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Abstract
In this paper, we mainly consider the inverse problem for identifying the unknown
heat source in spherical symmetric domain. We propose a truncation regularization
method combined with an a posteriori regularization parameter choice rule to deal
with this problem. The Hölder type convergence estimate is obtained. Numerical
results are presented to illustrate the accuracy and efficiency of this method.
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1 Introduction
Identifying the unknown heat source in a parabolic partial differential equation from the
over-specified data plays an important role in applied mathematics, physics and engi-
neering. These problems are widely encountered in the modeling of physical phenomena.
A typical example is groundwater pollutant source estimation in cities with large popula-
tion []. Now many scholars have used different methods to identify various types of heat
sources. In [, ], the authors used the method of fundamental solutions and radial ba-
sis functions to identify the unknown heat source. In [, ], the authors used the Fourier
truncation method and the wavelet dual least squares method to identify the spatial vari-
able heat source. In [], the authors used the simplified Tikhonov method to identify the
spatial variable heat source. In [, ], the authors determined the heat source which de-
pends on one variable in a bounded domain using the boundary-element method and
an iterative algorithm. In [], the authors identified the heat source which depends only
on time variable using the Lie-group shooting method (LGSM). In [], the authors used
the truncation method based on Hermite expansion to identify the unknown source in
a space fractional diffusion equation. In [], the authors identified the point source with
some point measurement data. In [], the authors proved the existence and uniqueness
for identifying the heat source which depends only on time variable. In [], the authors
used the variational method to identify the heat source which has the form F(x, t). In [],
the authors used the variational method to identify the heat source which has the form of
F(x, t) = F(x)H(t) for the variable coefficient heat conduction equation. As far as we know,
most of the researches on heat source identification problem mainly concentrated on one-
dimensional case. But for a high dimensional case, there are few research results. In [],
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the authors used the spectral method to identify the heat source in a columnar symmet-
ric domain. In [], the authors used the spectral method to identify the heat source in
a spherically symmetric parabolic equation. But the regularization parameters is selected
by the a priori rule. There is a defect for any a priori method, i.e., the a priori choice of
the regularization parameter depends seriously on the a priori bound E of the unknown
solution. However, the a priori bound E cannot be known exactly in practice, and work-
ing with a wrong constant E may lead to a badly regularized solution. In this paper, we not
only give the a posteriori choice of the regularization parameter which depends only on
the measurable data, but also we give some different examples to compare the effective-
ness between the posterior choice rule and the priori choice rule. Moreover, we find the
truncation regularization method is better than the other regularization methods, such as
Tikhonov regularization and the quasi-boundary value regularization method for solving
this problem. To the best of the authors’ knowledge, there are few papers to choose the
regularization parameter under the a posteriori rule for this problem.

In this paper, we consider the following heat source identification problem in spherical
symmetric domain:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut – 
r ur – urr = f (r),  < t < T ,  < r < r,

u(r, ) = ,  ≤ r ≤ r,

u(r, t) = ,  ≤ t ≤ T ,

limr→ u(r, t) is bounded,  < t < T ,

u(r, T) = ϕ(r),  ≤ r ≤ r,

()

where r is the radius, f (r) is the unknown heat source. Our purpose is to identify f (r) from
the additional data u(r, T) = ϕ(r). Since the data ϕ(r) is based on (physical) observation,
there must be measurement errors, and we assume the measured data function ϕδ(r) ∈
L[, r; r], and it satisfies

∥
∥ϕ(·) – ϕδ(·)∥∥ ≤ δ, ()

where δ >  is the measurable error level.
Using the separation variable method, we get the solution of problem () as follows:

u(r, t) =
∞∑

n=

fn

(∫ t


e–( nπ

r
)(T–τ ) dτ

)

ψn(r), ()

where ψn(r) defined as follows are the characteristic functions:

ψn(r) =
√

nπ
√

r


j
(

nπr
r

)

