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Abstract
The enhanced modified simple equation method plays a vital role in finding an exact
traveling wave solution of nonlinear evolution equations (NLEEs) in engineering and
mathematical physics. In this article, we use the enhanced modified simple equation
method to find the exact solutions of NLEEs via the Burger-Fisher equation and the
modified Volterra equations and achieve exact solutions involving parameters. When
the parameters receive special values, the solitary wave solutions are derived from the
exact solutions. It is established that the enhanced modified simple equation method
offers a further influential mathematical tool for constructing exact solutions of NLEEs
in mathematical physics.
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1 Introduction
It is well known that nonlinear phenomena occur in various areas of science and engi-
neering, such as fluid mechanics, plasma, solid-state physics, biophysics, etc., and could
be modeled by nonlinear evolution equations (NLEEs). So, many NLEEs are widely em-
ployed to describe these complex physical phenomena. Thus, the issue is to look for exact
solutions of NLEEs which can help understand that the internal mechanism of intricate
physical phenomena plays a vital role. Consequently, many powerful and efficient meth-
ods and techniques, such as Darboux transformations method [], Bäcklund transforma-
tion method [], Hirota’s bilinear method [], Painlevé expansions method [], symmetry
method [], the tanh method [], the homogeneous balance method [], the Jacobi-elliptic
function method [], the (G′/G)-expansion method [–], F-expansion method [], the
exp-expansion method [, ], Exp-function method [–], the modified simple equa-
tion method [–], the generalized and improved (G′/G)-expansion method [], and
so on, were established to obtain exact traveling wave solutions of nonlinear physical phe-
nomena.

ut + uux + uxx + u( – u) =  ()
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and the modified Volterra equations

⎧
⎨

⎩

ut + αux – u + uv = ,

vt + βvx + v – uv = .
()

Eq. () not only arises in genetics, biology, heat and mass transfer, but also acts as a pro-
totype model for describing the interaction between the reaction mechanism, convection
effect and diffusion transport []. Eq. (), also known as the predator-prey equations, is
a pair of nonlinear evolution equations frequently used to describe the dynamics of bio-
logical systems with competition, disease and mutualism [].

The article is organized as follows. In Section , the enhanced modified simple equa-
tion method is discussed. In Section , we apply this method to the nonlinear evolution
equations pointed out above. In Section  and  discussions and conclusions are given,
respectively.

2 The enhanced modified simple equation method
The proposed method can be described as follows. Suppose that we have a nonlinear evo-
lution equation in the form

F(u, ut , ux, uxx, . . .) = , ()

where F is a polynomial of u and its partial derivatives, in which the highest order deriva-
tives and nonlinear terms are involved. In the following, we give the main steps of this
method.

Step . Using the generalized wave transformation

u(x, t) = u(ξ ), ξ = p(t)x + q(t), ()

where p(t) and q(t) are differentiable functions of t, from () and () we have the following
ODE:

F
[
u,

(
ṗ(t)x + q̇(t)

)
u′, p(t)u′, . . .

]
= , ()

where · ≡ d/dt,′ ≡ d/dξ .
Step . Suppose that Eq. () has the formal solution

u(ξ ) =
N∑

k=

Ak(t)
[
ψ ′(ξ )
ψ(ξ )

]k

, ()

where Ak(t) are functions of t, Ak(t) and ψ(ξ ) are unknown functions to be determined
later such that AN �= .

Step . Determine the positive integer N in Eq. () by considering the homogeneous
balance between the highest order derivatives and the nonlinear terms in Eq. ().

Step . Substitute Eq. () into Eq. (), calculate all the necessary derivatives u′, u′′, . . . of
the unknown function u(ξ ) and obtain the function ψ(ξ ). As a result, a polynomial of ψ ′(ξ )

ψ(ξ )
and its derivatives can be obtained. Then we gather all the terms in this polynomial of the
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same power of ψ(ξ )–j, where j ≥ , and equate all the coefficients of these terms to zero.
This operation yields a system of equations which can be solved to find Ak(t) and ψ(ξ ).
Consequently, we can get the exact solutions of Eq. ().

3 Applications
In this section, we will employ the enhanced modified simple equation method to obtain
the exact solutions and then the solitary wave solutions of the Burger-Fisher equation and
the modified Volterra equations.

3.1 The Burger-Fisher equation
The exact solutions of Eq. () have been investigated by using different methods, e.g., the
exp-function method in Ref. [] and the (G′/G)-expansion method in Ref. []. In this
subsection, we will solve Eq. () by using the enhanced modified simple equation method.
First, we use the generalized wave transformation () to reduce Eq. () to the following
ODE:

[
ṗ(t)x + q̇(t)

]
u′ + p(t)uu′ + p(t)u′′ + u( – u) = . ()

Taking the homogenous balance between the highest-order derivative u′′ and the nonlin-
ear term of the highest order u, we obtain N = . Therefore, the solution of Eq. () has
the formal solution

u(ξ ) = A(t) + A(t)
[

ψ ′(ξ )
ψ(ξ )

]

, ()

where A(t) and A(t) are functions of t to be determined later such that A(t) �= . It is
easy to see that

u′ = A(t)
(

ψ ′′

ψ
–

ψ ′

ψ

)

