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Abstract
In this article, we extend fractional calculus with nonsingular exponential kernels,
initiated recently by Caputo and Fabrizio, to higher order. The extension is given to
both left and right fractional derivatives and integrals. We prove existence and
uniqueness theorems for the Caputo (CFC) and Riemann (CFR) type initial value
problems by using Banach contraction theorem. Then we prove Lyapunov type
inequality for the Riemann type fractional boundary value problems within the
exponential kernels. Illustrative examples are analyzed and an application about
Sturm-Liouville eigenvalue problem in the sense of this fractional calculus is given
as well.
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1 Introduction and preliminaries
Fractional calculus [–] has been attractive to many researchers in the last three decades
or so. Some researchers have found it necessary to define new fractional derivatives with
different singular or nonsingular kernels in order to provide more sufficient area to model
more real-world problems in different fields of science and engineering [, ]. In [–] the
authors studied new type of fractional derivatives where the kernel is of exponential type
and in [, ] the authors studied new fractional derivatives with Mittag-Leffler kernels.
For the discrete counter parts we refer to the work in [–]. In this work we extend the
fractional calculus with exponential kernels proposed and studied in [, ] to higher order,
prove some existence and uniqueness theorems and prove Lypanouv type inequalities for
boundary value problems in the frame of this calculus. The extension is achieved for both
left and right fractional derivatives and integrals so that we prepare for integration by parts
in higher order to serve fractional variational calculus in the frame of this calculus [, ].

Definition  ([]) For α > , a ∈ R and f a real-valued function defined on [a,∞), the left
Riemann Liouville fractional integral is defined by

(
aIαf

)
(t) =


�(α)

∫ t

a
(t – s)α–f (s) ds.
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This is fractionalizing of the n-iterated integral (aInf )(t) = 
(n–)!

∫ t
a (t –s)n–f (s) ds. The right

fractional integral ending at b is defined by

(
Iα

b f
)
(t) =


�(α)

∫ b

t
(s – t)α–f (s) ds.

Definition  ([, ]) Let f ∈ H(a, b), a < b, α ∈ [, ], then the definition of the new (left
Caputo) fractional derivative in the sense of Caputo and Fabrizio becomes

(CFC
a Dαf

)
(t) =

B(α)
 – α

∫ t

a
f ′(x)e[–α

(t–x)α
–α ] dx ()

and in the left Riemann-Liouville sense has the following form:

(CFR
a Dαf

)
(t) =

B(α)
 – α

d
dt

∫ t

a
f (x)e[–α

(t–x)α
–α ] dx. ()

The associated fractional integral is

(CF
a Iαf

)
(t) =

 – α

B(α)
f (t) +

α

B(α)

∫ t

a
f (s) ds, ()

where B(α) >  is a normalization function satisfying B() = B() = . In the right case we
have

(CFCDα
b f

)
(t) =

–B(α)
 – α

∫ b

t
f ′(x)e[–α

(x–t)α
–α ] dx ()

and in the right Riemann-Liouville sense has the following form:

(CFRDα
b f

)
(t) =

B(α)
 – α

–d
dt

∫ b

t
f (x)e[–α

(x–t)α
–α ] dx. ()

The associated fractional integral is

(CFIα
b f

)
(t) =

 – α

B(α)
f (t) +

α

B(α)

∫ b

t
f (s) ds. ()

In [, ], it was verified that (CF
a IαCFR

a Dαf )(t) = f (t) and (CFR
a DαCF

a Iαf )(t) = f (t). Also, in
the right case (CFIα

b
CFRDα

b f )(t) = f (t) and (CFRDα
b

CFIα
b f )(t) = f (t). From [, ] we recall the

relation between the Riemann-Liouville and Caputo new derivatives as

(CFC
a Dαf

)
(t) =

(CFR
a Dαf

)
(t) –

B(α)
 – α

f (a)e– α
–α (t–a)α . ()

In next section, we extend Definition  to arbitrary α > .

Lemma  ([]) For  < α < , we have

(CF
a IαCFC

a Dαf
)
(x) = f (x) – f (a)
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and

(CFIα
b

CFCDα
b f

)
(x) = f (x) – f (b).

One of our main purposes in this article is to obtain the corresponding result of the
following popular Lyapunov inequality result for CFR boundary value problems.