=
√

nπ
√

r


sin( nπr
r

)
nπr
r

, n = , , , . . . , ()

j(x) is the zero Bessel function. ψn(r) ∈ L[, r; r] is an orthonormal system in the
Hilbert space L[, r; r]. fn is the Fourier coefficient of f (r), which is defined by

fn =
∫ r


rf (r)ψn(r) dr. ()
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Using u(r, T) = ϕ(r), we obtain

ϕ(r) =
∞∑

n=

fn

(∫ T


e–( nπ

r
)(T–τ ) dτ

)

ψn(r). ()

Due to the mean value theorem of integrals, we obtain

ϕ(r) =
∞∑

n=

fn
(
Te–( nπ

r
)(T–tn))

ψn(r),  < tn < T . ()

Define the operator K : f (·) → ϕ(·), then we have

ϕ(r) = Kf (r) =
∞∑

n=

(
Te–( nπ

r
)(T–tn))(f ,ψn)ψn. ()

It is easy to see that K is a linear compact operator, and the singular values {σn}∞n= of K
satisfy

σn = Te–( nπ
r

)(T–tn) ()

and

(ϕ,ψn) = (f ,ψn)Te–( nπ
r

)(T–tn), ()

i.e.,

(f ,ψn) = σ –
n (ϕ,ψn). ()

So

f (r) = K–ϕ(r) =
∞∑

n=

σ –
n

(
ϕ(r),ψn(r)

)
ψn(r). ()

From equation (), we can see σ –
n → ∞ (n → ∞). Thus, the exact data function ϕ(r)

must decrease rapidly. But the measured data function ϕδ(r) only belongs to L[, r; r],
we cannot expect it has the same decay rate in L[, r; r]. Thus the problem () is ill-
posed. It is impossible to solve this problem using a classical method. We will use the
truncated regularization method to deal with the ill-posed problem. Before doing that,
we impose an a priori bound on the unknown heat source, i.e.,

∥
∥f (·)∥∥Hp(,π ) ≤ E, p > , ()

where E >  is a constant and ‖ · ‖Hp(,π ) denotes the norm in Sobolev space which is
defined as follows:

∥
∥f (·)∥∥Hp(,π ) :=

( ∞∑

n=

(
 + n)p∣∣

(
f (·),ψn(·))∣∣

) 


. ()
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This paper is organized as follows. In Section , under the a posteriori parameter choice
rule, we give the convergence error estimate. In Section , three numerical examples are
used to verify the effectiveness for the proposed method. In Section , the conclusion of
this paper is given.

2 Main result
From (), we define

f δ
N = PN

(
f δ(r)

)
=

N∑

n=

σ –
n ϕδ

nψn ()

as the regularized solution of (), where PN : L[, r; r] → span{ψn|n ≤ N} is the rectan-
gular projection,

ϕδ
n =

(
ϕδ ,ψn

)
, n = , , . . . ()

is the Fourier coefficient of ϕδ(r). Due to the discrepancy principle, we consider an a pos-
teriori regularization parameter choice rule as follows:

∥
∥(I – PN )ϕδ

∥
∥ ≤ τδ <

∥
∥(I – PN–)ϕδ

∥
∥, ()

where τ >  is a constant, I is an identity operator in L[, r; r].
Let

ρN =
∥
∥(I – PN )ϕδ

∥
∥. ()

According to the following lemma, we know there exists an unique solution for ().

Lemma  For δ > , the function ρN satisfies:
(a) ρN is a continuous function;
(b) limN→+ ρN = ‖ϕδ‖;
(c) limN→+∞ ρN = ;
(d) ρN is a strictly decreasing function over (,∞).

Lemma  ([, ]) As n ≥ , we obtain

c

nπ
≤ σn ≤ c

nπ
, ()

where c, c are constants.

