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Abstract
A mathematical model of Dengue virus transmission between mosquitoes and
humans, incorporating a control strategy of imperfect vaccination and vector
maturation delay, is proposed in this paper. By using some analytical skills, we obtain
the threshold conditions for the global attractiveness of two disease-free equilibria
and prove the existence of a positive equilibrium for this model. Further, we
investigate the sensitivity analysis of threshold conditions. Additionally, using the
Pontryagin maximum principle, we obtain the optimal control strategy for the
disease. Finally, numerical simulations are delivered to verify the correctness of the
theoretical results, the feasibility of a vaccination control strategy, and the influences
of the controlling parameters on the control and elimination of this disease.
Theoretical results and numerical simulations show that the vaccination rate and
effectiveness of vaccines are two key factors for the control of Dengue spread, and
the manufacture of the Dengue vaccine is also architecturally significant.

Keywords: Dengue vaccination; maturation delay; disease-free equilibrium and
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1 Introduction
Dengue is a vector-borne disease which transcends international borders as the most im-
portant arbovirus disease currently threatening human populations. In the light of evolu-
tion, at least approximately - million people are affected by the Dengue virus each
year []. The Dengue virus is transmitted to humans by mosquitos, mostly the Aedes ae-
gypti and Aedes albopictus. As far back as , Jousset [] published geographic loca-
tions of Aedes aegypti strains and the Dengue virus. To better describe the influences
of the Dengue virus, many scholars have investigated Dengue transmission in mathe-
matical models (see [–] and the references therein). Particularly, Esteva et al. [] pro-
posed a Dengue virus transmission model and analyzed the global stability of equilib-
ria, and the control measures of the vector population are also discussed in terms of
threshold conditions. Further, Wang et al. [] proposed a nonlocal and time-delayed
reaction-diffusion model of the Dengue virus, and established threshold dynamics in
terms of the basic reproduction number. In addition, Garba et al. [] proposed a deter-
ministic model for the transmission dynamics of a strain of Dengue, which allows for
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transmission by exposed humans and mosquitoes. They proved the existence and lo-
cal asymptotical stability of the disease-free equilibrium if the basic reproduction num-
ber is less than unity. The authors also examined the phenomenon of backward bifurca-
tion.

How to control and eliminate the Dengue virus has always been a hot topic. Until now,
the available strategy that controls the spread of Dengue virus only controls the vector. De-
spite combined community participation and vector control, together with active disease
surveillance and insecticides, the examples of successful Dengue prevention and control
on a national scale are few []. Besides, with the increase of vector resistance, the intervals
between treatments are shorter. Moreover, as a result of the high costs of development
and registration and low gains, only few insecticide products are offered on the market
[]. Considering these realities, vaccination could be more effective to protect against the
Dengue virus [].

It is a well-known fact that vaccination has already been successfully applied to control
and eliminate various infectious diseases. Particularly, in , the Swiss mathematician
Daniel Bernoulli published an investigation on the impact of immunization with cowpox.
Then, the means of protecting people from infection through immunization began to be
widely used. In addition, the method has already successfully decreased both mortality
and morbidity [–]. In fact, during the s, Dengue vaccines were under develop-
ment. In recent years, however, with the increase in Dengue infections and a serious need
for faster development of a vaccine [], the progress in Dengue vaccines development
has amazingly accelerated. To guide public support for vaccine development in both in-
dustrialized and developing countries, economic analysis has been conducted, including
previous cost-effectiveness studies of Dengue [–]. The cost of the disease burden is
compared with the possibility of making a vaccination campaign, by the authors of this
analytical work; finally, they consider that Dengue vaccines, as a means of intervention,
have a potential economic benefit.

On the other hand, there are three successive aquatic juvenile phases (egg, larva and
pupa) and one adult pupa of the life cycle of mosquitoes []. The duration of the develop-
ment from egg to adult (- weeks) is often compared to the average life span of an adult
mosquito (about  weeks). The size of the mosquito population is strongly affected by
temperature, and the number of female mosquitoes changes accordingly due to seasonal
variations [, ]. Therefore, it is vital to consider the maturation time of mosquitoes
[], the length of the larval phase from egg to adult mosquitoes, and the impact on the
spread of the Dengue virus.

Based on the above-mentioned information and the immature Dengue vaccine, a de-
layed mathematical model of dynamical Dengue transmission between mosquitoes and
humans, incorporating a control strategy of imperfect vaccination, is proposed in this
paper, aiming to discuss the influences of vaccination and a maturation delay for con-
trolling and eliminating the Dengue virus. The rest of the paper is structured as fol-
lows. Section  describes an imperfect vaccination model with the maturation time of
mosquitoes, and the basic properties of this model are presented in Section . In Sec-
tion , the threshold conditions and the existence and attractiveness of equilibria of the
model are discussed. In Section , we will investigate the sensitivity of our threshold
conditions. In Section , we discuss the optimal control strategy for the disease. Finally,
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we give numerical simulations in Section , and present some concluding comments in
Section .

2 Model formulation
In this section, we present a mathematical model to study the transmission dynamics
of the Dengue virus. The model is based on a susceptible, infectious, recovered and
vaccinated structure and explains the transmission process of humans and mosquitoes.
Let Sh(t), Ih(t), Rh(t) and Vh(t) denote the numbers of susceptible (individuals who can
contract the disease), infectious (individuals who are capable of transmitting the dis-
ease), resistant (individuals who have recovered and acquired immunity) and vaccinated
(individuals who were vaccinated and are now immune) individuals at time t, respec-
tively. Similarly, Sm(t) and Im(t) represent the numbers of susceptible (mosquitoes able
to contract the disease) and infectious (mosquitoes capable of transmitting the disease
to humans) adult female mosquitoes at time t. Here the total numbers of humans and
mosquitoes are denoted by Nh(t) = Sh(t) + Ih(t) + Vh(t) + Rh(t) and Nm(t) = Sm(t) + Im(t),
respectively.

