
He Advances in Difference Equations  (2017) 2017:264 
DOI 10.1186/s13662-017-1304-1

R E S E A R C H Open Access

Existence results and the monotone
iterative technique for nonlinear fractional
differential systems involving fractional
integral boundary conditions
Ying He*

*Correspondence:
heying65332015@163.com
School of Mathematics and
Statistics, Northeast Petroleum
University, Daqing, 163318,
P.R. China

Abstract
By establishing a comparison result and using the monotone iterative technique
combined with the method of upper and lower solutions, we have investigated the
existence of extremal solutions for nonlinear fractional differential systems with
integral boundary conditions. As an example, an application is presented to
demonstrate the accuracy of the new approach.
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1 Introduction
In this paper, we consider the following differential equations with integral boundary con-
ditions:

⎧
⎪⎪⎨

⎪⎪⎩

–Dαx(t) = f (t, x(t)), t ∈ [, ],

x() = ,

Dα–x() = Iβg(η, x(η)) + k = 
�(β)

∫ η

 (η – s)β–g(s, x(s)) ds + k,

(.)

where Dα are the standard Riemann-Liouville fractional derivatives, Iβ is the Riemann-
Liouville fractional integral.

Throughout this paper, we always suppose that

(s)  < α < , β > ,  < η < , k ∈R, and f ∈ C([, ] ×R,R), g ∈ C([, ] ×R,R).

Recently, much attention has been focused on the study of the existence of solutions
for fractional differential systems with initial or two-point boundary value conditions, by
using the monotone iterative technique, combined with the method of upper and lower
solutions; for details, see [–]. But up to now, three-point and fractional integral bound-
ary value problems for fractional differential systems have seldom been considered. The
aim of this paper is to investigate the existence of extremal solutions for fractional equation
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(.), involving Riemann-Liouville fractional integral boundary conditions. To the best of
our knowledge, in most of the papers and books considered to deal with fractional deriva-
tives of order α ∈ (, ), the nonlinear term f is required to satisfy monotonicity conditions
on the unknown function x or their derivatives. These monotonicity type conditions are
not required in this paper.

The paper is organized as follows: Preliminaries are in Section . Then in Section  we
construct the monotone sequences of solutions and prove their uniform convergence to
the solutions of the systems. Finally, an example is presented to demonstrate the accuracy
of the new approach.

2 Preliminaries
In this section, we deduce some preliminary results which will be used in the next section.

Denote Cα[, ] = {x : x ∈ C[, ], Dαx(t) ∈ C[, ]} and endowed with the norm ‖x‖α =
‖x‖ + ‖Dαx‖, where ‖x‖ = max≤t≤ |x(t)| and ‖Dαx‖ = max≤t≤ |Dαx(t)|. Then (Cα[, ],
‖ · ‖α) is a Banach space.

Definition . We say that x(t) ∈ Cα[, ] is a lower solution of problem (.) if

⎧
⎪⎪⎨

⎪⎪⎩

–Dαx(t) ≤ f (t, x(t)), t ∈ [, ],

x() = ,

Dα–x() ≤ Iβg(η, x(η)) + k,

and it is an upper solution of (.) if the above inequalities are reversed.

For the sake of convenience, we now present some assumptions as follows:

(H) Assume that x, y ∈ Cα[, ] are lower and upper solutions of problem (.), respec-
tively, and x(t) ≤ y(t), t ∈ [, ].

(H) There exists M(t) ∈ C[, ] such that

f (t, y) – f (t, x) ≥ –M(t)(y – x),

for x(t) ≤ x(t) ≤ y(t) ≤ y(t), t ∈ [, ].
(H) There exists a constant λ ≥ , such that

g(t, y) – g(t, x) ≥ λ(y – x),

for x(t) ≤ x(t) ≤ y(t) ≤ y(t), t ∈ [, ].
(H) �(α + β) > ληα+β–.
(H) �(α + β)

∫ 
 |M(s)|ds < �(α)[�(α + β) – ληα+β–].