Lemma  Assume conditions () and () hold. N is taken as the solution of (). Then we
have

N(δ) ≤ c

[
(τ – )δ

E

] –
p+

, ()

where c := π
–

p+ c


p+
 .
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Proof Using (), we have

∥
∥(I – PN–)ϕ

∥
∥ =

∞∑

n=N(δ)

|ϕn| =
∞∑

n=N(δ)

(
 + n)

p
 σ –

n |ϕn|
(
 + n)

–p
 σ 

n

≤ E sup
n≥N(δ)

(
 + n)

–p
 σ 

n ≤ EN(δ)–p
(

c

N(δ)π

)

= Ec
π

–N(δ)–p–.

On the other hand,

∥
∥(I – PN–)ϕ

∥
∥ =

∥
∥(I – PN–)ϕδ – (I – PN–)

(
ϕδ – ϕ

)∥
∥

≥ ∥
∥(I – PN–)ϕδ

∥
∥ –

∥
∥(I – PN–)

(
ϕδ – ϕ

)∥
∥

≥ τδ – δ = (τ – )δ.

So

(τ – )δ ≤ Ecπ
–N(δ)

–p–
 .

Thus

N(δ) ≤ c


p+
 π

–
p+

[
(τ – )δ

E

] –
p+

.

This completes the proof of Lemma . �

Lemma  If the regularized solution is given by (), we have

∥
∥f δ

N(δ)(·) – fN(δ)(·)
∥
∥ ≤ c(τ – )

–
p+ δ

P
p+ E


p+ , ()

where c := c–
 c


p+
 π


p+ .

Proof Due to (), we obtain

∥
∥f δ

N(δ)(·) – fN(δ)(·)
∥
∥ =

∥
∥
∥
∥
∥

N(δ)∑

n=

σ –
n

(
ϕ(·) – ϕδ(·))ψn

∥
∥
∥
∥
∥



=
N(δ)∑

n=

σ –
n

∣
∣ϕn – ϕδ

n
∣
∣ ≤ δ · sup

≤n≤N(δ)
σ –

n

≤ δ
(

N(δ)π
c

)

≤ c–
 c


p+
 π


p+ (τ – )

–
p+ δ

p
p+ E


p+ .

So

∥
∥f δ

N(δ)(·) – fN(δ)(·)
∥
∥ ≤ c–

 c


p+
 π


p+ (τ – )

–
p+ δ

P
p+ E


p+ .

This completes the proof of Lemma . �
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Lemma  Suppose conditions () and () hold. f (r) given by () is the exact solution of
(), then we obtain

∥
∥f (·) – fN(δ)(·)

∥
∥ ≤ c(τ + )

p
p+ δ

p
p+ E


p+ , ()

where c := c
–p

p+
 π

p
p+ .

Proof

∥
∥f (·) – fN(δ)(·)

∥
∥ =

∥
∥
∥
∥
∥

∞∑

n=N(δ)+

σ –
n (ϕ,ψn)ψn

∥
∥
∥
∥
∥



=
∞∑

n=N(δ)+

σ –
n |ϕn|

=
∞∑

n=N(δ)+

(
σ –p

n
(
 + n)

–p


(
 + n)

p
 σ –

n |ϕn|
) 

p+
(|ϕn|

) p
p+

≤
( ∞∑

n=N(δ)+

(
c

nπ

)–p

n–p( + n)
p
 σ –

n |ϕn|
) 

p+
( ∞∑

n=N(δ)+

|ϕn|
) p

p+

≤ c
–p
p+
 π

p
p+ E


p+

∥
∥(I – PN )ϕ

∥
∥

p
p+

≤ c
–p
p+
 π

p
p+ E


p+

[∥
∥(I – PN )ϕδ

∥
∥ +

∥
∥(I – PN )

(
ϕδ – ϕ

)∥
∥
] p

p+

≤ c
–p
p+
 π

p
p+ E


p+

[
(τ + )δ

] p
p+ .

