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Abstract
In this paper, sufficient conditions are established for the oscillation of solutions of
q-fractional difference equations of the form

{
q∇α

0 x(t) + f1(t, x) = r(t) + f2(t, x), t > 0,
limt→0+ qI

j–α
0 x(t) = bj (j = 1, 2, . . . ,m),

wherem = �α�, q∇α
0 is the Riemann-Liouville q-differential operator and qIm–α

0 is the
q-fractional integral. The results are also obtained when the Riemann-Liouville
q-differential operator is replaced by Caputo q-fractional difference. Examples are
provided to demonstrate the effectiveness of the main result.
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1 Introduction
The oscillation theory for fractional differential equations was initiated in [] where oscil-
lation criteria were obtained for a nonlinear fractional differential equation of the form

{
Dα

a x(t) + f(t, x) = v(t) + f(t, x), t > a,
Dα–k

a x(a) = bk (k = , , . . . , m – ), limt→a+ Im–α
a x(t) = bm,

()

where m = �α�, m ∈ N, Dα
a is the Riemann-Liouville fractional derivative of order α and

Im–α
a is the Riemann-Liouville fractional integral of order m – α of x. The oscillation of ()

was extended in [], and more general cases were studied. On the other hand, the oscilla-
tion of solutions for fractional difference equations, which is the discrete counterpart of
the corresponding fractional differential equations, was first studied in []. Indeed, suffi-
cient conditions were given for the oscillation of solutions for fractional difference equa-
tions of the form

{∇α
a(α)–x(t) + f(t, x) = v(t) + f(t, x), t ∈Na(α),

∇–(m–α)
a(α)– x(t)|t=a(α) = x(a(α)) = c, c ∈R,

()

where m = �α�, m ∈ N, ∇α
a(α) is the Riemann-Liouville difference operator of order α and

∇–α
a(α) is the Riemann-Liouville sum operator. The oscillation of () was extended in []. The
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extensive investigations amongst differential and difference equations intuitively lead to
developments in the direction of q-fractional calculus which deals with fractional deriva-
tives and integrals with arbitrary order on the quantum time scale. It has been proved that
the theory of q-calculus has lots of applications in many fields of science and engineering.
For some of these applications, we refer to [–].

Following this trend and motivated by the claim that there are no results available in
the literature regarding the oscillation of solutions of q-fractional difference equations,
we consider equations of the form

{
q∇α

 x(t) + f(t, x) = r(t) + f(t, x), t > ,
limt→+ qIj–α

 x(t) = bj (j = , , . . . , m),
()

where m = �α�, q∇α
 and qIm–α

 denote the Riemann-Liouville q-differential and integral
operators which will be defined later.

The objective of this paper is to carry out the results obtained in the above mentioned
papers to the q-fractional difference equations of the form (). This paper is organized
as follows. Section  introduces some notations and provides the definitions of the q-
fractional integral and differential operators together with some basic properties and lem-
mas that are needed in the proofs of the main theorems. In Section , the main theorems
are presented. Section  is devoted to the results obtained when the Riemann-Liouville
q-differential operator is replaced by Caputo q-fractional difference. Two examples are
provided in Section  to demonstrate the effectiveness of the main theorems.

2 Notations and preliminary assertions
For  < q < , let Tq be the time scale

Tq =
{

qn : n ∈ Z
} ∪ {} ⊂ [,∞).

For a function f : Tq →R, the nabla q-derivative of f is given by

∇qf (t) =
f (t) – f (qt)

( – q)t
, t ∈ Tq – {}.

The nabla q-integral of f is given by

∫ t


f (s)∇qs = ( – q)t

∞∑
i=

qif
(
tqi).

From the theories of q-calculus and time scale, the following product rule is valid:

∇q
(
f (t)g(t)

)
= f (qt)∇qg(t) +

(∇qf (t)
)
g(t). ()

The q-analogue of the power function (t – s)n with n ∈N is

(t – s)
q = , (t – s)n

q =
n–∏
i=

(
t – qis

)
. ()
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More generally, when α is any real number, then

(t – s)αq = tα

∞∏
i=

 – s
t qi

 – s
t qi+α

. ()

Note that if t ≤ s, then (t – s)αq =  and if s = , then tα
q = tα .

Lemma . (see []) For α,γ ,β ∈R, one has the following.
. (t – s)β+γ

q = (t – s)βq (t – qβs)γq ;
. (at – as)βq = aβ (t – s)βq ;
. the nabla q-derivative of the q-factorial function with respect to t is

∇q(t – s)αq =
 – qα

 – q
(t – s)α–

q ;

. the nabla q-derivative of the q-factorial function with respect to s is

∇q(t – s)αq = –
 – qα

 – q
(t – qs)α–

q .