Theorem  ([]) If the boundary value problem

y′′(t) + q(t)y(t) = , t ∈ (a, b), y(a) = y(b) = ,

has a nontrivial solution, where q is a real continuous function, then

∫ b

a

∣
∣q(s)

∣
∣ds >


b – a

. ()

The generalization of the above Lyapunov inequality to fractional boundary value prob-
lems has been the interest of some researchers in the last few years. For examples, we refer
the reader to [–]. For discrete fractional counterparts of Lyapunov inequalities we re-
fer to [] and for the q-fractional types we refer to []. For recent extensions to higher
order and Lyapunov type inequalities for fractional operators with Mittag-Leffler kernels
and fractional difference operators with discrete exponential kernels we refer to [] and
[], respectively. For the Lyapnunov inequalities of fractional difference operators with
discrete Mittag-Leffer kernels we refer to [].

2 The higher order fractional derivatives and integrals
Definition  Let n < α ≤ n +  and f be such that f (n) ∈ H(a, b). Set β = α – n. Then
β ∈ (, ] and we define

(CFC
a Dαf

)
(t) =

(CFC
a Dβ f (n))(t). ()

In the left Riemann-Liouville sense has this the following form:

(CFR
a Dαf

)
(t) =

(CFR
a Dβ f (n))(t). ()

The associated fractional integral is

(CF
a Iαf

)
(t) =

(
aInCF

a Iβ f
)
(t). ()

Note that if we use the convention that (aIf )(t) = f (t) then for the case  < α ≤  we have
β = α and hence (aIαf )(t) = (aIαf )(t) as in Definition . Also, the convention f ()(t) = f (t)
leads to (CFR

a Dαf )(t) = (CFR
a Dαf )(t) and (CFC

a Dαf )(t) = (CFC
a Dαf )(t) for  < α ≤ .

Remark  In Definition , if we let α = n +  then β =  and hence (CFR
a Dαf )(t) =

(CFR
a Df (n))(t) = f (n+)(t). Also, by noting that (CF

a If )(t) = (aIf )(t), we see that for α = n + 
we have (CF

a Iαf )(t) = (aIn+f )(t). Also, for  < α ≤  we reobtain the concepts defined in
Definition . Therefore, our generalization to the higher order case is valid.

Analogously, in the right case we have the following extension.
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Definition  Let n < α ≤ n +  and f be such that f (n) ∈ H(a, b). Set β = α – n. Then
β ∈ (, ] and we define

(CFCDα
b f

)
(t) =

(CFCDβ

b (–)nf (n))(t). ()

In the right Riemann-Liouville sense it has the following form:

(CFRDα
b f

)
(t) =

(CFRDβ

b (–)nf (n))(t). ()

The associated fractional integral is

(CFIα
b f

)
(t) =

(
In

b
CFIβ

b f
)
(t). ()

The next proposition explains the action of the higher order integral operator CF
a Iα on the

higher order CFR and CFC derivatives and vice versa, and the action of the CFR derivative
on the CF integral.

Proposition  For u(t) defined on [a, b] and α ∈ (n, n + ], for some n ∈N, we have:
• (CFR

a DαCF
a Iαu)(t) = u(t).

• (CF
a IαCFR

a Dαu)(t) = u(t) –
∑n–

k=
u(k)(a)

k! (t – a)k .
• (CF

a IαCFC
a Dαu)(t) = u(t) –

∑n
k=

u(k)(a)
k! (t – a)k .

Proof
• By Definition  and the statement after Definition  we have

(CFR
a DαCF

a Iαu
)
(t) =

(
CFR
a Dβ dn

dtn aInCF
a Iβu

)
(t)

=
(CFR

a DβCF
a Iβu

)
(t) = u(t), ()

where β = α – n.
• By Definition  and the statement after Definition  we have

(CF
a IαCFR

a Dαu
)
(t) =

(
aInCF

a IβCFR
a Dβu(n))(t)

= aInu(n)(t) = u(t) –
n–∑

k=

u(k)(a)
k!

(t – a)k . ()

• By Lemma  applied to f (t) = u(n)(t) we have

(CF
a IαCFC

a Dαu
)
(t) = aIn

aIβ CFC
a Dβu(n)(t) = aIn[u(n)(t) – u(n)(a)

]

= u(t) –
n–∑

k=

u(k)(a)
k!

(t – a)k – u(n)(a)
(t – a)n

n!

= u(t) –
n∑

k=

u(k)(a)
k!

(t – a)k . ()

�

Similarly, for the right case we have the following.
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Proposition  For u(t) defined on [a, b] and α ∈ (n, n + ], for some n ∈N, we have:
• (CFRDα

b
CFIα

b u)(t) = u(t).
• (CFIα

b
CFRDα

b u)(t) = u(t) –
∑n–

k=
(–)ku(k)(b)

k! (b – t)k .
• (CFIα

b
CFCDα

b u)(t) = u(t) –
∑n

k=
(–)k u(k)(b)

k! (b – t)k .

