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Abstract
In this article, we study the existence and uniqueness results for a nonlocal fractional
sum-difference boundary value problem for a Caputo fractional functional difference
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these results.
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1 Introduction
In this paper, we consider a nonlocal fractional sum boundary value problem for a Caputo
fractional functional difference equation with delay of the form

�α
Cu(t) = F

[
t + α – , ut+α–,�β

Cu(t + α – β)
]
, t ∈N,T := {, , . . . , T},

�
γ

Cu(α – γ – ) = , u(T + α) = ρ�–ωu(η + ω),
(.)

and uα– = ψ , where ρ �= 
(ω)((α–)[(α–)(–γ )+]+(T+α)[(T–α+)(–γ )–])∑η
s=α–(η+ω–σ (s))ω–((α–)[(α–)(–γ )+]+(η+ω)[(η+ω–α+)(–γ )–]) , α ∈

(, ), β ,γ ,ω ∈ (, ), η ∈ Nα–,T+α– are given constants, F ∈ C(Nα–,T+α × Cr × R,R)
and ψ is an element of the space

C+
r (α – ) :=

{
ψ ∈ Cr : ψ(α – ) = ,�β

Cψ(s – β + ) = , s ∈ Nα–r–,α–
}

.

For r ∈N,T+ we denote Cr is the Banach space of all continuous functions ψ : Nα–r–,α– →
R endowed with the norm

‖ψ‖Cr = max
s∈Nα–r–,α–

∣
∣ψ(s)

∣
∣.
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If u : Nα–r–,α– → R, then for any t ∈ Nα–,T+α we denote by ut the element of Cr defined
by

ut(θ ) = u(t + θ ) for θ ∈N–r,.

Fractional difference calculus or discrete fractional calculus is a very new field for math-
ematicians. Basic definitions and properties of fractional difference calculus can be found
in the book []. Some real-world phenomena are being studied with the assistance of frac-
tional difference operators, one may refer to [, ] and the references therein. Good papers
related to discrete fractional boundary value problems can be found in [–] and the ref-
erences cited therein.

At present, the development of boundary value problems for fractional difference equa-
tions which show an operation of the investigative function. The study may also have other
functions related to the ones we are interested in. These creations are incorporating with
nonlocal conditions which are both extensive and more complex. For example, Goodrich
[] considered the discrete fractional boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

–�νy(t) = λf (t + ν – , y(t + ν – )), t ∈N,b+,

y(ν – ) =
∑N

i= F
i (y(t

i )),

y(ν + b + ) =
∑M

i= F
i (y(t

i )),

(.)

where b >  is an integer, and λ >  is a parameter, ν ∈ (, ] is a real number, f : Nν,ν+b ×
R → R is a continuous function, F

i , F
i : R → [,∞] are continuous functions for each i

and satisfy some growth conditions to be specified later, and {t
i }N

i=, {t
i }M

i= ⊆Nν–,ν+b. The
existence of positive solutions are obtained by Krasnosel’skii fixed point theorem.

Reunsumrit et al. [] obtained sufficient conditions for the existence of positive solu-
tions for the three-point fractional sum boundary value problem for Caputo fractional
difference equations via an argument with a shift

�α
Cu(t) + a(t + α – )f

(
u
(
θ (t + α – )

))
= , t ∈N,T ,

u(α – ) = �u(α – ) = , (.)

u(T + α) = λ�–βu(η + β),

where  < α ≤ ,  < β ≤ , η ∈ Nα–,T+α–, �α
C is the Caputo fractional difference operator

of order α, and f : [,∞) → [,∞) is a continuous function. The existence of at least one
positive solution is proved by using Krasnoselskii’s fixed point theorem.

Recently, Sitthiwirattham [] investigated three-point fractional sum boundary value
problems for sequential fractional difference equations of the forms

⎧
⎨

⎩
�α

C[φp(�β

Cx)](t) = f (t + α + β – , x(t + α + β – )),

�
β

Cx(α – ) = , x(α + β + T) = ρ�–γ x(η + γ ),
(.)

where t ∈N,T ,  < α,β ≤ ,  < α + β ≤ ,  < γ ≤ , η ∈Nα+β–,α+β+T–, ρ is a constant, f :
Nα+β–,α+β+T ×R →R is a continuous function, φp is the p-Laplacian operator. Existence
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and uniqueness of solutions are obtained by the Banach fixed point theorem and Schaefer’s
fixed point theorem.