Moreover, the q-fractional integral of order α �= , –, –, . . . is defined by

qIα
 f (t) =


�q(α)

∫ t


(t – qs)α–

q f (s)∇qs, ()

where

�q(α) =
( – q)α–

q

( – q)α– , �q(α + ) =
 – qα

 – q
�q(α) and �q() = .

Let α > . If α /∈ N, then the α-order Liouville-Caputo (left) q-fractional derivative of a
function f is defined by (see [])

qCα
a f (t) � qI(n–α)

a ∇n
q f (t) =


�(n – α)

∫ t

a
(t – qs)n–α–

q ∇n
q f (s)∇qs, ()

where n = �α� and �α� denotes the smallest integer greater than or equal to α. If α ∈ N,
then qCα

a f (t) � ∇n
q f (t).

Let α > . If α /∈N, then the α-order Riemann (left) q-fractional derivative of a function
f is defined by

q∇α
a f (t) � ∇n

q qI(n–α)
a f (t). ()

The following identity is useful to transform Caputo q-fractional difference equation into
nabla q-fractional sum.

Let α >  and f be defined in suitable domains. Then (see [])

qIα
a qCα

a f (t) = f (t) –
n–∑
k=

(t – a)k
q

�q(k + )
∇k

q f (a), ()
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and if  < α ≤  then

qIα
a qCα

a f (t) = f (t) – f (a).

Moreover, it is clear that qIα
a q∇α

a f (t) = f (t). The following identity is essential to solving
linear q-fractional equations:

qIα
a (x – a)μq =

�q(μ + )
�q(α + μ + )

(x – a)μ+α
q ( ≤ a < x < b), ()

where α ∈ R
+ and μ ∈ (–,∞).

Lemma . ([](Young’s inequality))
(i) Let X, Y ≥ , u >  and 

u + 
v = , then XY ≤ 

u Xu + 
v Y v.

(ii) Let X ≥ , Y > ,  < u <  and 
u + 

v = , then XY ≥ 
u Xu + 

v Y v,
where equalities hold if and only if Y = Xu–.

3 Oscillation of Riemann q-fractional difference equations
In this section we study the oscillation theory for equation (). Let L

q[, b] denote the
space of all functions f defined on (, b] satisfying ‖f ‖ := supx∈(,b]

∫ x
 |f (t)|dqt < ∞, and let

AC(n)
q [, b] denote the space of all functions f defined on [, b] such that f , Dqf , . . . , Dn–

q f
are q-regular at zero and Dn–

q f (x) ∈AC()
q [, b].

Lemma . ([]) Let α ∈R
+ and n := �α�. If f ∈L

q[, b] such that In–α
q f ∈AC(n)

q [, b], then

Iα
q Dα

q f (x) = f (x) –
n∑

j=

Dα–j
q f

(
+) xα–j

�q(α – j + )
, x ∈ (, b].

Using Lemma ., the solution representation of () can be written as

x(t) =
m∑
j=

bj
tα–j

�q(α – j + )
+ qIα

 F(t, x), ()

where F(t, x) = r(t) + f(t, x) – f(t, x).
A solution of () is said to be oscillatory if it has arbitrarily large zeros on (,∞); other-

wise, it is called nonoscillatory. An equation is said to be oscillatory if all of its solutions
are oscillatory.

We prove our results under the following assumptions:

xfi(t, x) >  (i = , ), x �= , t ≥ , ()∣∣f(t, x)
∣∣ ≥ p(t)|x|β and

∣∣f(t, x)
∣∣ ≤ p(t)|x|γ , x �= , t ≥ , ()∣∣f(t, x)

∣∣ ≤ p(t)|x|β and
∣∣f(t, x)

∣∣ ≥ p(t)|x|γ , x �= , t ≥ , ()

where p, p ∈ C([,∞), (,∞)) and β , γ are positive constants.
Define

�(t) = �q(α)
m∑
j=

bj
tα–j

�q(α – j + )
()
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and

�(t, T) =
∫ T


(t – qs)α–

q F
(
s, x(s)

)∇qs. ()

Theorem . Let f =  in () and condition () hold. If

lim inf
t→∞ t–α

∫ t


(t – qs)α–

q r(s)∇qs = –∞ ()

and

lim sup
t→∞

t–α

∫ t


(t – qs)α–

q r(s)∇qs = ∞, ()

then every solution of () is oscillatory.