Example  Consider the initial value problem:

(CFC
a Dαy

)
(t) = K(t), t ∈ [a, b], ()

where K(t) is continuous on [a, b]. We consider two cases depending on the order α.
• Assume  < α ≤ , y(a) = c and K(a) = . By applying CF

a Iα and making use of
Proposition , we get the solution

y(t) = c +
 – α

B(α)
K(t) +

α

B(α)

∫ t

a
K(s) ds.

Notice that the condition K(a) =  verifies that the initial condition y(a) = c. Also
notice that when α →  we reobtain the solution of the ordinary initial value problem
y′(t) = K(t), y(a) = c.

• Assume  < α ≤ , K(a) = , y(a) = c, y′(a) = c. By applying CF
a Iα and making use of

Proposition  and Definition  with β = α – , we get the solution

y(t) = c + c(t – a) +
 – α

B(α – )

∫ t

a
K(s) ds +

α – 
B(α – )

∫ t

a
(t – s)K(s) ds.

Notice that the solution y(t) verifies y(a) = c without the use of K(a) = . However, it
verifies y′(a) = c under the assumption K(a) = . Also, note that when α →  we
reobtain the solution of the second order ordinary initial value problem y′′(t) = K(t).

In the next section, we prove existence and uniqueness theorems for some types of CFC
and CFR initial value problems.

Example  Consider the CFC boundary value problem

(CFC
a Dαy

)
(t) + q(t)y(t) = ,  < α ≤ , a < t < b, y(a) = y(b) = . ()

Then β = α –  and by Proposition  applying the operator CF
a Iα will result in the solution

y(t) = c + c(t – a) –
(CF

a Iαq(·)y(·))(t).

But (CF
a Iαq(·)y(·))(t) = –β

B(β)
∫ t

a q(s)y(s) ds + β

B(β) aIq(t)y(t). Hence, the solution has the form

y(t) = c + c(t – a) –
 – α

B(α – )

∫ t

a
q(s)y(s) ds –

α – 
B(α – )

∫ t

a
(t – s)q(s)y(s) ds.

The boundary conditions imply that c =  and

c =
 – α

(b – a)B(α – )

∫ b

a
q(s)y(s) ds +

α – 
(b – a)B(α – )

∫ b

a
(b – s)q(s)y(s) ds.
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Hence,

y(t) =
( – α)(t – a)

(b – a)B(α – )

∫ b

a
q(s)y(s) ds –

(α – )(t – a)
(b – a)B(α – )

∫ b

a
(b – s)q(s)y(s) ds

–
 – α

B(α – )

∫ t

a
q(s)y(s) ds –

α – 
B(α – )

∫ t

a
(t – s)q(s)y(s) ds. ()

3 Existence and uniqueness theorems for the initial value problem types
In this section we prove existence uniqueness theorems for ABC and ABR type initial value
problems.

Theorem  Consider the system

(CFC
a Dαy

)
(t) = f

(
t, y(t)

)
, t ∈ [a, b],  < α ≤ , y(a) = c, ()

such that f (a, y(a)) = , A( –α
B(α) + α(b–a)

B(α) ) < , and |f (t, y) – f (t, y)| ≤ A|y – y|, A > . Here
f : [a, b]×R→R and y : [a, b] →R. Then the system () has a unique solution of the form

y(t) = c + CF
a Iαf

(
t, y(t)

)
. ()

Proof First, with the help of Proposition , () and taking into account that f (a, y(a)) = ,
it is straightforward to prove that y(t) satisfies the system () if and only if it satisfies ().

Let X = {x : maxt∈[a,b] |x(t)| < ∞} be the Banach space endowed with the norm ‖x‖ =
maxt∈[a,b] |x(t)|. On X define the linear operator

(Tx)(t) = c + CF
a Iαf

(
t, x(t)

)
.

