉) · · ·Gir
(〈x〉), (.)

for x ∈ Z
c, and


m

�m+ +

m

m–r∑

j=

(
m
j

)
�m–j+Bj

(〈x〉)

=
∑

i+···+ir=m,i,...,ir≥


ii · · · ir

Gi Gi · · ·Gir +


�m, (.)

for x ∈ Z.
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