(H) For any t ∈ (, ), we have

�( – α)tαM(t) >  – α

and

�( – α)ληβ < �(β).
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Lemma . ([]) Let h ∈ C[, ], b ∈R, and �(α + β) �= ληα+β–; then the fractional bound-
ary value problem

⎧
⎪⎪⎨

⎪⎪⎩

–Dαx(t) = h(t), t ∈ [, ],

x() = ,

Dα–x() = λIβx(η) + b = λ
�(β)

∫ η

 (η – s)β–x(s) ds + b,

(.)

has the following integral representation of the solution:

x(t) =
∫ 


G(t, s)h(s) ds +

b�(α + β)tα–

�(α)[�(α + β) – ληα+β–]
,

where

G(t, s) =

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[�(α + β) – λ(η – s)α+β–]tα–

– [�(α + β) – ληα+β–](t – s)α–, s ≤ t, s ≤ η;

�(α + β)tα– – λ(η – s)α+β–tα–, t ≤ s ≤ η;

�(α + β)[tα– – (t – s)α–] + ληα+β–(t – s)α–, η ≤ s ≤ t;

�(α + β)tα–, s ≥ t, s ≥ η,

and � = �(α)[�(α + β) – ληα+β–].

Lemma . ([]) If (H) holds, then Green’s function G(t, s) satisfies

 ≤ G(t, s) ≤ �(α + β)
�(α)[�(α + β) – ληα+β–]

(
 + tα–).

Lemma . Let b ∈ R, σ (t) ∈ C[, ] and (H), (H) hold; then the following boundary
problem:

⎧
⎪⎪⎨

⎪⎪⎩

–Dαx(t) = σ (t) – M(t)x(t), t ∈ [, ],

x() = ,

Dα–x() = λIβx(η) + b,

(.)

has a unique solution x(t) ∈ C[, ].

Proof It follows from Lemma . that problem (.) is equivalent to the following integral
equation:

x(t) =
∫ 


G(t, s)

[
σ (s) – M(s)x(s)

]
ds +

b�(α + β)tα–

�(α)[�(α + β) – ληα+β–]
, ∀t ∈ [, ].

Let

Ax(t) =
∫ 


G(t, s)

[
σ (s) – M(s)x(s)

]
ds +

b�(α + β)tα–

�(α)[�(α + β) – ληα+β–]
, ∀t ∈ [, ].
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For any u, v ∈ C[, ], by (H) and Lemma ., we have

∣
∣Ax(t) – Ay(t)

∣
∣ ≤

∫ 


G(t, s)

∣
∣M(s)

∣
∣ · ∣∣x(s) – y(s)

∣
∣ds

≤ �(α + β)( + tα–)‖x – y‖
�(α)[�(α + β) – ληα+β–]

∫ 



∣
∣M(s)

∣
∣ds

≤ �(α + β)‖x – y‖
�(α)[�(α + β) – ληα+β–]

∫ 



∣
∣M(s)

∣
∣ds.

Noting that we have (H), which implies �(α+β)
∫ 

 |M(s)|ds
�(α)[�(α+β)–ληα+β–] < , |Ax(t) – Ay(t)| < ‖x – y‖.

Consequently,

‖Ax – Ay‖ < ‖x – y‖.

By the Banach fixed point theorem, the operator A has a unique fixed point. That is, (.)
has a unique solution. �

Lemma . ([]) Assume that x(t) ∈ C[, ] satisfies the following conditions:
(i) Dαx(t) ∈ C[, ], for α ∈ (, );

(ii) x(t) attains its global minimum at t ∈ (, ).
Then

Dαx(t)|t=t ≥  – α

�( – α)
t–α
 x(t).

Lemma . ([]) Assume that x(t) ∈ C[, ] satisfies the following conditions:
(i) Dδx(t) ∈ C[, ], for δ ∈ (, );

(ii) x(t) attains its global minimum at t ∈ (, ].
Then

Dδx(t)|t=t ≤ t–δ


�( – δ)
x(t).

Lemma . Assume that (H) holds, x(t) ∈ C[, ], satisfying Dαx(t) ∈ C[, ] and

⎧
⎪⎪⎨

⎪⎪⎩

–Dαx(t) ≥ –M(t)x(t), t ∈ [, ],

x() = ,

Dα–x() ≥ λIβx(η),

(.)

then x(t) ≥ , ∀t ∈ [, ].

Proof Suppose that x(t) ≥ , t ∈ [, ] is not true. From the continuity of x(t) it follows that
there exists some t ∈ (, ] such that x(t) = mint∈[,] x(t) < .

Case (i). If t ∈ (, ), by Lemma . and (H), we have

 ≥ Dαx(t)|t=t – M(t)x(t) ≥
[

 – α

�( – α)
t–α
 – M(t)

]

x(t) > ,

which is a contradiction.
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Case (ii). If t = , by Lemma ., one gets

Dα–x(t)|t= ≤ x()
�( – α)

.