Then, for arbitrary x, x ∈ X and t ∈ [a, b], we have by assumption

∣
∣(Tx)(t) – (Tx)(t)

∣
∣ =

∣
∣CF
a Iα

[
f
(
t, x(t)

)
– f

(
t, x(t)

)]∣∣

≤ A
(

 – α

B(α)
+

α(b – a)
B(α)

)
‖x – x‖, ()

and hence T is a contraction. By the Banach contraction principle, there exists a unique
x ∈ X such that Tx = x and hence the proof is complete. �

Remark  Similar existence and uniqueness theorems can be proved for the system ()
with higher order by making use of Proposition . The condition f (a, y(a)) =  always can-
not be avoided as we have seen in Example  with f (t, y(t)) = K(t). As a result of Theorem 
we conclude that the fractional linear initial value problem

(CFC
a Dαy

)
(t) = μy(t), μ ∈R, t ∈ [a, b],  < α ≤ , y(a) = c,

only can have the trivial solution unless α = . Indeed, the solution satisfies y(t) = c +
μ –α

B(α) y(t) + αμ

B(α)
∫ t

a y(s) ds. This solution is only verified at a if ( – α)y(a) = .
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Theorem  Consider the system

(CFR
a Dαy

)
(t) = f

(
t, y(t)

)
, t ∈ [a, b],  < α ≤ , y(a) = c, ()

such that A
B(α–) (( – α)(b – a) + (α–)(b–a)

 ) <  and |f (t, y) – f (t, y)| ≤ A|y – y|, A > .
Also, f : [a, b] × R → R and y : [a, b] → R. Then the system () has a unique solution of
the form

y(t) = c + CF
a Iαf

(
t, y(t)

)

= c +
 – α

B(α – )

∫ t

a
f
(
s, y(s)

)
ds +

α – 
B(α – )

(
aIf

(·, y(·)))(t). ()

Proof If we apply CF
a Iα to system () and make use of Proposition  with β = α –, then we

obtain the representation (). Conversely, if we apply CFR
a Dα , make use of Proposition 

and note that

CFR
a Dα = CFR

a Dβ d
dt

c = ,

we obtain the system (). Hence, y(t) satisfies the system () if and only if it satisfies ().
Let X = {x : maxt∈[a,b] |x(t)| < ∞} be the Banach space endowed with the norm ‖x‖ =

maxt∈[a,b] |x(t)|. On X define the linear operator

(Tx)(t) = c + CF
a Iαf

(
t, x(t)

)
.

Then, for arbitrary x, x ∈ X and t ∈ [a, b], we have by assumption

∣∣(Tx)(t) – (Tx)(t)
∣∣ =

∣∣CF
a Iα

[
f
(
t, x(t)

)
– f

(
t, x(t)

)]∣∣

≤ A
B(α – )

(
( – α)(b – a) +

(α – )(b – a)



)
‖x – x‖, ()

and hence T is a contraction. By the Banach contraction principle, there exists a unique
x ∈ X such that Tx = x and hence the proof is complete. �

4 The Lyapunov inequality for the CFR boundary value problem
In this section, we prove a Lyapunov inequality for an CFR boundary value problem of
order  < α ≤ .

Consider the boundary value problem

(CFR
a Dαy

)
(t) + q(t)y(t) = ,  < α ≤ , t ∈ (a, b), y(a) = y(b) = . ()

Lemma  y(t) is a solution of the boundary value problem () if and only if it satisfies the
integral equation

y(t) =
∫ b

a
G(t, s)T

(
s, y(s)

)
ds, ()
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where

G(t, s) =

{
(t–a)(b–s)

b–a , a ≤ t ≤ s ≤ b,
( (t–a)(b–s)

b–a – (t – s)), a ≤ s ≤ t ≤ b,

}

and

T
(
t, y(t)

)
=

(CF
a Iβq(·)y(·))(t) =

 – β

B(β)
q(t)y(t) +

β

B(β)
(

aIq(·)y(·))(t), β = α – .

Proof Apply the integral CF
a Iα to () and make use of Definition  and Proposition  with

n =  and β = α –  to obtain

y(t) = c + c(t – a) –
(

aIT
(·, y(·)))(t)

= c + c(t – a) –
∫ t

a
(t – s)T

(
s, y(s)

)
ds. ()

The condition y(a) =  implies that c =  and the condition y(b) =  implies that c =


b–a
∫ b

a (b – s)T(s, y(s)) ds and hence

y(t) =
t – a
b – a

∫ b

a
(b – s)T

(
s, y(s)

)
ds –

∫ t

a
(t – s)q(s)T

(
s, y(s)

)
ds.

Then the result follows by splitting the integral

∫ b

a
(b – s)T

(
s, y(s)

)
ds =

∫ t

a
(b – s)T

(
s, y(s)

)
ds +

∫ b

t
(b – s)T

(
s, y(s)

)
ds. �

Lemma  The Green’s function G(t, s) defined in Lemma  has the following properties:
• G(t, s) ≥  for all a ≤ t, s ≤ b.
• maxt∈[a,b] G(t, s) = G(s, s) for s ∈ [a, b].
• H(s, s) has a unique maximum, given by

max
s∈[a,b]

G(s, s) = G
(

a + b


,
a + b



)
=

(b – a)


.