Proof Let x(t) be a nonoscillatory solution of equation () with f = . Suppose that T > 
is large enough so that x(t) >  for t ≥ T. Hence, () implies that f(t, x) >  for t ≥ T.
Using (), we get from ()

�q(α)x(t) = �q(α)
m∑
j=

bj
tα–j

�q(α – j + )
+

∫ T


(t – qs)α–

q F
(
s, x(s)

)∇qs

+
∫ t

T

(t – qs)α–
q

[
r(s) – f

(
s, x(s)

)]∇qs

≤ �(t) + �(t, T) +
∫ t

T

(t – qs)α–
q r(s)∇qs, ()

where � and � are defined in () and (), respectively. Multiplying () by t–α , we get

 < t–α�q(α)x(t) ≤ t–α�(t) + t–α�(t, T) + t–α

∫ t

T

(t – qs)α–
q r(s)∇qs. ()

Take T > T. We consider two cases.
Case (): Let  < α ≤ . Then m = , �(t) = btα– hence

t–α�(t) = |b|. ()

The product rule () and Lemma . can be used to show that the function h(t) =
t–α(t – qs)α–

q is decreasing for α ∈ (, ). Then

∣∣t–α�(t, T)
∣∣ =

∣∣∣∣t–α

∫ T


(t – qs)α–

q
[
r(s) + f

(
s, x(s)

)
– f

(
s, x(s)

)]∇qs
∣∣∣∣

≤
∫ T


t–α(t – qs)α–

q
∣∣r(s) + f

(
s, x(s)

)
– f

(
s, x(s)

)∣∣∇qs

≤
∫ T


T –α

 (T – qs)α–
q

∣∣r(s) + f
(
s, x(s)

)
– f

(
s, x(s)

)∣∣∇qs

:= c(T, T) for t ≥ T. ()
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Then, from equation () and for t ≥ T, we get

t–α

∫ t

T

(t – qs)α–
q r(s)∇qs ≥ –

[|b| + c(T, T)
]

hence

lim inf
t→∞ t–α

∫ t

T

(t – qs)α–
q r(s)∇qs ≥ –

[|b| + c(T, T)
]

> –∞,

which contradicts condition ().
Case (): Let α > . Then m ≥ , hence for t ≥ T we have

∣∣t–α�(t)
∣∣ =

∣∣∣∣∣t–α�q(α)
m∑
j=

bj
tα–j

�q(α – j + )

∣∣∣∣∣

≤ �q(α)
m∑
j=

|bj| t–j

�q(α – j + )

≤ �q(α)
m∑
j=

|bj| T –j


�q(α – j + )
:= c(T). ()

Using () with α > , we easily note that t–α(t – qs)α–
q < , hence, for t ≥ T, we have

∣∣t–α�(t, T)
∣∣ =

∣∣∣∣t–α

∫ T


(t – qs)α–

q
[
r(s) + f

(
s, x(s)

)
– f

(
s, x(s)

)]∇qs
∣∣∣∣

≤
∫ T


t–α(t – qs)α–

q
∣∣r(s) + f

(
s, x(s)

)
– f

(
s, x(s)

)∣∣∇qs

≤
∫ T



∣∣r(s) + f
(
s, x(s)

)
– f

(
s, x(s)

)∣∣∇qs := c(T). ()

From (), () and (), we conclude that

t–α

∫ t

T

(t – qs)α–
q r(s)∇qs ≥ –

[
c(T) + c(T)

]

for t ≥ T. Hence, we obtain

lim inf
t→∞ t–α

∫ t

T

(t – qs)α–
q r(s)∇qs ≥ –

[
c(T) + c(T)

]
> –∞,

which contradicts condition (). Therefore, we conclude that x(t) is oscillatory. In case
x(t) is eventually negative, similar arguments lead to a contradiction with condition ().�

Theorem . Let conditions () and () hold with β > γ . If

lim inf
t→∞ t–α

∫ t

T
(t – qs)α–

q
[
r(s) + H(s)

]∇qs = –∞ ()
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and

lim sup
t→∞

t–α

∫ t

T
(t – qs)α–

q
[
r(s) – H(s)

]∇qs = ∞, ()

for every sufficiently large T , where

H(s) =
β – γ

γ
p

γ
γ –β

 (s)
[
γ p(s)

β

] β
β–γ

,

then every solution of () is oscillatory.