, ()

u′′ = A(t)
(

ψ ′′′

ψ
– 

ψ ′ψ ′′

ψ + 
ψ ′
ψ

)

. ()

Substituting Eqs. ()-() into Eq. () and equating all the coefficients of ψ, ψ–, ψ–x,
ψ–, ψ–x and ψ– to zero, we respectively obtain

A
(t) – A(t) = , ()

p(t)ψ ′′′ +
[
q̇(t) + p(t)A(t)

]
ψ ′′ +

[
 – A(t)

]
ψ ′ = , ()

ṗ(t)A(t)ψ ′′ = , ()
[
p(t)A(t) – p(t)

]
ψ ′′ –

[
q̇(t) + p(t)A(t) – A(t)

]
ψ ′ = , ()

ṗ(t)A(t)ψ ′ = , ()

p(t)A(t)ψ ′ – p(t)A
 (t)ψ ′ = . ()

Eqs. (), (), () and () give the results

p(t) = k, A(t) = k, A(t) = , A(t) = ,

where k is a constant of integration. Let us now discuss the following cases.
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Case . If A(t) = , Eq. () and Eq. () reduce to

kψ ′′′ + q̇(t)ψ ′′ + ψ ′ = , ()

ψ ′ =
k

k – q̇(t)
ψ ′′. ()

Substituting Eq. () into Eq. (), we conclude that

ψ ′′′

ψ ′′ =
kq̇(t) – q̇(t) + k

q̇(t)k – k . ()

Integrating Eq. () with respect to ξ yields

ψ ′′ = c(t) exp

[
kq̇(t) – q̇(t) + k

q̇(t)k – k ξ

]

. ()

Substituting Eq. () into Eq. (), we conclude that

ψ ′ =
kc(t)

k – q̇(t)
exp

[
kq̇(t) – q̇(t) + k

q̇(t)k – k ξ

]

, ()

and then

ψ = c(t) +
kc(t)

q̇(t) – kq̇(t) – k exp

[
kq̇(t) – q̇(t) + k

q̇(t)k – k ξ

]

, ()

where c(t), c(t) and q(t) are arbitrary functions of t. Now the exact solution of Eq. () has
the form

u(x, t) =
kc(t)
k–q̇(t) exp[ kq̇(t)–q̇(t)+k

q̇(t)k–k ξ ]

c(t) + kc(t)
q̇(t)–kq̇(t)–k exp[ kq̇(t)–q̇(t)+k

q̇(t)k–k ξ ]
. ()

If we set c(t) = ±, c(t) = q̇(t)–kq̇(t)–k

k in Eq. (), then we have the following solitary-like
wave solutions:

u(x, t) =
q̇(t) – kq̇(t) – k

k – kq̇(t)

{

 + tanh

[
kq̇(t) – q̇(t) + k

q̇(t)k – k

(
kx + q(t)

)
]}

, ()

u(x, t) =
q̇(t) – kq̇(t) – k

k – kq̇(t)

{

 + coth

[
kq̇(t) – q̇(t) + k

q̇(t)k – k

(
kx + q(t)

)
]}

. ()

Case . If A(t) = , Eqs. () and () reduce to

ψ ′′′

ψ ′′ =
q̇(t)

k – kq̇(t)
. ()

Similar to case , we conclude that

ψ = c(t) +
kc(t)
q̇(t)

exp

[
q̇(t)

k – kq̇(t)
ξ

]

, ()
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where c(t), c(t) and q(t) are arbitrary functions of t. Now the exact solution of Eq. () has
the form

u(x, t) =  +
kc(t)
k–q̇(t) exp[ q̇(t)

k–kq̇(t)ξ ]

c(t) + kc(t)
q̇(t) exp[ q̇(t)

k–kq̇(t)ξ ]
. ()

If we set c(t) = ±, c(t) = q̇(t)
k in Eq. (), then we have the following solitary-like wave

solutions:

u(x, t) =  +
q̇(t)

k – kq̇(t)

{

 + tanh

[
q̇(t)

k – kq̇(t)
(
kx + q(t)

)
]}

, ()

u(x, t) =  +
q̇(t)

k – kq̇(t)

{

 + coth

[
q̇(t)

k – kq̇(t)
(
kx + q(t)

)
]}

. ()

3.2 The modified Volterra equations
Now we will study the enhanced modified simple equation method to solve Eq. () in the
following way.

Using the generalized wave transformation

⎧
⎨

⎩

u(x, t) = u(ξ ), ξ = p(t)x + q(t),

v(x, t) = v(ξ ), ξ = p(t)x + q(t),
()

where p(t) and q(t) are differentiable functions of t, we have the following ODE:

⎧
⎨

⎩

[ṗ(t)x + q̇(t) + αp(t)]u′ – u + uv = ,

[ṗ(t)x + q̇(t) + βp(t)]v′ + v – uv = .
()

Balancing the highest order derivative u′, v′, and the nonlinear term of the highest order uv,
yields N = . Through the enhanced modified simple equation method, for N =  Eq. ()
become

⎧
⎨

⎩

u(ξ ) = A(t) + A(t)[ ψ ′(ξ )
ψ(ξ ) ],

v(ξ ) = B(t) + B(t)[ ψ ′(ξ )
ψ(ξ ) ],

()

where A(t), B(t), A(t) and B(t) are functions of t to be determined later such that A(t) �=
 and B(t) �= . It is easy to see that

⎧
⎨

⎩

u′ = A(t)( ψ ′′
ψ

– ψ ′
ψ ),

v′ = B(t)( ψ ′′
ψ

– ψ ′
ψ ).