Since the development of mosquitoes from eggs to adults is density dependent, a Ricker
type function is taken to ensure the birth rate into the adult mosquitoes. Additionally, let
the positive constant τ be the maturation time of the mosquito, that is, the average time
needed for an egg to develop into an adult mosquito. Therefore, the birth rate function
of mosquitoes is taken as rmNm(t – τ )e–djτ e–αNm(t), where the meanings of the parameters
can be found in Table . For more biological explanation, we refer to [].

Additionally, for some potentially human infections (such as measles, hepatitis B, in-
fluenza, polio, etc.), there has been considerable focus on vaccinating newborns or in-
fected individuals. Therefore, Dengue can be a serious candidate for this type of vacci-
nation. Further, we suppose that a mass vaccination program may be initiated whenever
there is an increase of the risk of an epidemic, and the vaccination may reduce but not
completely eliminate susceptibility to infection, or the immunity, which is obtained by the
vaccination process, is temporary. The new model for the transmission between humans
and mosquitoes is given in the flowchart (Figure ).

Table 1 Parameter interpretations, value ranges and sources of model (1)

Param. Description Value Source

b Average number of bites by infectious mosquitoes (day–1) [0, 1] [10]
βhm Transmission probability from infectious individuals to mosquitoes [0, 1] [10]
βmh Transmission probability from infectious mosquitoes to humans [0, 1] [10]
1/μh Average human life expectancy (day) [18250, 27375] [23]
ηh Dengue recovery rate in humans (day–1) [0.1, 0.6] [23]
1/α Size of mosquitoes at which egg laying is maximized without delay - -
rm Maximum per capita daily mosquito egg production rate (day–1) [0.036, 42.5] [22]
τ Maturation time of the mosquito (day) [5, 30] [22]
dj Death rate of juvenile mosquitoes (day–1) [0.28, 0.46] [22]
dm Natural death rate of adult female mosquitoes (day–1) [0.016, 0.25] [23]
q Vertical transmission probability of virus in mosquitoes [0, 1] -
ψ Fraction of susceptible class that has been vaccinated [0, 1] -
θ Waning rate of immunity [0, 1] -
σ Infection rate of vaccinated members [0, 1] -
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Figure 1 Flowchart of the transmission of Dengue virus transmission between mosquitoes and
humans.

Based on these considerations, a mathematical model with maturation and imperfect
vaccination can be described as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSh(t)
dt = μhNh + θVh(t) – (bβmh

Im(t)
Nh(t) + ψ + μh)Sh(t),

dVh(t)
dt = ψSh(t) – (σbβmh

Im(t)
Nh(t) + θ + μh)Vh(t),

dIh(t)
dt = bβmh

Im(t)
Nh(t) (Sh(t) + σVh(t)) – (ηh + μh)Ih(t),

dRh(t)
dt = ηhIh(t) – μhRh(t),

dSm(t)
dt = rmSm(t – τ )e–djτ e–αNm(t) – bβhm

Ih(t)
Nh(t) Sm(t) – dmSm(t)

+ ( – q)rmIm(t – τ )e–djτ e–αNm(t),
dIm(t)

dt = qrmIm(t – τ )e–djτ e–αNm(t) + bβhm
Ih(t)
Nh(t) Sm(t) – dmIm(t).

()

The meanings of parameters of model () are shown in Table . The initial conditions of
model () are given as

Sh() > , Vh() ≥ , Ih() ≥ , Rh() ≥ ,

Sm(θ ) = φs(θ ) > , Im(θ ) = φi(θ ) > ,
()

where φs(θ ) and φi(θ ) are positive continuous functions for θ ∈ [–τ , ].

3 Basic properties
In this section, the basic dynamical features of model () will be explored. First, from the
first to the fourth equation of this model, we have dNh/dt = . Then the total number of
humans Nh(t) := Nh is constant. Further, it follows from model () that the total number
of adult female mosquitoes Nm(t) = Sm(t) + Im(t) satisfies

dNm(t)
dt

= rmNm(t – τ )e–djτ e–αNm(t) – dmNm(t) ()

with the initial condition

Nm(θ ) = φs(θ ) + φi(θ ) >  for all θ ∈ [–τ , ]. ()
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Letting

N∗
m =


α

ln

(
rme–djτ

dm

)

,

it follows that N∗
m is a unique positive equilibrium of equation (), and it exists if and only

if rme–djτ > dm.
Now, we define a threshold condition for the mosquito population

R =
rme–djτ

dm
.

In fact,R is the threshold condition of the existence of a positive equilibrium with model
().

The following theorem describes the global dynamical behavior of model ().

Theorem  Solution Nm(t) of model () with the initial condition () is positive for any
finite time t ≥ . Further,

(i) if R ≤ , then solution Nm(t) is bounded and the trivial equilibrium Nm =  is
globally asymptotically stable;

(ii) if R > , then h < Nm(t) < H for any t ≥ , where

h =



min
{

min
θ∈[–τ ,]

{
φs(θ ) +φi(θ )

}
, N∗

m

}
, H =  +max

{
N∗

m, max
θ∈[–τ ,]

{
φs(θ ) +φi(θ )

}}
.

