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Abstract
The hydrodynamic model is used to determine the water wave flow. In this research,
a nondimensional form of a two-dimensional hydrodynamic model with generalized
boundary condition g(x, t) and initial conditions for describing the elevation of water
wave in an open uniform reservoir is proposed. The separation of variables method
with mathematical induction is employed to find an analytical solution to the model.
An example of flow calculations in an open uniform reservoir is also demonstrated.
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1 Introduction
In [] and [], the finite element method was used to solve the water pollution models.
In literature, several mathematical models need the data of water flow, while the velocity
and elevation of water flow are provided by the hydrodynamic model. In [], the finite
difference method was used to solve the hydrodynamic model with constant coefficients
in the closed uniform reservoir.

In [], an analytical solution to the hydrodynamic model in a closed uniform reservoir
was proposed. In [], the Lax-Wendroff finite difference method was also proposed to
approximate the water elevation and water flow velocity. However, the analytical solution
to the hydrodynamic model in an open reservoir has not been considered.

An open uniform reservoir is supplied by the outer water wave as shown in Figure . In
the former studies, the elevation of water wave (tidal elevation) can be found only by nu-
merical approximations. The purpose of this research is to derive an analytical solution to
a model. An analytical solution is needed for comparison with the approximated solutions
of the flow. Hence, the analytical solution becomes a benchmark for any related numerical
approximations.

2 A nondimensional form of a hydrodynamic model
The continuity and momentum equations are governed by the hydrodynamic behavior
on the reservoir. We average the equations over the depth, discarding the term due to
Coriolis parameter, shearing stresses and surface wind. We introduce the well-known two-
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Figure 1 An open uniform reservoir is connected
to an outer reservoir.

dimensional shallow water equations [, ] as follows:
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where h(x, y) is the depth measured from the mean water level to the bed of the reservoir,
ζ (x, y, t) is the elevation from the mean water level to the temporary water surface or the
tidal elevation, g is the acceleration due to gravity, and u(x, y, t) and v(x, y, t) are the velocity
components in x and y directions, respectively, for all (x, y, t) ∈ [, l] × [, l] × [,T ]. We
assume that h is a constant and ζ � h. Then Eqs. ()-() lead to
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We will consider the equation in a dimensionless problem by letting U = u/
√

gh, V =
v/

√
gh, X = x/l, Y = y/l, Z = ζ /h and T = t

√
gh/l. Substituting them into Eqs. ()-() leads to
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In order to solve Eqs. ()-() in � × [, T], where � = (, ) × (, ), for convenience using
u, v, d for U , V and Z, respectively [], we get
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2.1 Initial and boundary conditions for an open uniform reservoir
The initial conditions of Eqs. ()-() are assumed to be u = , v = , d = f(x, y) and ∂d

∂t =
f(x, y). The boundary conditions of the model in an open uniform reservoir are assumed
to be v = , ∂u

∂x =  at the planes x =  and x = . u = , ∂v
∂y =  at the planes y = . u = ,

∂v
∂y = , d(x, , t) = g(x, t) and ∂d

∂y =  at the planes y = . d =  on ∂� \ {(x, y) ∈ ∂� : y = }.

3 An analytical solution
Eqs. ()-() can be written as a non-conservation form of equation, as a single equation,

∂d
∂t =

∂d
∂x +

∂d
∂y , ()

subject to the initial conditions d(x, y, ) = f(x, y) and ∂d
∂t = f(x, y). The boundary condi-

tions are d =  at ∂� \ {(x, y) ∈ ∂� : y = }, d(x, , t) = g(x, t) and ∂d
∂y =  at the plane y = .

It is readily verified that the general solution can be written by the separation of variables
technique

d(x, y, t) = X(x)Y (y)T(t) ()

subject to the boundary conditions X() = X() = , Y () = Y ′() =  and Y () = g(x, t).
Due to the eigenvalue needing to be a negative real number, say –λ, we can now obtain
that Eq. () becomes

X ′′(x)
X(x)

= –λ, ()

–
Y ′′(y)
Y (y)

+
T ′′(t)
T(t)

= –λ. ()

We get the solution of Eq. () as X(x) = C cos(λx) + C sin(λx), where C, C are arbitrary
constants. According to the boundary condition X() = , we have C = . Then X(x) =
C sin(λx). The boundary condition X() =  gives λ = nπ , we then have

Xn(x) = C sin(nπx), ()

where n = , , , . . . . Since the eigenvalue of Eq. () is a negative real number, say –μ, we
have

Y ′′(y)
Y (y)

= –μ, ()

T ′′(t)
T(t)

+ λ = –μ. ()

We then have the solutions Y (y) = C cos(μy) + C sin(μy) and T(t) = C cos(t
√

λ + μ) +
C sin(t

√
λ + μ), where C, C, C, C are arbitrary constants. According to the boundary

conditions Y () =  and Y ′() = , we have C =  and μ = (m – ) π
 . Thus,
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(
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where m = , , , . . . . Then Y () = g(x, t) = C sin((m–) π
 ), we obtain C = (–)–m–g(x, t).