The results mentioned above are the motivation for this research. The plan of this paper
is as follows. In Section  we recall some definitions and basic lemmas. Also, we derive a
representation for the solution of (.) by converting the problem to an equivalent summa-
tion equation. In Section , we prove existence and uniqueness results of the problem (.)
by using the Schauder fixed point theorem and the Banach contraction principle. Some
illustrative examples are presented in Section .

2 Preliminaries
In the following, there are notations, definitions, and lemma which are used in the main
results. We briefly recall the necessary concepts from the discrete fractional calculus; see
[] for further information.

Definition . We define the generalized falling function by tα := 
(t+)

(t+–α) , for any t and α

for which the right-hand side is defined. If t +  – α is a pole of the Gamma function and
t +  is not a pole, then tα = .

Lemma . ([]) Assume the following factorial functions are well defined. If t ≤ r, then
tα ≤ rα for any α > .

Definition . For α >  and f defined on Na := {a, a + , . . .}, the αth-order fractional sum
of f is defined by

�–αf (t) = �–α
a f (t) :=



(α)

t–α∑

s=a

(
t – σ (s)

)α–f (s),

where t ∈Na+α and σ (s) = s + .

Definition . For α >  and f defined on Na, the αth-order Caputo fractional difference
of f is defined by

�α
Cf (t) := �–(N–α)

a �N f (t) =



(N – α)

t–(N–α)∑

s=a

(
t – σ (s)

)N–α–
�N f (s),

where t ∈ Na+N–α and N ∈ N is chosen so that  ≤ N –  < α < N . If α = N , then �α
Cf (t) =

�N f (t).

Lemma . ([]) Assume that α >  and f defined on Na. Then

�–α
a+N–α�α

Cy(t) = y(t) + C + C(t – a) + C(t – a) + · · · + CN–(t – a)N–,

for some Ci ∈R,  ≤ i ≤ N –  and  ≤ N –  < α ≤ N .

To define the solution of the boundary value problem (.) we need the following lemma
that deals with a linear variant of the boundary value problem (.) and gives a represen-
tation of the solution.
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Lemma . Let ρ �= 
(ω)((α–)[(α–)(–γ )+]+(T+α)[(T–α+)(–γ )–])∑η
s=α–(η+ω–σ (s))ω–((α–)[(α–)(–γ )+]+(η+ω)[(η+ω–α+)(–γ )–]) , α ∈ (, ),

γ ,ω ∈ (, ) and f ∈ C(Nα–,T+α–,R) be given. Then the problem

�α
Cu(t) = f (t + α – ), t ∈N,T , (.)

⎧
⎪⎪⎨

⎪⎪⎩

u(α – ) = ,

�
γ

Cu(α – γ – ) = ,

u(T + α) = ρ�–ωu(η + ω), η ∈ Nα–,T+α–,

(.)

has the unique solution

u(t) =

�

[
(α – )

(
(α – )( – γ ) + 

)
+ t(( – α)( – γ ) – 

)
+ t]

×
[



(α)

T∑

s=

(
T + α – σ (s)

)α–f (s + α – ) –
ρ


(ω)
(α)

×
η–α∑

s=

η–α∑

ξ=s

(
η + ω – α – σ (ξ )

)ω–(
ξ + α – σ (s)

)α–f (s + α – )

]

+



(α)

t–α∑

s=

(
t – σ (s)

)α–f (s + α – ), (.)

for t ∈Nα–,T+α , where

� = ( – α)
[
(α – )( – γ ) + 

]
+ (T + α)

[
 – (T – α + )( – γ )

]

+
ρ


(ω)

η∑

s=α–

(
η + ω – σ (s)

)ω–((α – )
[
(α – )( – γ ) + 

]
+ (η + ω)

× [
(η + ω – α + )( – γ ) – 

])
. (.)

Proof Using the fractional sum of order α ∈ (, ) for (.) and from Lemma ., we obtain

u(t) = C + Ct + Ct +



(α)

t–α∑

s=

(
t – σ (s)

)α–f (s + α – ), (.)

for t ∈Nα–,T+α .
By substituting t = α –  into (.) and employing the first condition of (.), we obtain

C + C(α – ) + C(α – ) = . (.)