Moreover, model () has a unique positive equilibrium N∗
m which is globally

asymptotically stable.

Proof Noting that Nm(θ ) >  for any θ ∈ [–τ , ], if there is a t∗ >  such that Nm(t∗) = 
and Nm(t) >  for all t < t∗, then dNm(t∗)/dt ≤ . It follows from () that

dNm(t∗)
dt

= rmNm
(
t∗ – τ

)
e–djτ > ,

which leads to a contradiction with dNm(t∗)/dt ≤ . Hence Nm(t) >  for any finite time
t ≥ .

Now we prove (i). Assume that R ≤ . We claim that Nm(t) ≤ H . Otherwise, there is
a t >  such that Nm(t) = H and Nm(t) < H for any t < t. Then we have dNm(t)/dt ≥ .
From (), we have

dNm(t)
dt

= rmNm(t – τ )e–djτ e–αH – dmH ≤ H
(
rme–djτ e–αH – dm

)

< H
(
rme–djτ – dm

) ≤ ,

which leads to a contradiction. Hence Nm(t) ≤ H for any t ≥ .
Next we turn to (ii). Assume that R > . We claim that h < Nm(t) < H for any t ≥ .

Otherwise, there is a t >  such that Nm(t) = H and Nm(t) < H for any t < t. From (),
we have

dNm(t)
dt

= rmNm(t – τ )e–djτ e–αH – dmH < H
(
rme–djτ e–αH – dm

) ≤ .
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The last inequality is true since H > N∗
m. But the definition of t implies that dNm(t)/dt ≥

, a contradiction. Hence Nm(t) < H for any t ≥ . Similarly, we assume there is a t̃ > 
such that Nm(t̃) = h and Nm(t) > h for any t < t̃, and dNm(t̃)/dt ≤ . Again from (), since
h ≤ N∗

m, we have

dNm(t̃)
dt

= rmNm(t̃ – τ )e–djτ e–αh – dmh > h
(
rme–djτ e–αh – dm

) ≥ ,

which leads to a contradiction. Therefore, h < Nm(t) < H for any t ≥ .
In order to prove that the global stability of equilibria Nm =  and N∗

m, we denote the right
hand side of () as functions f (Nm(t) and Nm(t – τ )). Since ∂f (x, y)/∂y > , it follows that
() generates an eventually strongly monotone semiflow on the space C of a continuous
function on [–τ , ] with the usual pointwise ordering (see Smith []). If R ≤ , there is
only a single trivial equilibrium Nm = . By Theorem .. in [], the equilibrium Nm = 
is globally asymptotically stable. If R > , there are two equilibria Nm =  and N∗

m. By
Theorem .. in [], solutions of () converge to one of two equilibria. To eliminate
the possibility of Nm =  as an attractor, we linearize the system about Nm =  and use
Theorem A in [] to conclude that it is unstable when R > . Hence Nm(t) → N∗

m as
t → ∞. �

4 Existence and attractiveness of equilibria
We define, firstly, a threshold condition for the full model () as follows:

R =
(θ + σψ + μh)bβmhβhmN∗

m
dm( – q)(μh + ηh)(θ + ψ + μh)Nh

.

In fact, the value of R determines the existence of a positive equilibrium of model ().
For model (), we get two nontrivial disease-free equilibria, that is, the disease-free

equilibrium without mosquitoes E for R ≤ , and the disease-free equilibrium with
mosquitoes E for R >  and R < , where E and E are given by

E =
(

(θ + μh)Nh

ψ + θ + μh
,

ψNh

ψ + θ + μh
, , , , 

)

,

E =
(

(θ + μh)Nh

ψ + θ + μh
,

ψNh

ψ + θ + μh
, , , N∗

m, 
)

.

Further, model () admits endemic equilibria E∗(S∗
h(,), V ∗

h(,), I∗
h(,), R∗

h(,), S∗
m(,), I∗

m(,)) for
R >  and R > , where

S∗
h(,) =

(
σbβmhβhmN∗

mI∗
h(,)

ψNh[dm( – q)Nh + bβhmI∗
h(,)]

+
μh + θ

ψ

)

V ∗
h(,), R∗

h(,) =
ηh

μh
I∗

h(,),

I∗
m(,) =

bβhmN∗
mI∗

h(,)

dm( – q)Nh + bβhmI∗
h(,)

, S∗
m(,) = N∗

m – I∗
m(,),

V ∗
h(,) =

(ηh + μh)ψI∗
h(,)

(σM + θ + μh + σψ)M
, M =

bβmhβhmN∗
mI∗

h(,)

Nh[dm( – q)Nh + bβhmI∗
h(,)]

,
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and I∗
h(,) is obtained by the solutions Ih of the following equation:

AI
h + BIh + C =  ()

with

A = bβ
hm(μh + ηh)

[(
σbβmhN∗

m + (θ + μh)Nh
)(

bβmhN∗
m + (ψ + μh)Nh

)
+ θψN

h
]
,

B = bβhmNh
{

–σμhbβ
mhβhmN∗

m + dm( – q)μh(μh + ηh)(ψ + θ + μh)N
h

+ bβmhN∗
mNh

[
dm( – q)(μh + ηh)

(
θ + μh + σ (ψ + μh)

)
– μhbβhm(θ + σψ + μh)

]}
,

C = μhdm( – q)N
h
[
dm( – q)(μh + ηh)(ψ + θ + μh)Nh – (θ + σψ + μh)bβmhβhmN∗

m
]

= μhdm( – q)N
h


dm( – q)(μh + ηh)(ψ + θ + μh)Nh

( – R).