Proof Let x(t) be a nonoscillatory solution of equation (), say, x(t) >  for t ≥ T > . Let
s ≥ T. Using conditions () and (), we get f(s, x) – f(s, x) ≤ p(s)xγ (s) – p(s)xβ (s). Let
X = xγ (s), Y = γ p(s)

βp(s) , u = β

γ
and v = β

β–γ
, then from part (i) of Lemma . we get

p(s)xγ (s) – p(s)xβ(s) =
βp(s)

γ

[
xγ (s)

γ p(s)
βp(s)

–
γ

β

(
xγ (s)

) β
γ

]

=
βp(s)

γ

[
XY –


u

Xu
]

≤ βp(s)
γ


v

Y v = H(s), ()

where H is defined as in Theorem (.). Then from equation () we obtain

�q(α)x(t) = �(t) + �(t, T) +
∫ t

T

(t – qs)α–
q

[
r(s) + f

(
s, x(s)

)
– f

(
s, x(s)

)]∇qs

≤ �(t) + �(t, T) +
∫ t

T

(t – qs)α–
q

[
r(s) + p(s)xγ (s) – p(s)xβ (s)

]∇qs

≤ �(t) + �(t, T) +
∫ t

T

(t – qs)α–
q

[
r(s) + H(s)

]∇qs for t ≥ T. ()

The rest of the proof is the same as that of Theorem . and hence is omitted. �

Theorem . Let α ≥  and suppose that () and () hold with β < γ . If

lim sup
t→∞

t–α

∫ t

T
(t – qs)α–

q
[
r(s) + H(s)

]∇qs = ∞ ()

and

lim inf
t→∞ t–α

∫ t

T
(t – qs)α–

q
[
r(s) – H(s)

]∇qs = –∞, ()

for every sufficiently large T , where H is defined as in Theorem ., then every bounded
solution of () is oscillatory.

Proof Let x(t) be a bounded nonoscillatory solution of equation (). Then there exist con-
stants M and M such that

M ≤ x(t) ≤ M for t ≥ . ()
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Assume that x is a bounded eventually positive solution of (). Then there exists T > 
such that x(t) >  for t ≥ T > . Using conditions () and (), we get f(s, x) – f(s, x) ≥
p(s)xγ (s) – p(s)xβ(s). Using (ii) of Lemma . and similar to the proof of (), we find

p(s)xγ (s) – p(s)xβ(s) ≥ H(s) for s ≥ T.

From () and similar to (), we obtain

�q(α)x(t) ≥ �(t) + �(t, T) +
∫ t

T

(t – qs)α–
q

[
r(s) + H(s)

]∇qs.

Multiplying by t–α , we get

t–α�q(α)x(t) ≥ t–α�(t) + t–α�(t, T) + t–α

∫ t

T

(t – qs)α–
q

[
r(s) + H(s)

]∇qs. ()

Take T > T. We consider two cases.
Case (): Let α = . Then () and () are still correct. Hence, from () and using (),

we find that

M�q(α) ≥ t–α�q(α)x(t) ≥ –|b| – c(T, T) + t–α

∫ t

T

(t – qs)α–
q

[
r(s) + H(s)

]∇qs

for t ≥ T. Thus, we get

lim sup
t→∞

t–α

∫ t

T

(t – qs)α–
q

[
r(s) + H(s)

]∇qs ≤ |b| + c(T, T) + M�q(α) < ∞,

which contradicts condition ().
Case (): Let α > . Then () and () are still true. Hence from () and using () we

find that

M�q(α)t–α ≥ –c(T) – c(T) + t–α

∫ t

T

(t – qs)α–
q

[
r(s) + H(s)

]∇qs

for t ≥ T. Since limt→∞ t–α =  for α > , we conclude

lim sup
t→∞

t–α

∫ t

T

(t – qs)α–
q

[
r(s) + H(s)

]∇qs ≤ c(T) + c(T) < ∞,

which contradicts condition (). Therefore, we conclude that x(t) is oscillatory. In case
x(t) is eventually bounded negative, similar arguments lead to a contradiction with con-
dition (). �

4 Oscillation of Caputo q-fractional difference equations
In this section, we study the oscillation of the q-fractional difference equations of the form

{
qCα

a x(t) + f(t, x) = r(t) + f(t, x), t > a ≥ ,
∇k

q x(a) = bk (k = , , . . . , m – ),
()
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where m = �α�, and qCα
a denotes the Liouville-Caputo (left) q-fractional derivative defined

by (). Notice that the Caputo differential operator qCα
a demands functions to be m times

differentiable. Using (), the solution representation of () is given by

x(t) =
m–∑
k=

bk
(t – a)k

q

�q(k + )
+


�q(α)

∫ t

a
(t – qs)α–

q F(s, x)∇qs

for t > a and F(t, x) = r(t) + f(t, x) – f(t, x).
The oscillation of () is similar to the oscillation of (). The only difference is the ap-

pearance of t–m instead of t–α in the conditions. So we state the theorems without proofs.