On the other hand, from the boundary condition of (.) and (H), we obtain

Dα–x() ≥ λIβx(η) =
λ

�(β)

∫ η


(η – s)β–x(s) ds

=
λ

�(β)
· (η – ξ )β– · x(ξ ) · η,  < ξ < η < 

≥ λ

�(β)
· (η – ξ )β– · x() · η

≥ λ

�(β)
· ηβ– · x() · η

>
x()

�( – α)
,

which is a contradiction. Therefore, we obtain x(t) ≥ , ∀t ∈ [, ]. The proof is com-
plete. �

3 Main results
In this section, we present the main result of our paper, which ensures the existence of
extremal solutions for problem (.).

Theorem . Suppose that conditions (H)-(H) hold. Then problem (.) has extremal
solutions x∗, y∗ ∈ [x, y]. Moreover, there exist monotone iterative sequences {xn}, {yn} ⊂
Cα[, ] such that xn → x∗, yn → y∗ uniformly on t ∈ [, ], as n → ∞ and

x ≤ x ≤ · · · ≤ xn ≤ · · · ≤ x∗ ≤ y∗ ≤ · · · ≤ yn ≤ · · · ≤ y ≤ y.

Proof For n = , , , . . . , we define

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–Dαxn+(t) = f (t, xn(t)) – M(t)[xn+(t) – xn(t)], t ∈ [, ],

xn+() = ,

Dα–xn+() = Iβ{g(η, xn(η)) + λ[xn+(η) – xn(η)]} + k

= λIβxn+(η) + Iβ [g(η, xn(η)) – λxn(η)] + k,

(.)

and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–Dαyn+(t) = f (t, yn(t)) – M(t)[yn+(t) – yn(t)], t ∈ [, ],

yn+() = ,

Dα–yn+() = Iβ{g(η, yn(η)) + λ[yn+(η) – yn(η)]} + k

= λIβyn+(η) + Iβ [g(η, yn(η)) – λyn(η)] + k.

(.)
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In view of Lemma ., for any n ∈N, problems (.) and (.) have a unique solution xn+(t),
yn+(t) respectively, which are well defined. First, we show that

x(t) ≤ x(t) ≤ y(t) ≤ y(t), t ∈ [, ].

Let w(t) = x(t) – x(t). The definitions of x(t) and (H) yield

⎧
⎪⎪⎨

⎪⎪⎩

–Dαw(t) ≥ –M(t)w(t), t ∈ [, ],

w() = ,

Dα–w() ≥ λIβw(η).

According to Lemma ., we have w(t) ≥ , t ∈ [, ], that is, x(t) ≥ x(t). Using the same
reasoning, we can show that y(t) ≥ y(t), for all t ∈ [, ].

Now, we put p(t) = y(t) – x(t). From (H) and (H), we get

–Dαp(t) = f
(
t, y(t)

)
– M(t)

[
y(t) – y(t)

]
– f

(
t, x(t)

)
+ M(t)

[
x(t) – x(t)

]

≥ –M(t)
[
y(t) – x(t)

]
– M(t)

[
y(t) – y(t)

]
+ M(t)

[
x(t) – x(t)

]

= –M(t)p(t).

Also p() = , and

Dα–p() = Iβ
{

g
(
η, y(η)

)
+ λ

[
y(η) – y(η)

]}
– Iβ

{
g
(
η, x(η)

)
+ λ

[
x(η) – x(η)

]}

= Iβ
{

g
(
η, y(η)

)
– g

(
η, x(η)

)
+ λ

[
y(η) – y(η)

]
– λ

[
x(η) – x(η)

]}

≥ Iβ
{
λ
[
y(η) – x(η)

]
+ λ

[
y(η) – y(η)

]
– λ

[
x(η) – x(η)

]}

= λIβp(η).

These results and Lemma . imply that y(t) ≥ x(t), t ∈ [, ].
In the next step, we show that x, y are lower and upper solutions of problem (.),

respectively. Note that

–Dαx(t) = f
(
t, x(t)

)
– f

(
t, x(t)

)
+ f

(
t, x(t)

)
– M(t)

[
x(t) – x(t)

]

≤ M(t)
[
x(t) – x(t)

]
+ f

(
t, x(t)

)
– M(t)

[
x(t) – x(t)

]

= f
(
t, x(t)

)
.