It is obvious that A >  for positive parameters, and R ≥  if and only if C ≤ . Further,
if B >  and C > , there is no positive root of equation (); if B <  and B – AC > , there
are two positive roots of equation (); if C < , there is a unique positive root of equation
(). According to the above-mentioned discussion, we have a conclusion as follows.

Theorem  If R ≤ , then model () has a unique disease-free equilibrium without
mosquitoes E; ifR >  andR < , then model () has a unique disease-free equilibrium
with mosquitoes E. Furthermore, if R > , the following statements are valid:

(i) if C ≤ , then model () has a unique endemic equilibrium;
(ii) if B <  and B – AC > , then model () has two endemic equilibria;

(iii) if B >  and C ≥ , then model () has no endemic equilibrium.

Noting that C ≤  if and only if R ≥ . It is clear from Theorem  (Case (i)) that the
model has a unique endemic equilibrium ifR ≥  andR > . Further, Case (ii) indicates
the possibility of backward bifurcation (where a local asymptotically stable disease-free
equilibrium co-exists with a locally asymptotically stable endemic equilibrium) in model
() for R ≥  and R < . To check for this, the discriminant B – AC is set to zero and
solved for the critical value of R, denoted by Rc

. Thus, backward bifurcation would
occur for values of R such that R ≥  and Rc

 < R < .
To obtain the stability of the equilibria of model (), we take out the variate of Rh(t) and

linearize model () about equilibria (S∗
h, V ∗

h , I∗
h , S∗

m, I∗
m) and we get the following Jacobian

matrix:

J =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a – λ θ   –bβmh
S∗

h
Nh

ψ a – λ   –σbβmh
V∗

h
Nh

bβmh
I∗m
Nh

σbβmh
I∗m
Nh

–(ηh + μh) – λ  bβmh
S∗

h+σV∗
h

Nh

  –bβhm
S∗

m
Nh

a – λ a

  bβhm
S∗

m
Nh

a a – λ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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where

a = –
(

bβmh
I∗

m
Nh

+ ψ + μh

)

, a = –
(

σbβmh
I∗

m
Nh

+ θ + μh

)

,

a = rme–(djτ+αN∗
m)[( – q)e–λτ – αN∗

m + αqI∗
m
]
,

a = bβhm
Ih(t)
Nh

– αqI∗
m(t – τ )e–(djτ+αN∗

m ,

a = rme–(djτ+αN∗
m)(e–λτ – αN∗

m + αqI∗
m
)

– dm,

a = qrme–(djτ+αN∗
m)(e–λτ – αI∗

m
)

– dm,

and λ is an eigenvalue. We obtain the characteristic equation about E according to the
Jacobian matrix of model ()

F(λ) = (λ + ηh + μh)
[
λ + (θ + ψ + μh)λ + (θ + ψ + μh)μh

]

× (
λ + dm – qrme–(dj+λ)τ )(λ + dm – rme–(dj+λ)τ ).

To continue, we recall Theorem . in [], which states that λ = A + Be–λτ has a root with
positive real part if A + B > , and has no roots with nonnegative real parts if A + B < 
and B ≥ A. By this theorem, we see that all roots of the above characteristic equation have
negative real parts for R < . Therefore, E is asymptotically stable.

Now, on the globally asymptotically stable disease-free equilibrium without mosquitoes
E of model (), we have Theorem .

Theorem  If R < , then model () has a unique disease-free equilibrium without
mosquitoes E, which is globally asymptotically stable.

Proof It obvious that limt→∞ Sm(t) = limt→∞ Im(t) =  for R <  depending on Theo-
rem . So we merely prove that

lim
t→∞ Sh(t) =

(θ + μh)Nh

(ψ + θ + μh)
, lim

t→∞ Vh(t) =
ψNh

(ψ + θ + μh)
, ()

and

lim
t→∞ Ih(t) = lim

t→∞ Rh(t) = .

Due to limt→∞ Im(t) = , for a small enough positive constant ε, there is a constant T > 
such that Im(t) < ε, for all t > T . Then, from the third equation of model (), we have

dIh(t)
dt

< bβmhε – (μh + ηh)Ih(t), for all t > T .

By the comparison theorem and the arbitrariness of ε, we have limt→∞ Ih(t) = . Further,
it follows that limt→∞ Rh(t) = .
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From the first and second equations of model (), we have

μhNh + θVh(t) –
(

bβmh
ε

Nh
+ ψ + μh

)

Sh(t)

≤ dSh(t)
dt

≤ μhNh + θVh(t) – (ψ + μh)Sh(t)

and

ψSh(t) –
(

σbβmh
ε

Nh
+ θ + μh

)

Vh(t) ≤ dVh(t)
dt

≤ ψSh(t) – (θ + μh)Vh(t).

Then it is easy to see that () is valid, that is, E is globally attractive. This completes the
proof. �

Finally, we give a conclusion on the global attractiveness of the disease-free equilibrium
with mosquitoes E of model ().

Theorem  Supposing that R > . If

R∗
 :=

bβmhβhmN∗
m

dm( – qedmτ )(μh + ηh)Nh
< ,

then model () has a unique disease-free equilibrium with mosquitoes E, which is globally
attractive.