Using the Caputo fractional difference of order  < γ <  for (.), we obtain

�
γ

Cu(t) =



( – γ )

t+γ –∑

s=α–

(
t – σ (s)

)–γ [
C + Cs]

+



( – γ )
(α – )

t+γ –∑

s=α–

s–α+∑

ξ=

(
t – σ (s)

)–γ (
s – σ (ξ )

)α–f (ξ + α – ), (.)

for t ∈Nα–γ –,T+α–γ +.
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By substituting t = α – γ –  into (.) and employing the second condition of (.) im-
plies

( – γ )C + 
[
 + (α – )( – γ )

]
C = . (.)

Finally, taking the fractional sum of order  < ω <  for (.), we obtain

�–ωu(t) =



(ω)

t–ω∑

s=α–

(
t – σ (s)

)ω–[C + Cs + Cs]

+



(ω)
(α)

t–ω∑

s=α

s–α∑

ξ=

(
t – σ (s)

)ω–(s – σ (ξ )
)α–f (ξ + α – )

=



(ω)

t–ω∑

s=α–

(
t – σ (s)

)ω–[C + Cs + Cs]

+



(ω)
(α)

t–α–ω∑

s=

t–α–ω∑

ξ=s

(
t – α – σ (ξ )

)ω–

× (
ξ + α – σ (s)

)α–f (s + α – ), (.)

for t ∈Nα–γ +ω–,T+α–γ +ω+.
By substituting t = T + α,η + ω into (.) ,(.), respectively, and employing the last

condition of (.) implies

[

 –
ρ


(ω)

η∑

s=α–

(
η + ω – σ (s)

)ω–
]

C

+

[

(T + α) –
ρ


(ω)

η∑

s=α–

(
η + ω – σ (s)

)ω–(η + ω)

]

C

+

[

(T + α) –
ρ


(ω)

η∑

s=α–

(
η + ω – σ (s)

)ω–(η + ω)

]

C

= –



(α)

T∑

s=

(
t + α – σ (s)

)α–f (s + α – )

+
ρ


(ω)
(α)

η–α∑

s=α

s–α∑

ξ=s

(
η + ω – α – σ (ξ )

)ω–

× (
ξ + α – σ (s)

)α–f (s + α – ). (.)

The constants C, C and C can be obtained by solving the system of equations (.), (.)
and (.),

C =

�

(α – )
[
(α – )( – γ ) + 

]
Q[f ],

C =

�

[
( – α)( – γ ) – 

]
Q[f ],

C =

�
Q[f ],
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where � is defined by (.) and the functional Q[f ] is defined as

Q[f ] =



(α)

T∑

s=

(
T + α – σ (s)

)α–f (s + α – ) –
ρ


(ω)
(α)

×
η–α∑

s=

η–α∑

ξ=s

(
η + ω – α – σ (ξ )

)ω–(
ξ + α – σ (s)

)α–f (s + α – ).

Substituting the constants C, C and C into (.), we obtain (.). �

Corollary . Problem (.)-(.) has a unique solution of the form

u(t) =
T∑

s=

G(t, s)h(s + α – ), (.)

where

G(t, s) =



(α)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g(t, s), s ∈N,t–α ∩N,η–α ,

g(t, s), s ∈Nt–α+,η–α ,

g(t, s), s ∈Nη–α+,t–α ,

g(t, s), s ∈Nt–α+,T ∩Nη–α+,T ,

(.)

with gi(t, s),  ≤ i ≤ , as

g(t, s) =:

�

[
(α – )

(
(α – )( – γ ) + 

)
+ 

(
( – α)( – γ ) – 

)
t + t]

×
[
(
T + α – σ (s)

)α– –
ρ


(ω)

η–α∑

ξ=s

(
η + ω – α – σ (ξ )

)ω–(
ξ + α – σ (s)

)α–
]

+
(
t – σ (s)

)α–,

g(t, s) =:

�

[
(α – )

(
(α – )( – γ ) + 

)
+ 

(
( – α)( – γ ) – 

)
t + t]

×
[
(
T + α – σ (s)

)α– –
ρ


(ω)

η–α∑

ξ=s

(
η + ω – α – σ (ξ )

)ω–(
ξ + α – σ (s)

)α–
]

,

g(t, s) =:

�

[
(α – )

(
(α – )( – γ ) + 

)
+ 

(
( – α)( – γ ) – 

)
t + t]

× (
T + α – σ (s)

)α– +
(
t – σ (s)

)α–,

g(t, s) =:

�

[
(α – )

(
(α – )( – γ ) + 

)
+ 

(
( – α)( – γ ) – 

)
t + t]

× (
T + α – σ (s)

)α–.