Also x() = , and

Dα–x() = Iβ
{

g
(
η, x(η)

)
– g

(
η, x(η)

)
+ g

(
η, x(η)

)
+ λ

[
x(η) – x(η)

]}
+ k

≤ Iβ
{
λ
[
x(η) – x(η)

]
+ g

(
η, x(η)

)
+ λ

[
x(η) – x(η)

]}
+ k

= Iβg
(
η, x(η)

)
+ k

by assumptions (H) and (H). This proves that x is a lower solution of problem (.).
Similarly, we can prove that y is an upper solution of (.).
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Using mathematical induction, we see that

x(t) ≤ x(t) ≤ · · · ≤ xn(t) ≤ xn+(t) ≤ yn+(t) ≤ yn(t) ≤ · · · ≤ y(t) ≤ y(t), t ∈ [, ],

since the space of solution is Cα[, ]. Using the standard arguments, it is easy to show {xn}
and {yn} are uniformly bounded and equi-continuous. By the Arzela-Ascoli theorem, we
have {xn} and {yn} converge, say to x∗(t) and y∗(t), uniformly on [, ], respectively. That is

lim
n→∞ xn(t) = x∗(t), lim

n→∞ yn(t) = x∗(t), t ∈ [, ].

Moreover, x∗(t) and y∗(t) are the solutions of problem (.) and x ≤ x∗ ≤ y∗ ≤ y on
[, ].

To prove that x∗(t), y∗(t) are extremal solutions of (.), let u ∈ [x, y] be any solution
of problem (.). We suppose that xm(t) ≤ u(t) ≤ ym(t), t ∈ [, ] for some m. Let v(t) =
u(t) – xm+(t), z(t) = ym+(t) – u(t). Then by assumption (H) and (H), we see that

⎧
⎪⎪⎨

⎪⎪⎩

–Dαv(t) ≥ –M(t)v(t), t ∈ [, ],

v() = ,

Dα–v() ≥ λIβv(η),

and

⎧
⎪⎪⎨

⎪⎪⎩

–Dαz(t) ≥ –M(t)z(t), t ∈ [, ],

z() = ,

Dα–z() ≥ λIβz(η).

These and Lemma . imply that xm+(t) ≤ u(t) ≤ ym+(t), t ∈ [, ], so by induction xn(t) ≤
u(t) ≤ yn(t), on [, ] for all n. Taking the limit as n −→ ∞, we conclude x∗(t) ≤ u(t) ≤ y∗(t),
t ∈ [, ]. The proof is complete. �

Example Consider the following problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–D 
 x(t) = – 

 tx(t) + 
 t, t ∈ [, ],

x() = ,

D 
 x() = I 

 g( 
 , x( 

 )) + . = 
�( 

 )

∫ 


 ( 
 – s) 

 (s + )x(s) ds + .,

(.)

where α = 
 , β = 

 , η = 
 , k = ., and

⎧
⎨

⎩

f (t, x) = – 
 tx(t) + 

 t,

g(t, x) = (t + )x.

Take x(t) = , y(t) = t 
 . It is not difficult to verify that x, y are lower and upper solu-

tions of (.), respectively, and x ≤ y. So (H) holds.
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In addition, we have

f (t, y) – f (t, x) = –



tx +




ty ≥ –



t

 (y – x) (.)

and

g(t, y) – g(t, x) = (t + )(y – x) ≥ (y – x), (.)

where x(t) ≤ x(t) ≤ y(t) ≤ y(t).
Therefore (H) and (H) hold.
From (.) and (.), we have

M(t) =



t

 , λ = .

Then

�(α + β) = �() =  > ληα+β– =
(




)

,

�(α + β)
∫ 



∣
∣M(s)

∣
∣ds =  · 

∫ 






s

 ds =




< �(α)
[
�(α + β) – ληα+β–]

= �

(



)[

 –
(




)]

≈ .,

�( – α)ληβ = �

(

 –



)

·  ·
(




) 


=



· �
(




)

< �(β) = �

(



)

,

�( – α) · tα · M(t) = �

(



)

· t

 · 


· t


 >  – α = –




, for t ∈ (, ).

It shows that (H), (H) and (H) hold. By Theorem ., problem (.) has extremal solu-
tions in [x(t), y(t)].
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