We get

Ym(y) = (–)–m–g(x, t) sin

(
(m – )

π


y
)

. ()

Since λ = nπ and μ = (m – ) π
 , we then have
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(
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(
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))
. ()

According to Eqs. (), () and (), the solution of our problem can be written in the
form

dmn(x, y, t) = Xn(x)Ym(y)Tmn(t) ()

= sin(nπx)(–)–m–g(x, t) sin
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where Amn = CC and Bmn = CC are arbitrary constants and for all m, n = , , , . . . . By
using the superposition principle, Eq. () becomes
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where Amn and Bmn are fixed by the value of d(x, y, ) = f(x, y) and ∂d
∂t (x, y, ) = f(x, y),

respectively.

4 Application to open uniform reservoir
We consider an open uniform reservoir with dimension . × . km (l = . km) and
the constant depth h =  m. Initially, the water in the reservoir is assumed to be mo-
tionless u = , v =  and the water elevation is specified by ζ (x, y, ) =  sin(πx) sin( π

 y)
and ∂ζ

∂t (x, y, ) = – sin(πx) sin( π
 y). The elevation of water along the northern boundary is

distributed by ζ (x, l, t) =  sin(πx) cos(t). The open boundary condition is assumed to be
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d(x, , t) = g(x, t) =  sin(πx) cos(t). Eq. () becomes
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The initial conditions are assumed to be d(x, y, ) = f(x, y) =  sin(πx) sin( π
 y), ∂d

∂t =
f(x, y) = – sin(πx) sin( π

 y). Thus Eq. () becomes
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We will consider the coefficients Amn by comparing coefficients and using the mathemat-
ical induction on the finite sum of Eq. () as follows:

 sin(πx) sin

(
π


y
)

�
M∑

m=

N∑

n=

Amn sin(nπx)(–)–m– sin(πx) sin

(
(m – )

π


y
)

. ()

By comparing their coefficients in Eq. (), we can see that if M =  and N = ,

A =


sin(πx)
, ()

where sin(πx) �= . Assume that A = 
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Since sin(nπx) �=  and sin( (m–)π
 y) �=  for all x, y ∈ (, ), substituting Eq. () into Eq.

() and comparing the coefficients in Eq. (), we can see that A, A, . . . , A(k+) = ,
A, A, . . . , A(k+) = , . . . , A(k+), A(k+), . . . , A(k+)(k+) = , except A �= . We get

A =


sin(πx)
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Thus, Eq. () holds for M = k +  and N = k + , the proof of the induction step is com-
pleted. Similarly, we also consider the coefficients Bmn by comparing coefficients and the
mathematical induction on the finite sum of Eq. () as follows:
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By comparing their coefficients in Eq. (), we get
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where B =  and sin(πx) �= . Assume that B = – 
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Since sin(nπx) �=  and sin( (m–)π
 y) �=  for all x, y ∈ (, ), we can see that B, B, B, . . . ,

B(k+) = , B, B, . . . , B(k+) = , . . . ,B(k+), B(k+), . . . , B(k+)(k+) = , except B �= . We
get

B =


π
√

. sin(πx)
. ()

Thus, Eq. () holds for M = k +  and N = k + , the proof of the induction step is com-
pleted. Therefore, an analytical solution d(x, y, t) of Eq. () with given initial and boundary
conditions becomes

d(x, y, t) =  sin(πx) cos(t) sin

(
π


y
)

cos(π t
√

.)

–
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√

.
sin(πx) cos(t) sin

(
π


y
)

sin(π t
√

.) ()

Table 1 Water elevation ζ (x, y, t) (m) at t = 2 hrs 50 min

y \ x 320 640 960 1,280 1,600 1,920 2,240 2,560 2,880

320 0.1729 0.2620 0.3174 0.3352 0.3177 0.2716 0.2055 0.1272 0.0430
640 0.2835 0.4295 0.5203 0.5495 0.5209 0.4453 0.3368 0.2085 0.0704
960 0.3871 0.5864 0.7104 0.7503 0.7112 0.6080 0.4599 0.2847 0.0962

1,280 0.4811 0.7289 0.8830 0.9326 0.8840 0.7557 0.5716 0.3538 0.1195
1,600 0.5633 0.8534 1.0338 1.0919 1.0350 0.8848 0.6692 0.4143 0.1400
1,920 0.6316 0.9570 1.1592 1.2243 1.1605 0.9922 0.7504 0.4646 0.1570
2,240 0.6844 1.0369 1.2561 1.3266 1.2575 1.0751 0.8131 0.5034 0.1701
2,560 0.7203 1.0913 1.3220 1.3963 1.3235 1.1315 0.8558 0.5298 0.1790
2,880 0.7385 1.1189 1.3554 1.4315 1.3569 1.1600 0.8774 0.5432 0.1835

Figure 2 Water elevation ζ (x, y, t), where
0 ≤ t ≤ 170 (min) at the center point of an open
uniform reservoir.

Figure 3 Surface plot of water elevation ζ (x, y, t)
at t = 170 (min) over an open uniform reservoir.
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for all (x, y, t) ∈ �× [, T]. The solution of water wave elevations (tidal elevation) by using
Eq. () is shown in Table  and Figures -.

5 Conclusions
A two-dimensional hydrodynamic model for describing the elevation of water wave in an
open uniform reservoir is derived and presented. The separation of variables method is
employed to find an analytical solution to the model.
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