Lemma . ([]) A bounded set in R
n is relatively compact; a closed bounded set in R

n

is compact.

Lemma . ([]) If a set is closed and relatively compact, then it is compact.
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Lemma . (Schauder fixed point theorem []) Assume that K is a convex compact set
in a Banach space X and that T : K → K is a continuous mapping. Then T has a fixed
point.

3 Main results
In this section, we wish to establish the existence results for the problem (.). To accom-
plish this, we define the Banach space

X =
{

u : u ∈ C(Nα–r–,T+α ,R),�β

Cu ∈ C(Nα–β–r–,T+α–β+,R),  < β < 
}

with the norm defined by

‖u‖X = ‖u‖ +
∥
∥�

β

Cu
∥
∥, (.)

where ‖u‖ = maxt∈Nα–r–,T+α
|u(t)| and ‖�β

Cu‖ = maxt∈Nα–r–,T+α
|�ν

Cu(t – β + )|.
For uα– = ψ , in view of the definitions of ut and ψ , we obtain

uα– = uα–(θ ) = u(θ + α – ) = ψ(θ + α – ) for θ ∈N–r,. (.)

Thus, we have

u(t) = ψ(t) for t ∈Nα–r–,α–. (.)

Since F ∈ C(Nα–,T+α × Cr × R,R), set F [t, ut ,�β

Cu(t – β + )] := f (t) in Lemma .. We
see by Lemma . that a function u is a solution of boundary value problem (.) if and
only if it satisfies

u(t) =

⎧
⎨

⎩

∑T
s= G(t, s)F [s + α – , us+α–,�β

Cu(s + α – β)], t ∈Nα–,T+α ,

ψ(t), t ∈Nα–r–,α–.
(.)

Define an operator T : X →X as follows:

(T u)(t) =

⎧
⎨

⎩

∑T
s= G(t, s)F [s + α – , us+α–,�β

Cu(s + α – β)], t ∈Nα–,T+α ,

ψ(t), t ∈Nα–r–,α–,
(.)

and

� = max
t∈Nα–r–,α–

{ T∑

s=

∣∣G(t, s)φ(s + α – )
∣∣
}

, (.)

�̃ = max
t∈Nα–r–,α–

{ T∑

s=

∣∣t�G(t – β + , s)φ(s + α – )
∣∣
}

, (.)

ϒ =


|�|
( – β)

∣
∣∣∣
(T + α)α


(α + )
–

ρ(T + α + ω)

(T)
(α + ω + )

∣
∣∣∣
{

(T + α)
( – β)

× [
( – γ )T + α + ( – γ )

]
+ (T + α) + 

[
( – α)( – γ ) – 

]}

+
(T + α)α+


(α)

{
 +

α(T + α – β + )–β

(T + )
( – β)

}
. (.)
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Theorem . Assume the following properties:
(A) There exists a nonnegative function φ ∈ C(Nα–,T+α) such that

∣∣F [t, x, y]
∣∣ ≤ φ(t) + λ|x|τ + λ|y|τ ,

for each x ∈ Cr , y ∈R where λ, λ are negative constants and  < τ, τ < ; or
(A) there exists a nonnegative function φ ∈ C(Nα–,T+α) such that

∣
∣F [t, x, y]

∣
∣ ≤ φ(t) + λ|x|τ + λ|y|τ ,

for each x ∈ Cr , y ∈R where λ, λ are negative constants and τ, τ > .
Then boundary value problem (.) has at least one solution.

Proof We shall use the Schauder fixed point theorem to prove that the operator T defined
by (.) has a fixed point. We divide the proof into three steps.