Proof
• It is clear that g(t, s) = (t–a)(b–s)

b–a ≥ . Regarding the part g(t, s) = ( (t–a)(b–s)
b–a – (t – s)) we

see that (t – s) = t–a
b–a (b – (a + (s–a)(b–a)

(t–a) )) and that a + (s–a)(b–a)
(t–a) ≥ s if and only if s ≥ a.

Hence, we conclude that g(t, s) ≥  as well. Hence, the proof of the first part is
complete.

• Clearly, g(t, s) is an increasing function in t. Differentiating g with respect to t for
every fixed s we see that g is a decreasing function in t.

• Let g(s) = G(s, s) = (s–a)(b–s)
b–a . Then one can show that g ′(s) =  if s = a+b

 and hence the
proof is concluded by verifying that g( a+b

 ) = b–a
 . �

In the next lemma, we estimate T(t, y(t)) for a function y ∈ C[a, b].

Lemma  For y ∈ C[a, b] and  < α ≤ , β = α – , we have for any t ∈ [a, b]

∣∣T
(
t, y(t)

)∣∣ ≤ R(t)‖y‖,



Abdeljawad Advances in Difference Equations  (2017) 2017:313 Page 9 of 11

where

R(t) =
[

 – α

B(α – )
∣∣q(t)

∣∣ +
α – 

B(α – )

∫ t

a

∣∣q(s)
∣∣ds

]
.

Theorem  If the boundary value problem () has a nontrivial solution, where q(t) is a
real-valued continuous function on [a, b], then

∫ b

a
R(s) ds >


b – a

. ()

Proof Assume y ∈ Y = C[a, b] is a nontrivial solution of the boundary value problem (),
where ‖y‖ = supt∈[a,b] |y(t)|. By Lemma , y must satisfy

y(t) =
∫ b

a
G(t, s)T

(
s, y(s)

)
ds.

Then, by using the properties of the Green’s function G(t, s) proved in Lemma  and
Lemma , we come to the conclusion that

‖y‖ <
b – a



∫ b

a
R(s) ds‖y‖.

From this () follows. �

Remark  Note that if α → +, then R(t) tends to |q(t)| and hence one obtains the classical
Lyapunov inequality ().

Example  Consider the following CFR Sturm-Liouville eigenvalue problem (SLEP) of
order  < α ≤ :

(CFR
 Dαy

)
(t) + λy(t) = ,  < t < , y() = y() = . ()

If λ is an eigenvalue of (), then by Theorem  with q(t) = λ, we have

T(t) =
[

 – α

B(α – )
|λ| +

α – 
B(α – )

(
I|λ|)(t)

]

= |λ|
[

 – α

B(α – )
+

α – 
B(α – )

t
]

. ()

Hence, we must have

∫ 


T(s) ds = |λ|

[
 – α

B(α – )
+

α – 
B(α – )

]
> .

Hence,

|λ| > 
[

 – α

B(α – )
+

α – 
B(α – )

]–

.
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Notice that the limiting case α → + implies that |λ| > . This is the lower bound for the
eigenvalues of the ordinary eigenvalue problem:

y′′(t) + λy(t) = ,  < t < , y() = y() = .

5 Conclusions
Fractional derivatives and their corresponding integral operators are of importance in
modeling various problems in engineering, science and medicine. To provide the re-
searchers with the possibility of modeling by means of higher order arbitrary dynamical
systems we extended fractional calculus whose derivatives depend on nonsingular expo-
nential function kernels to higher order. The corresponding higher order integral opera-
tors have been defined as well and confirmed. The right fractional extension is also con-
sidered. To set up the basic concepts we proved existence and uniqueness theorems by
means of the Banach fixed point theorem for initial value problems in the frame of CFC
and CFR derivatives. We realized that the condition f (a, y(a)) =  is necessary to guaran-
tee a unique solution and hence the fractional linear initial value problem with constant
coefficients results in the trivial solution unless the order is a positive integer. We used
our extension to higher order to prove a Lyapunov type inequality for a CFR boundary
value problem with order  < α ≤  and then obtained the classical ordinary case when
α tends to  from the right. This proves a different behavior from the classical fractional
case, where the Lyapunov inequality was proved for a fractional boundary problem of or-
der  < α ≤  and the classical ordinary case was verified when α tends to  from left. In
connection to this behavior, we propose the following open problem: Is it possible to for-
mulate a sequential CFR boundary value problem whose Green’s function is so nice as to
prove a Lyapunov type inequality?
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