Proof From the expressions of R and R∗
, we get R <  for R∗

 < . Therefore, model
() has a unique disease-free equilibrium with mosquitoes E for R∗

 <  and R > .
From the sixth equation of model () we get

dIm(t)
dt

≥ –dmIm(t).

By integrating the above inequality from t – τ to t, we obtain Im(t – τ ) ≤ edmτ Im(t). Then

⎧
⎨

⎩

dIm(t)
dt ≤ dm(qedmτ – )Im(t) + bβhm

N∗
m

Nh
Ih(t),

dIh(t)
dt ≤ bβmhIm(t) – (ηh + μh)Ih(t).

Consider the following auxiliary system:

⎧
⎨

⎩

du(t)
dt = dm(qedmτ – )u(t) + bβhm

N∗
m

Nh
v(t),

dv(t)
dt = bβmhu(t) – (ηh + μh)v(t).

()

It is obvious that the equilibrium (, ) always exists. The characteristic equation of model
() about (, ) is

I(λ) = λ + (b – a)λ – (ba + ab) = , ()
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where a = dm(qedmτ – ), a = bβhmN∗
m/Nh, b = bβmh and b = ηh + μh. To obtain two

negative solutions about (), it is required that

λ + λ = a – b < , λ · λ = –(ba + ab) > .

So we see that the equilibrium (, ) of model () is globally asymptotically stable for
R∗

 < .
According to the above discussion and the comparison theorem of differential equa-

tions, we know that limt→∞ Im(t) =  and limt→∞ Ih(t) =  for R >  and R∗
 < . Finally,

in the light of Theorem , we get limt→∞(Sh(t), Ih(t), Vh(t), Rh(t), Sm(t), Im(t)) = E. This
completes the proof. �

Remark  Obviously, qedmτ ≈ q due to the small vertical transmission probability q ac-
cording to existing literature, therefore R ≈R∗

.

To discuss the stability of the endemic equilibrium E∗, we write the corresponding char-
acteristic equation for E∗ as follows:

H(λ) =
[
λ + dm

(
 + αN∗

m – e–λτ
)]

{

(λ + μh)
{[

(λ + μh + ηh)
(

λ + dm
(
 – qe–λτ

)

+ bβhm
I∗

h(,)

Nh

)

– bβmhβhm
S∗

m(,)(S
∗
h(,) + σV ∗

h(,))
N

h

][

λ +
(

( + σ )bβmh
I∗

m(,)

Nh

+ ψ + θ + μh

)

λ + bβmh
I∗

m(,)

Nh

(

σbβmh
I∗

m(,)

Nh
+ θ + σψ + μh

)]

+ σbβ
mhβhm

V ∗
h(,)I

∗
m(,)S

∗
m(,)

N
h

[

σ

(

λ + bβmh
I∗

m(,)

Nh
+ ψ

)

+ θ + μh

]}

– μhbβmh
I∗

m(,)

Nh
(λ + μh + ηh)

[

λ + dm
(
 – qe–λτ

)
+ bβhm

I∗
h(,)

Nh

]

×
[

λ + σbβmh
I∗

m(,)

Nh
+ θ + σψ + μh

]}

= . ()

Nevertheless, the study of solving this transcendental equation () is very difficult. And
though we get the conditions by math software, it is not difficult to imagine that the con-
ditions are very complex. Of course, it is very difficult to make a rational interpretation on
biology. So the solving of () is insignificant, and we omit it.

5 Description of sensitivity analysis
Sensitivity indices enable us to measure the relative change in a state variable when a model
parameter changes. The normalized forward sensitivity index of a variable to a model
parameter is the ratio of the relative change in the variable to the relative change in the
parameter. When the variable is a differentiable function of the parameter, the sensitivity
index may be alternatively defined using partial derivatives.

Definition  (Sensitivity index []) The normalized forward sensitivity index of a vari-
able, u, that depends differentiably on a parameter, p, is defined as

γ u
p :=

∂u
∂p

× p
u

. ()
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Table 2 Sensitivity indices of R02 and R∗
02 to the parameter values for model (1)

Variable Parameter Sensitivity index

R02 θ 0.06051
σ 0.92280
ψ –0.06075
q 0.01010
τ -
b 2
βmh 1
βhm 1

Variable Parameter Sensitivity index

R∗
02 θ -

σ -
ψ -
q 0.01237
τ 0.0025
b 2
βmh 1
βhm 1

Table  represents sensitivity indices of model parameters to R and R∗
, as the values

of parameters for model () are fixed as: b = ., βmh = βhm = ., μh = ., ηh = .,
τ = , dm = ., q = ., σ = ., θ = . and ψ = ..

Note from Table  thatR andR∗
 all show the greatest sensitivities to the biting rate b,

followed by the transmission probabilities βmh and βhm. Accordingly, a reduction of % in
the biting rate b decreases R by %, which equals the decrease in R∗

 when identically
varying the biting rate parameter b; further, a reduction of % in the transmitting rate
βmh or βhm decreases R and R∗

 both by %. Next, a reduction of % in the waning
rate θ decreases R by .%, a reduction of % in the infection rate of vaccinated
members σ decreases R by .%, and a reduction of % of the vaccinated fraction
of the susceptible class ψ increases R by .%. Lastly, a reduction of % in the
vertical transmission probability q decreases R and R∗

 by .% and .%,
respectively; a reduction of % in the maturation time of the mosquito τ decreases R∗



by .%.
Obviously, the sensitivity index of the infection rate of vaccinated members σ exceeds

that of the fraction ψ of the susceptible class that was vaccinated, though the value of σ

(σ = .) is smaller than the value of ψ (ψ = .). The sensitivity index of the fraction ψ

of the susceptible class that was vaccinated is substantial near the sensitivity index of the
waning rate θ for the values above. Then the sensitivity index of the vertical transmission
probability q is very small. This is perhaps related to the small value of q (q = .). The
sensitivity level of τ is the smallest, that is, the maturation time of the mosquito has less
effect on the variation of R∗

.