Step I. Verify T maps bounded sets into bounded sets.
Suppose (A) holds, choose

L ≥ max

{

(

� + �̃
(T + α – β + )–β


( – β)

)
, (λϒ)


–τ , (λϒ)


–τ

}
, (.)

and define the P = {u ∈X : ‖u‖ ≤ L, L > }.
For any u ∈P , we obtain

∣
∣(T u)(t)

∣
∣

=

∣∣
∣∣
∣

T∑

s=

G(t, s)F
[
s + α – , us+α–,�β

Cu(s + α – β)
]
∣∣
∣∣
∣

≤
T∑

s=

∣
∣G(t, s)φ(s + α – )

∣
∣ +

(
λ|us+α–|τ + λ

∣
∣�β

Cu(s + α – β)
∣
∣τ)

×
{


|�|

∣
∣(α – )

(
(α – )( – γ ) + 

)
+ 

(
( – α)( – γ ) – 

)
t + t∣∣

×
∣
∣∣
∣∣



(α)

T∑

s=

(
T + α – σ (s)

)α– –
ρ


(ω)
(α)

×
η–α∑

s=

η–α∑

ξ=s

(
η + ω – α – σ (ξ )

)ω–(
ξ + α – σ (s)

)α–

∣
∣∣
∣∣

+



(α)

t–α∑

s=

(
t – σ (s)

)α–
}

≤ � +
(
λ|us+α–|τ + λ

∣
∣�β

Cu(s + α – β)
∣
∣τ)

{


|�|
∣∣
∣∣
(T + α)α


(α + )
–

ρ(T + α + ω)

(T)
(α + ω + )

∣∣
∣∣

× [
(T + α)

[
( – γ )T + α + ( – γ )

]]
+

(T + α)α


(α + )

}
.

Next, we consider

∣∣(t�T u)(t)
∣∣

≤
T∑

s=

∣∣t�G(t, s)
∣∣∣∣F

[
s + α – , us+α–,�β

Cu(s + α – β)
]∣∣
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≤
T∑

s=

∣
∣t�G(t, s)φ(s + α – )

∣
∣ +

(
λ|us+α–|τ + λ

∣
∣�β

Cu(s + α – β)
∣
∣τ)

×
{


|�|

∣∣
(
( – α)( – γ ) – 

)
+ t∣∣

∣∣
∣∣
∣



(α)

T∑

s=

(
T + α – σ (s)

)α–

–
ρ


(ω)
(α)

η–α∑

s=

η–α∑

ξ=s

(
η + ω – α – σ (ξ )

)ω–(
ξ + α – σ (s)

)α–

∣
∣∣
∣∣

+
tα–


(α)

}

≤ �̃ +
(
λ|us+α–|τ + λ

∣∣�β

Cu(s + α – β)
∣∣τ)

×
{


|�|

∣∣
∣∣
(T + α)α


(α + )
–

ρ(T + α + ω)

(T)
(α + ω + )

∣∣
∣∣

× [
T + α + ( – α)( – γ ) – 

]
+

(T + α)α–


(α)

}

and

∣∣(�β

CT u
)
(t – β + )

∣∣

≤ 

( – β)

t∑

s=

(
t – β +  – σ (s)

)–β ∣∣(�T u)(s)
∣∣

≤ (t – β + )–β


( – β)

{
�̃ +

(λ|us+α–|τ + λ|�β

Cu(s + α – β)|τ )

( – β)

[
(T + α)α–


(α)

+


|�|
∣∣
∣∣
(T + α)α


(α + )
–

ρ(T + α + ω)

(T)
(α + ω + )

∣∣
∣∣
∣
∣(T + α) + 

[
( – α)( – γ ) – 

]∣∣
]}

≤ (T + α – β + )–β


( – β)

{
�̃ +

(λ|us+α–|τ + λ|�β

Cu(s + α – β)|τ )

( – β)

[
(T + α)α–


(α)

+


|�|
∣∣
∣∣
(T + α)α


(α + )
–

ρ(T + α + ω)

(T)
(α + ω + )

∣∣
∣∣
[
T + α + ( – α)( – γ ) – 

]]}
.