So

∥
∥f (·) – fN(δ)(·)

∥
∥ ≤ c

–p
p+
 π

p
p+ (τ + )

p
p+ δ

p
p+ E


p+ . ()

This completes the proof of Lemma . �

Now we give the convergent error estimate between the exact solution and the regular-
ized solution.

Theorem  f (r) given by () is the exact solution of (), f δ
N given by () is the regularized

solution of (). The regularization parameter is given by (). So we have

∥
∥f (·) – f δ

N(δ)(·)
∥
∥ ≤ [

c(τ + )


p+ + c(τ – )
–

p+
]
E


p+ δ

p
p+ . ()

Proof Using the triangle inequality, () and (), we have

∥
∥f (·) – f δ

N(δ)(·)
∥
∥ =

∥
∥f (·) – fN(δ)(·) + fN(δ)(·) – f δ

N(δ)(·)
∥
∥

≤ ∥
∥f (·) – fN(δ)(·)

∥
∥ +

∥
∥fN(δ)(·) – f δ

N(δ)(·)
∥
∥

≤ c(τ + )


p+ E


p+ δ
p

p+ + c(τ – )
–

p+ δ
P+
p+ E

–
p+

≤ [
c(τ + )


p+ + c(τ – )

–
p+

]
E


p+ δ

p
p+ .

This completes the proof of Theorem . �
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3 Numerical experiments
In this section, three numerical examples are used to illustrate the usefulness of proposed
method. Moreover, the comparisons of numerical effectiveness between the a posteriori
parameter choice () and the a priori parameter choice rule which is obtained by N =
[( E

δ
)


p+ ] in [] are also considered. The measurable data is given as follows:

ϕδ(r) = ϕ + ε rand n
(
size(ϕ)

)
, ()

where

ϕ =
(
ϕ(r), . . . ,ϕ(rn)

)T , ri = (i – )
r,
r =
r

n – 
, i = , , . . . , n. ()

The total noise level δ can be measured in the sense of the root mean square error (RMSE)
as follows:

δ =
∥
∥ϕδ – ϕ

∥
∥

L =

(

n

n∑

i=

(
ϕi – ϕδ

i
)

) 


. ()

To show the accuracy of numerical solution, the approximate L error is computed as
follows:

ea =
∥
∥f (r) – f δ

N (r)
∥
∥

L ,

and the approximate relative error in L norm is denoted by

er =
‖f (r) – f δ

N (r)‖
‖f (r)‖ .

It is difficult to find an exact solution for problem () in our numerical experiment. We
first give the heat source f (r) and solve the following direct problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut – 
r ur – urr = f (r),  < t < T ,  < r < r,

u(r, ) = ,  ≤ r ≤ r,

u(r, t) = ,  ≤ t ≤ T ,

u(, t) = ,  < t < T .

()

Then we use u(r, T) = ϕ(r) and () to obtain the exact data ϕ(r) and the noise data ϕδ(r),
respectively. Finally, we solve the inverse problem to obtain the regularization solution
f δ
N(δ)(r). In the following three numerical examples, we take T =  and r = π .

Example  Consider a smooth heat source: f (r) = r sin r.
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Example  Consider a piecewise smooth heat source:

f (r) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

,  ≤ r ≤ π
 ,


π

(r – π
 ), π

 < r ≤ π
 ,

– 
π

(r – π
 ), π

 < r ≤ π
 ,

, π
 < r ≤ π .

()

Example  Consider the following discontinuous function:

f (r) =

⎧
⎪⎪⎨

⎪⎪⎩

,  ≤ r ≤ π
 ,

, π
 < r ≤ π

 ,

, π
 < r ≤ π .