()

Substituting Eqs. ()-() into () and equating all the coefficients of ψ, ψ–, ψ–x,
ψ–, and ψ–x to zero yield a set of over-determined differential equations with respect
to {ξ , A(t), A(t), B(t), B(t), p(t), q(t)}. Solving these over-determined differential equa-
tions, we obtain the following results: p(t) = k, A(t) = B(t) =  or A(t) = B(t) = ,
A(t) = –q̇(t) – βk, B(t) = q̇(t) + αk, q(t) are arbitrary functions of t.
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Case . If A(t) = B(t) = , therefore, the general form of solutions of Eqs. () can be
expressed by

⎧
⎪⎪⎨

⎪⎪⎩

u(x, t) = [–q̇(t) – βk]c(t)
exp[ 

q̇(t)+αk ξ ]

c(t)+c(t)[q̇(t)+αk] exp[ 
q̇(t)+αk ξ ]

,

v(x, t) = [q̇(t) + αk]c(t)
exp[ –

q̇(t)+βk ξ ]

c(t)–c(t)[q̇(t)+βk] exp[ –
q̇(t)+βk ξ ]

.
()

If we set c(t) = c(t) = ±, c(t) = 
q̇(t)+αk and c(t) = –

q̇(t)+βk in Eqs. (), then we have the
following solitary-like wave solutions:

⎧
⎨

⎩

u(x, t) = – q̇(t)+βk
[q̇(t)+αk] { + tanh[ 

[q̇(t)+αk] (kx + q(t))]},
v(x, t) = – q̇(t)+αk

[q̇(t)+βk] { + tanh[ –
[q̇(t)+βk] (kx + q(t))]},

()

and
⎧
⎨

⎩

u(x, t) = – q̇(t)+βk
[q̇(t)+αk] { + coth[ 

[q̇(t)+αk] (kx + q(t))]},
v(x, t) = – q̇(t)+αk

[q̇(t)+βk] { + coth[ –
[q̇(t)+βk] (kx + q(t))]}.

()

Case . If A(t) = B(t) = , the exact solutions of Eqs. () can be expressed by

⎧
⎪⎪⎨

⎪⎪⎩

u(x, t) =  – [q̇(t) + βk]c(t)
exp[ 

q̇(t)+βk ξ ]

c(t)+c(t)[q̇(t)+βk] exp[ 
q̇(t)+βk ξ ]

,

v(x, t) =  + [q̇(t) + αk]c(t)
exp[ –

q̇(t)+αk ξ ]

c(t)–c(t)[q̇(t)+αk] exp[ –
q̇(t)+αk ξ ]

.
()

If we set c(t) = c(t) = ±, c(t) = 
q̇(t)+βk and c(t) = –

q̇(t)+αk in Eqs. (), then we have the
following solitary-like wave solutions:

⎧
⎨

⎩

u(x, t) = 
 { – tanh[ 

[q̇(t)+βk] (kx + q(t))]},
v(x, t) = 

 { – tanh[ –
[q̇(t)+αk] (kx + q(t))]},

()

and
⎧
⎨

⎩

u(x, t) = 
 { – coth[ 

[q̇(t)+βk] (kx + q(t))]},
v(x, t) = 

 { – coth[ –
[q̇(t)+αk] (kx + q(t))]}.

()

Remark Solutions (), (), (), (), (), (), (), () can be calculated and
checked by hand. And if q(t) is a linear function, the solitary wave solutions are derived
from Eqs. (), (), (), (), (), (), () and (). When q(t) is not a linear func-
tion, we can find a rich variety of exact and fresh solutions of the Burger-Fisher and the
modified Volterra equations.

4 Discussions
It should be mentioned that, to the authors’ knowledge, this is the first attempt to solve
the Burger-Fisher and the modified Volterra equations with the enhanced modified simple
equation method. The advantages of the method over the modified simple equation (MSE)
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is that the method provides more general and larger amount of new exact traveling wave
solutions with several free parameters. Besides, by means of the enhanced modified simple
equation method, the exact solutions to these equations have been gained in this article
without using the symbolic computing software, such as Mathematica and Maple, since
the computations are very simple.

5 Conclusions
In this letter, we considered the Burger-Fisher and the modified Volterra equations. We
put forth the enhanced modified simple equation method for the solitary-like wave solu-
tions and the solitary solutions of these nonlinear equations. This study reveals that the
enhanced modified simple equation method is quite efficient and practically well suited
to be used in finding exact solutions of NLEEs. Also, we observe that the promising and
powerful method can be applied to many other NLEEs in mathematical physics.
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