Hence, we obtain

∥
∥T u(t)

∥
∥
X ≤ � +

�̃(T + α – β + )–β


( – β)

+
(
λ|us+α–|τ + λ

∣
∣�β

Cu(s + α – β)
∣
∣τ)

ϒ

≤ L


+
(
λ|us+α–|τ + λ

∣∣�β

Cu(s + α – β)
∣∣τ)

ϒ

≤ L


+
L


+
L


= L, (.)

which implies that T : P →P .
For the second cases, if (A) holds, choose

L ≥ max

{

(

� + �̃
(T + α – β + )–β


( – β)

)
,
(


λϒ

) 
–τ

,
(


λϒ

) 
–τ

}
, (.)
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and by the same argument as above, we obtain

∥∥T u(t)
∥∥
X ≤ � +

�̃(T + α – β + )–β


( – β)
+

(
λ|us+α–|τ + λ

∣∣�β

Cu(s + α – β)
∣∣τ)

ϒ

≤ L


+
L


+
L


= L, (.)

which implies that T : P →P .
Step II. The continuity of the operator T follows from the continuity of F and G.
Step III. By Lemma . and Lemma ., P is compact.
Hence, by the Schauder fixed point theorem, we can conclude that problem (.) has at

least one solution. The proof is completed. �

The second result is the existence and uniqueness of a solution to problem (.), by using
the Banach contraction principle.

Theorem . Assume the following properties:
(A) There exists a constant κ >  such that

∣
∣F [t, u, u] – F [t, v, v]

∣
∣ ≤ κ

(|u – v| + |u – v|
)
,

for each u, v ∈ Cr , u, v ∈R.
(A) κ(� + �) < , where

� =
(T + α)α


(α + )
+


|�|

∣∣
∣∣
(T + α)α


(α + )
–

ρ(T + α + ω)

(T)
(α + ω + )

∣∣
∣∣

× (T + α)
[
( – γ )T + α + ( – γ )

]
, (.)

� =
(T + α – β + )–β


( – β)

∣∣
∣∣
(T + α)α


(α + )
–

ρ(T + α + ω)

(T)
(α + ω + )

∣∣
∣∣

×
{


|�|

[
T + α + ( – α)( – γ ) – 

]
+

(T + α)α–


(α)

}
. (.)

Then the problem (.) has a unique solution.

Proof Consider the operator T : X → X defined by (.). Clearly, the fixed point of the
operator T is the solution of boundary value problem (.). We will use the Banach con-
traction principle to prove that T has a fixed point. We first show that T is a contraction.
For each t ∈Nα–,T+α , we have

∣∣(T u)(t) – (T v)(t)
∣∣

=
T∑

s=

∣∣G(t, s)
∣∣∣∣F

[
s + α – , us+α–,�β

Cu(s + α – β)
]

– F
[
s + α – , vs+α–,�β

Cv(s + α – β)
]∣∣

≤ κ‖u – v‖X
{

∣
∣(α – )

(
(α – )( – γ ) + 

)
+ 

(
( – α)( – γ ) – 

)
t + t∣∣
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×
∣
∣∣∣
∣



(α)

T∑

s=

(
T + α – σ (s)

)α– –
ρ


(ω)
(α)

×
η–α∑

s=

η–α∑

ξ=s

(
η + ω – α – σ (ξ )

)ω–(
ξ + α – σ (s)

)α–

∣∣
∣∣
∣

+



(α)

t–α∑

s=

(
t – σ (s)

)α–
}

≤ κ‖u – v‖X
{

(T + α)α


(α + )
+


|�|

∣∣
∣∣
(T + α)α


(α + )
–

ρ(T + α + ω)

(T)
(α + ω + )

∣∣
∣∣

× (T + α)
[
( – γ )T + α + ( – γ )

]
}

= κ‖u – v‖X�.

Next, we consider

∣∣(�β

CT u
)
(t – β + ) –

(
�

β

CT v
)
(t – β + )

∣∣

≤
∣∣∣
∣∣



( – β)

t∑

s=

(
t – β +  – σ (s)

)–β[
(�T u)(s) – (�T v)(s)

]
∣∣∣
∣∣

≤ 

( – β)

t∑

s=

(
t – β +  – σ (s)

)–β

[ T∑

ξ=

∣∣s�G(s, ξ )
∣∣

× ∣∣F
[
ξ + α – , uξ+α–,�β

Cu(ξ + α –  – β + )
]

– F
[
ξ + α – , vξ+α–,

�
β

Cv(ξ + α –  – β + )
]∣∣

]

≤ κ‖u – v‖X 

( – β)

t∑

s=

(
t – β +  – σ (s)

)–β

[ T∑

ξ=

∣∣s�G(s, ξ )
∣∣
]

≤ κ‖u – v‖X (T + α – β + )–β


( – β)

∣
∣∣
∣
(T + α)α


(α + )
–

ρ(T + α + ω)

(T)
(α + ω + )

∣
∣∣
∣

×
{


|�|

[
T + α + ( – α)( – γ ) – 

]
+

(T + α)α–


(α)

}

= κ‖u – v‖X�.