()

Firstly, we use Examples  and Examples  to compare the numerical effects among the
truncate regularization method, the Tikhonov regularization method and quasi-boundary
value regularization method under the a posteriori choice rule. The numerical results is
shown in Tables  and . The Tikhonov regularization solution of problem () is given as
follows:

f δ
α (r) =

∞∑

n=

σ –
n

 + ασ –
n

ϕδ
nψn(r),

where  < α <  is the regularization parameter.
Through modifying the final value condition u(r, T) = ϕ(r), we solve the following prob-

lem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

vt – 
r vr – vrr = f (r),  < t < T ,  < r < r,

v(r, ) = ,  ≤ r ≤ r,

v(r, t) = ,  ≤ t ≤ T ,

limr→ v(r, t) is bounded,  < t < T ,

v(r, T) = ϕ(r) – μf (r),  ≤ r ≤ r,

where μ is the regularization parameter. Then we obtain the quasi-boundary value solu-
tion of problem () as follows:

f δ
μ(r) =

∞∑

n=


μ + σn

ϕδ
nψn(r).

Tables  and  gives the comparisons of the numerical results of the truncate regulariza-
tion method, the Tikhonov regularization method and the quasi-boundary regularization
method under the a posteriori choice rule for different ε. From Tables  and , we can see
that the effectiveness of the truncate regularization method in the present paper is better
than the other regularization methods.

Figure  shows the comparisons between the exact solution and its computed approxi-
mation with different noise levels for Examples . Figure  shows the comparisons between
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Table 1 Numerical results for different ε under an a posteriori choice rule for three
regularization methods about Examples 1

ε 0.05 0.01 0.005 0.001 0.0005 0.0001

Truncate ea 0.0697 0.0376 0.0243 0.0118 0.0082 0.0035
er 0.0593 0.0320 0.0207 0.0101 0.0070 0.0030

Tikhonov ea 0.1024 0.0407 0.0277 0.0152 0.0065 0.0034
er 0.0871 0.0346 0.0236 0.0129 0.0056 0.0029

Quasi-boundary ea 0.6363 0.1518 0.0437 0.0160 0.0107 0.0043
er 0.5414 0.1291 0.0372 0.0136 0.0091 0.0037

Table 2 Numerical results for different ε under an a posteriori choice rule for three
regularization methods about Examples 2

ε 0.05 0.01 0.005 0.001 0.0005 0.0001

Truncate ea 0.0972 0.0521 0.0304 0.0241 0.0226 0.0139
er 0.2392 0.1283 0.0749 0.0594 0.0557 0.0341

Tikhonov ea 0.1295 0.0871 0.0361 0.0273 0.0243 0.0378
er 0.3178 0.2143 0.0889 0.0672 0.0598 0.0930

Quasi-boundary ea 0.7800 0.2036 0.0566 0.0539 0.0482 0.0393
er 1.9194 0.5011 0.1393 0.1327 0.1186 0.0967

Figure 1 The comparison of numerical effects
between the exact solution and its computed
approximations for p = 1 with Examples 1:
(a) ε = 0.001, (b) ε = 0.0001.

the exact solution and its computed approximation with different noise levels for Exam-
ples . Figure  indicates the comparisons between the exact solution and its computed
approximation with different noise levels for Examples . From Figures -, we can find
that the smaller ε, the better the computed approximation is. Moreover, we can also see
that the a posteriori parameter choice also works well.
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Figure 2 The comparison of numerical effects
between the exact solution and its computed
approximations for p = 1 with Examples 2:
(a) ε = 0.001, (b) ε = 0.0001.

Figure 3 The comparison of numerical effects
between the exact solution and its computed
approximations for p = 1 with Examples 3:
(a) ε = 0.001, (b) ε = 0.0001.

4 Conclusion
Using the Morozov discrepancy principle, we obtain an a posteriori parameter choice rule
which only depends on the measured data. Under the a posteriori choices of the regu-
larization parameter, the Hölder type error estimate which is order optimal is obtained.
Meanwhile, several numerical examples verify the efficiency and accuracy of this method.
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