Theorem . Let f =  in () and condition () hold. If

lim inf
t→∞ t–m

∫ t


(t – qs)α–

q r(s)∇qs = –∞

and

lim sup
t→∞

t–m
∫ t


(t – qs)α–

q r(s)∇qs = ∞,

then every solution of () is oscillatory.

Theorem . Let conditions () and () hold with β > γ . If

lim inf
t→∞ t–m

∫ t

T
(t – qs)α–

q
[
r(s) + H(s)

]∇qs = –∞

and

lim sup
t→∞

t–m
∫ t

T
(t – qs)α–

q
[
r(s) – H(s)

]∇qs = ∞

for every sufficiently large T , where H is defined as in Theorem ., then every solution of
() is oscillatory.

Theorem . Let α ≥  and suppose that () and () hold with β < γ . If

lim sup
t→∞

t–m
∫ t

T
(t – qs)α–

q
[
r(s) + H(s)

]∇qs = ∞

and

lim inf
t→∞ t–m

∫ t

T
(t – qs)α–

q
[
r(s) – H(s)

]∇qs = –∞

for every sufficiently large T , where H is defined as in Theorem ., then every bounded
solution of () is oscillatory.
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5 Examples
In this section, we construct numerical examples to illustrate the effectiveness of our the-
oretical results.

Example . Consider the Riemann-Liouville q-fractional difference equation

{
q∇α

 x(t) + x(t) ln(t + e) = (+q)t–α

�q(–α) + (t – t 
 ) ln(t + e) + x 

 (t) ln(t + e),
limt→+ qI–α

 x(t) = ,  < α < ,
()

where m = , f(t, x) = x(t) ln(t + e), r(t) = (+q)t–α

�q(–α) + (t – t 
 ) ln(t + e) and f(t, x) =

x 
 (t) ln(t + e). It is easy to verify that conditions () and () are satisfied for β = , γ = 


and p(t) = p(t) = ln(t + e). However, we show in the following that condition () does
not hold. For every sufficiently large T ≥  and all t ≥ T , we have r(t) > . Calculating H(s)
as defined in Theorem ., we find that H(s) � . ln(s + e) ≥ .. Then, using () and
() with μ = , we get

lim inf
t→∞ t–α

∫ t

T
(t – qs)α–

q
[
r(s) + H(s)

]∇qs ≥ lim inf
t→∞ t–α

∫ t

T
(t – qs)α–

q H(s)∇qs

≥ lim inf
t→∞ .t–α

∫ t

T
(t – qs)α–

q · ∇qs

= lim inf
t→∞

.t–α(t – T)αq
�q(α + )

= ∞.

However, one can easily verify that x(t) = t is a nonoscillatory solution of () since

qI–α


(
t) =

( + q)t–α

�q( – α)

and

q∇α

(
t) =

( + q)t–α

�q( – α)
.

Example . Consider the Riemann-Liouville q-fractional difference equation

{
q∇α

 x(t) + x(t) = sin t,
limt→+ qI–α

 x(t) = ,  < α < ,
()

where f(t, x) = x(t), r(t) = sin t and f(t, x) = . Then condition () holds. Furthermore,
one can easily check that

lim inf
t→∞ t–α

∫ t


(t – qs)α–

q sin s∇qs = –∞

and

lim sup
t→∞

t–α

∫ t


(t – qs)α–

q sin s∇qs = ∞.
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This shows that conditions () and () of Theorem . hold. Hence, every solution of
() is oscillatory.

6 Conclusion
In this article, the oscillation theory for q-fractional difference equations was studied. Suf-
ficient conditions for the oscillation of solutions of Riemann q-fractional difference equa-
tions of the form () were given in three theorems in Section . The work of Grace et al. []
and Chen et al. [] in fractional calculus was combined to study the oscillation theory for
q-fractional difference equations of the form (). The main approach is based on apply-
ing Young’s inequality which will help us in obtaining sharper conditions. The oscillation
for the Caputo q-fractional difference operators has been investigated as well. Numerical
examples are presented to demonstrate the effectiveness of the obtained results.
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