6 Analysis of optimal vaccination
Optimal control techniques are of great use in developing the optimal strategies to prevent
the spread of the Dengue virus. To face the challenges of obtaining an optimal control strat-
egy, we make the following notational conventions. Suppose tf and 	 are given constants
and define an admissible control set U = {ψ(t) is measurable,  ≤ ψ(t) ≤ 	, t ∈ [, tf ]}.
Here ψ(t) is called a control variable, to reduce or even eradicate the disease, and to find
a suitable compromise between minimal number of the infected individuals and the costs
of the campaign. The objective function is given by

min J[ψ] =
∫ tf



[
γDIh(t) + γV ψ(t)]dt, ()
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subject to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSh(t)
dt = μhNh + θVh(t) – (bβmh

Im(t)
Nh(t) + ψ(t) + μh)Sh(t),

dVh(t)
dt = ψ(t)Sh(t) – (σbβmh

Im(t)
Nh(t) + θ + μh)Vh(t),

dIh(t)
dt = bβmh

Im(t)
Nh(t) (Sh(t) + σVh(t)) – (ηh + μh)Ih(t),

dRh(t)
dt = ηhIh(t) – μhRh(t),

dSm(t)
dt = rmSm(t – τ )e–djτ e–αNm(t) – bβhm

Ih(t)
Nh(t) Sm(t) – dmSm(t)

+ ( – q)rmIm(t – τ )e–djτ e–αNm(t),
dIm(t)

dt = qrmIm(t – τ )e–djτ e–αNm(t) + bβhm
Ih(t)
Nh(t) Sm(t) – dmIm(t),

()

with the initial condition (). Here, positive constants γD and γV represent the weights
of the costs of treatment of infected individuals and vaccination, respectively. Since the
state variables are continuous, the solutions of the control system are bounded. Also, the
objective function is convex in the control ψ(t). Hence, the existence of the optimal control
comes as a direct result from the Filippove-Cesari theorem [–]. We, therefore, have
the following result.

Theorem  There is an optimal control ψ∗(t) such that J(ψ∗(t)) = min J(ψ(t)), subject to
the control system () with the initial condition ().

In order to find the optimal solution, we find that the Lagrangian and Hamiltonian meth-
ods serve for the optimal control problem () with (). In fact, the Lagrangian of the
optimal problem is given by

L̃(Ih,ψ) = γDIh(t) + γV ψ(t).

To find the optimal control function for the optimal control problem, we define the cor-
responding Hamiltonian as

H(Sh, Vh, Ih, Rh, Sm, Im,λ,ψ)

= γDI
h + γV ψ + λ

[

μhNh + θVh(t) –
(

bβmh
Im(t)
Nh

+ ψ + μh

)

Sh(t)
]

+ λ

[

ψSh(t) –
(

σbβmh
Im(t)
Nh

+ θ + μh

)

Vh(t)
]

+ λ

[

bβmh
Im(t)
Nh

(
Sh(t) + σVh(t)

)
– (ηh + μh)Ih(t)

]

+ λ
(
ηhIh(t) – μhRh(t)

)
+ λ

[

rmSm(t – τ )e–djτ e–αNm(t)

– bβhm
Ih(t)
Nh

Sm(t) – dmSm(t) + ( – q)rmIm(t – τ )e–djτ e–αNm(t)
]

+ λ

[

qrmIm(t – τ )e–djτ e–αNm(t) + bβhm
Ih(t)
Nh

Sm(t) – dmIm(t)
]

, ()

where λi(·), i = , . . . , , are the adjoint functions to be determined suitably.
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Now, let us derive a necessary condition for the optimal control strategy by means of the
Pontryagin maximum principle []. Similar proof methods can also be found in [–]
and the references therein.

Theorem  Given an optimal control variable ψ∗(t) and the corresponding solution
(̃Sh(·), Ṽh(·),̃ Ih(·), R̃h(·), S̃m(·),̃ Im(·)) of state system (), there are adjoint functions λi(·),
i = , . . . , , satisfying

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dλ(t)
dt = (λ – λ)bβmh

Ĩm(t)
Nh

+ (λ – λ)ψ∗ + λμh,
dλ(t)

dt = (λ – λ)θ + (λ – λ)σbβmh
Ĩm(t)
Nh

+ λμh,
dλ(t)

dt = –γD̃Ih(t) + (λ – λ)ηh + λμh + (λ – λ)bβhm
S̃m(t)

Nh
,

dλ(t)
dt = λμh,

dλ(t)
dt = (λ – λ)(bβhm

Ĩh(t)
Nh

– αqrm̃Im(t – τ )e–djτ e–αÑm(t))

+ λ[rme–djτ e–αÑm(t)(αÑm(t – τ ) – ) + dm]

– �[,tf –τ ](t)rme–(djτ+αÑm(t))λ(t + τ ),
dλ(t)

dt = (λ – λ)bβmh
S̃h(t)
Nh

+ (λ – λ)σbβmh
Ṽh(t)