Obviously, for each t ∈Nα–r–,α–, we have |(T u)(t) – (T v)(t)| = .
Therefore, we obtain

∥
∥(T u)(t) – (T v)(t)

∥
∥
X ≤ κ‖x – y‖X (� + �).

By (A) implies T is a contraction. Hence, by the Banach contraction principle, we see
that T has a fixed point which is a unique solution of the problem (.). �

4 Examples
In this section, to illustrate our results, we consider some examples.
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Example . Consider the following fractional difference boundary value problem:

�


C u(t) =

(
t +




)

+
e–(t+ 

 )

(t + 
 )

|ut+ 

|τ + e–(t+ 

 )
∣∣∣
∣�



C u

(
t +




)∣∣∣
∣

τ

, t ∈N,,

u
(

–



)
= �



C u

(



)
= , u

(



)
=



�– 

 u
(




)
.

(.)

Set α = 
 , β = 

 , γ = 
 , ω = 

 , η = 
 , T = ,

ρ =



�= .

= 
(ω)((α – )[(α – )( – γ ) + ] + (T + α)[(T – α + )( – γ ) – ])
∑η

s=α–(η + ω – σ (s))ω–((α – )[(α – )( – γ ) + ] + (η + ω)[(η + ω – α + )( – γ ) – ])
,

and F [t, ut ,�β

Cut–β+] = t + e–t

(t+) |ut|τ + e–(t+)|� 

C ut+ 


|τ .

For t ∈N– 
 , 


, we have

∣∣F
[
t, ut ,�β

Cut–β+
]∣∣ ≤

(



)

+
√
e
|ut|τ +


e

∣
∣∣∣�



C u

(
t +




)∣
∣∣∣

τ

,

so |φ(t)| ≤ 
 , λ = √

e , λ = 
e . For  < τ, τ < , (A) is satisfied and for τ, τ > , (A) is

satisfied. Therefore, by Theorem ., boundary value problem (.) has at least one solu-
tion.

Example . Consider the following fractional difference boundary value problem:

�


C u(t) =

|ut+ 

| + |� 


C u(t + 

 )|
(t + 

 )[ + |ut+ 

| + |� 


C u(t + 

 )|]
, t ∈N,,

u
(

–



)
= �



C u

(



)
= , u

(



)
=



�– 

 u
(




)
.

(.)

Set α = 
 , β = 

 , γ = 
 , ω = 

 , η = 
 , T = ,

ρ =



�= .

= 
(ω)((α – )[(α – )( – γ ) + ] + (T + α)[(T – α + )( – γ ) – ])
∑η

s=α–(η + ω – σ (s))ω–((α – )[(α – )( – γ ) + ] + (η + ω)[(η + ω – α + )( – γ ) – ])
,

and F [t, ut ,�β

Cut–β+] = |ut |+|�


C u(t+ 

 )|
(t+)[+|ut |+|�



C u(t+ 

 )|]
.

For t ∈N– 
 , 


, we have

∣
∣F

[
t, ut ,�β

Cu
]

– F
[
t, vt ,�β

Cv
]∣∣ ≤ 

,

[
|ut – vt| +

∣∣
∣∣�



C u

(
t +




)
– �



C v

(
t +




)∣∣
∣∣

]
,
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and for t ∈N– 
 , 


, we have

∣
∣F

[
t, ut ,�β

Cu
]

–F
[
t, vt ,�β

Cv
]∣∣ ≤ 

,

[
|ut – vt| +

∣∣
∣∣�



C u

(
t +




)
– �



C v

(
t +




)∣∣
∣∣

]
,

so (A) holds with κ = 
, . Also, we can show that

|�| ≈ ., � ≈ ., � ≈ ,.,

and

κ(� + �) ≈ . < .

Therefore (A) holds, by Theorem ., boundary value problem (.) has a unique solu-
tion.
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