Nh
+ λrme–djτ e–αÑm(t)[αS̃m(t – τ )

+ ( – q)(α̃Im(t – τ ) – )] + λ[qrme–djτ e–αÑm(t)(α̃Im(t – τ ) – ) + dm]

– �[,tf –τ ](t)rme–(djτ+αÑm(t))[( – q)λ(t + τ ) + qλ(t + τ )],

()

and the transversality conditions λi(tf ) = , i = , . . . , . Here �[,tf –τ ](t) =  if t ∈ [, tf – τ ].
Otherwise �[,tf –τ ](t) = . Furthermore,

ψ∗(t) = min

{

	, max

{

,
(λ – λ)̃Sh(t)

γV

}}

. ()

Proof To determine the adjoint equations and transversality conditions, we use the Hamil-
tonian (). We obtain the adjoint system as follows:

dλ(t)
dt

=
∂H
∂Sh

– �[,tf –τ ](t)
∂H

∂Sh(t – τ )
(t + τ ),

dλ(t)
dt

=
∂H
∂Vh

– �[,tf –τ ](t)
∂H

∂Vh(t – τ )
(t + τ ),

dλ(t)
dt

=
∂H
∂Ih

– �[,tf –τ ](t)
∂H

∂Ih(t – τ )
(t + τ ),

dλ(t)
dt

=
∂H
∂Rh

– �[,tf –τ ](t)
∂H

∂Rh(t – τ )
(t + τ ),

dλ(t)
dt

=
∂H
∂Sm

– �[,tf –τ ](t)
∂H

∂Sm(t – τ )
(t + τ ),

dλ(t)
dt

=
∂H
∂Im

– �[,tf –τ ](t)
∂H

∂Im(t – τ )
(t + τ ).

Thus, the adjoint system can be rewritten as system (). By the optimal conditions, we
have

∂H
∂ψ

∣
∣
∣
∣
ψ=ψ∗(t)

= γV ψ∗(t) – (λ – λ)̃Sh(t) = .
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It follows that

ψ∗(t) = min

{

	, max

{

,
(λ – λ)̃Sh(t)

γV

}}

.

Considering the feature of the admissible control set U , we obtain (). Thus we complete
the proof. �

7 Numerical simulation and discussion
We perform some numerical simulations to illustrate the main theoretical results above
for stability of equilibria using the Runge-Kutta method with the software MATLAB. Ac-
cording to the possible values of model () from Table , the values of the model parameters
are listed in Table . We choose the parameters N∗

m ≈  and Nh ≈ .
First, from the values of the parameters in Table , it is easy to see that R ≈ . < .

Thus from the theoretical conclusion of Theorem , we know that the disease-free equi-
librium without mosquito E of model () is globally attractive. That is, infectious individ-
uals and the total number of mosquitoes are all decreasing to zero eventually for any initial
value. The plots in Figures (a) and (b) coincide with the theoretical result. We choose,
however, model parameters τ = , b = ., βmh = . and βhm = ., and other parame-
ters are fixed as in Table . It is easy to calculate R ≈ . >  and R∗

 ≈ . < .
Then the conditions of Theorem  are valid. Therefore, the disease-free equilibrium with
mosquitoes E is globally attractive. Theoretical result and numerical simulations in Fig-
ures (a) and (b) imply that infectious individuals and infectious mosquitoes are decreas-
ing to zero eventually, whereas the number of susceptible mosquitoes are not decreasing
to zero.

Further, letting τ = , b =  and θ = ., while other parameters are fixed as in Table ,
we get R ≈ . >  and R ≈ . >  by direct calculation. The plots in Fig-

Table 3 The parameter values for model (1)

Parameter b βmh βhm ψ σ θ τ

Value 0.8 0.375 0.375 0.6 0.05 1/365 12

Parameter q ηh μh α rm dj dm
Value 0.007 1/3 1/(71× 365) 0.0000025 15 0.37 0.05

Figure 2 The global attractiveness of the disease-free equilibrium without mosquitoes E01 of model
(1), where R01 ≈ 0.9330 < 1.



Nie and Xue Advances in Difference Equations  (2017) 2017:278 Page 15 of 19

Figure 3 The global attractiveness of the disease-free equilibrium without mosquitoes E01 of model
(1), where R01 ≈ 0.9330 < 1.

Figure 4 The global attractiveness of the disease-free equilibrium with mosquitoes E02 of model (1),
where R01 ≈ 5.9336 > 1 and R∗

02 ≈ 0.4591 < 1.

ures (a) and (b) show that the infected classes (including individuals and mosquitoes)
have an obvious explosion in the early phase. Additionally, from Figure (a), we also notice
the fact that the number of susceptible individuals directly determines the strength and
time of Dengue outbreaks, as more susceptible individuals correspond to more violent
and earlier outbreaks. Similar results also can be found in Figure (b). It really shows that
immunization of susceptible individuals is an effective strategy to control outbreaks of the
Dengue virus.

Next, we consider how the maturation delay τ and vaccinated fraction ψ affect the pre-
vention and control of the Dengue virus. We fix b =  and τ to be , , ,  and , and
other parameters are fixed as in Table . Obviously, the plots in Figure (a) show that the
maturation time directly determines the scale of the mosquito population. This confirms
that the change of weather plays an important role in the spread of mosquito-transmitted
infectious diseases. Further, to study the effects of the vaccinated fraction of ψ , we fix
τ = , b = , and ψ to be ., ., ., ., . and ., and other parameters are fixed as in
Table . Figure (b) indicates that the number of infected individuals is falling fast with the
increase of the vaccinated fraction ψ . These facts imply that we can prevent the spread of
the Dengue virus by adjusting the vaccination rate ψ .
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Figure 5 The influences of the maturation delay and the vaccinated fraction to eliminate Dengue:
(a) b = 1, τ = 25, 20, 15, 12, and 10; (b) τ = 5, b = 1, ψ = 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6.

Figure 6 The influences of the waning rate θ and the infection rate of vaccinated members σ on the
elimination of Dengue, where τ = 5, b = 1, and other parameters are fixed as in Table 3: (a) θ = 1/20,
1/50, 1/100, 1/200, and 1/300; (b) σ = 0.05, 0.1, 0.15, 0.2, and 0.25.

Next, we simulate the effects of the waning rate θ and the infection rate of vaccinated
members σ for eliminating Dengue. We choose τ = , b = , and other parameters are fixed
as in Table . From the plots in Figure (a), we clearly see that the number of infected hu-
mans reaches a peak at day ≈ , and the amplitude of the peak is large. Further, both
the amplitude and the peaking time vary with the waning rate of immunity θ . That is, the
peaking time decreases and the amplitude of the peak decreases as θ reduces. In addi-
tion, as the infection rate of vaccinated members σ increases, the peaking time decreases
and the amplitude of the peak decreases. This is shown in Figure (b). Numerical simula-
tions demonstrate that the validity period and the effectiveness of vaccination are two key
factors to control the spread of the Dengue virus.

Finally, we also simulate the relationships of ψ and σ , and ψ and θ . The plots in Fig-
ure (a) show that, due to the high rate of vaccines losing effect, though the vaccinated
rate is high, the Dengue virus can outbreak in a short span of time. Further, we notice that,
as the rate of loss of vaccine effectiveness decreases, though the vaccination rate decreases,
the number of infected humans is kept in a lower range. Numerical simulations indicate
that the improvement of the rate of loss of vaccine effectiveness is more effective than the
improvement of the vaccination rate for controlling Dengue. Meanwhile, Figure (b) also
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Figure 7 The relationships of ψ and σ , and ψ and θ : (a) ψ = 0.6 and σ = 0.25, ψ = 0.5 and σ = 0.2,
ψ = 0.4 and σ = 0.15, ψ = 0.3 and σ = 0.1, ψ = 0.2 and σ = 0.05; (b) ψ = 0.1 and θ = 1/365, ψ = 0.2
and θ = 1/200, ψ = 0.3 and θ = 1/100, ψ = 0.4 and θ = 1/50, ψ = 0.5 and θ = 1/20.

implicates that the improvement of the period of validity of the vaccine is more effective
than the improvement of the vaccination rate for controlling Dengue. Theoretical results
and numerical simulations show that the development of highly effective vaccines is the
most effective method to control the spread of the disease.

8 Concluding remarks
In this paper, we propose a mathematical model to describe Dengue virus transmission be-
tween mosquitoes and humans, where imperfect vaccination and vector maturation delay
are introduced. The notation used in our mathematical model includes the compartment
Vh, which represents the group of human population that is vaccinated, in order to dis-
tinguish the resistance obtained through vaccination and the one achieved by disease re-
covery. By using some analytical skills, the dynamical behavior of this model is discussed.
This includes the global attractiveness of two disease-free equilibria, the existence of a
positive equilibrium, the sensitivity analysis of threshold conditions, and the optimal con-
trol strategy for the disease. In addition, numerical simulations are also carried out to
verify the correctness of the theoretical results and the feasibility of the vaccination con-
trol strategy. Theoretical results and numerical simulations show that the vaccination rate
and effectiveness of the vaccine are two key factors for control of the spread of Dengue.

It is well known that there are four distinct serotypes of Dengue virus (DEN, DEN,
DEN and DEN), according to clinical data collected during the past years. Therefore,
one person in an endemic area can suffer from four Dengue infections during his life-
time, one with each serotype. Epidemiological studies [] support the hypothesis that
recovered people can be re-infected with a different serotype, and face an increased risk
of developing Dengue hemorrhagic fever and Dengue shock syndrome. In recent publi-
cations, some multi-strain Dengue fever transmission models have been discussed (see
[–] and the references therein). However, all individuals who are capable of transmit-
ting the disease are in one class in our model for the purpose of mathematical analysis.
Therefore, for a more detailed understanding of the transmission of four Dengue virus
strains between mosquitoes and humans, we intend to study the influences of vaccination
and maturation delay for a multi-strain Dengue model in the future.

Dengue is a tropical vector-borne disease, difficult to prevent and manage. Researchers
agree that the development of a vaccine for Dengue is a question of high priority. Recently,
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a novel method to fight mosquitoes is using a bacterium called Wolbachia, which exists in
spiders and up to % of the insects, including ticks and mites. Stable Wolbachia strains in
Aedes aegypti have also been established. And subsequent studies have shown that, very
importantly, Wolbachia blocks the replication of Dengue viruses in mosquitoes. Thence,
an increasing number of people realize that replacing the wild mosquitoes with Wolbachia
infected mosquitoes is safer, and more feasible than vaccination to some extent. Based
on this, there are many mathematical models (including discrete-time and continuous-
time models) that are used to investigated the spread of Wolbachia infection (see [–]
and the references therein). As future work we intend to compare the advantages and
disadvantages of the two control strategies (Wolbachia and vaccination). It would also be
interesting to investigate what happens if two control strategies are taken at the same time.
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