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Abstract
This article shows epidemic model, earlier suggested in ordinary differential equation
philosophy, can be extended to fractional order on a reliable agenda of biological
comportment. A set of domains for the model wherein allvariables are limited is
established. Furthermore, the stability and existence of steadiness points are studied.
We present the evidence that the endemic equilibrium (EE) point is locally
asymptotically stable when reproduction number R0 > 1. This outcome is attained via
the linearization statement for fractional differential equations (FDEs). The worldwide
asymptotic stability of a disease-free point, when R0 < 1, is also verified by comparison
theory for fractional differential equations. The numeric replications for diverse
consequences are carried out, and data attained are in good agreement with
theoretical outcomes, displaying a vital perception about the use of the set of
fractional coupled differential equations to model babesiosis disease and tick
populations.

Keywords: bovine babesiosis; stability; predictor-corrector technique; reproduction
number

1 Introduction
Bovine babesiosis (BB) is communicated by the bite of ticks and is the most important dis-
ease to attack bovine populations in humid areas. In hot and warm areas there is great fi-
nancial loss due to bovine death by BB, with decrease of bovine products and by-products.
Besides, the environment conditions in those regions favor the survival and reproduction
of ticks, so bovines have an enduring interaction with these vectors []. What is more,
the vertical spread in bovines and ticks is likely to happen when the ovaries of the female
ticks are plague-ridden by parasites []. The behavior dynamics of syndromes has been
considered for a stretched period and is an important issue in the real world. The most
important model that can be used to interpret the disease characteristic of epidemics is the
susceptible-infected-recovered (SIR) model that was developed by Kermack and McKen-
drick []. Various types of diseases are studied by this type of ordinary differential equa-
tion system. Aranda et al. [] introduced the epidemiological model for bovine babesio-
sis and tick populations disease. In this work the qualitative dynamics behavior is deter-
mined by the reproduction number R. If the threshold parameter R <  is proved by the
LaSalle-Lyapunov theorem, then the solution converges to the disease free equilibrium
(DFE) point. However, if R > , the merging is to the EE point by numerical imitations. In
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recent years, the theory of networks epidemiological model has been introduced in the lit-
erature. The purpose of this modification is to have a better understanding and prediction
of epidemic patterns and intervention measures. For more details, see [–].

Leibniz, one of the originators of ordinary calculus, introduced the concept of fractional
calculus in a memo transcribed in . In latest eras, FDEs have become one of the most
important topics in mathematics and have received much consideration and growing cu-
riosity due to the options of unfolding nonlinear systems and due to their prospective
applications in physics, control theory, and engineering [–]. The benefit of FDE sys-
tems is that they allow greater degrees of freedom and incorporate the memory effect in
the model. Due to this fact, they were introduced in epidemiological modeling systems.
In [], a fractional order for the dynamics of A (HN) influenza disease was studied by
numerical simulations. Pooseh et al. [] and Diethelm [] introduced fractional dengue
models. In this article the parameters of equations obtained in the field research do not
reproduce well the evolution of the disease in the case of entire order model. However,
when we consider the fractional system with the same parameters obtained in the field,
the data are better adjusted, which shows an advantage of the fractional system. In []
the parameter θ is associated with a memory effect. In [], the authors attribute to θ the
memory information of the dengue diseases. In this article, we ponder on the fractional
order system linked with the development of BB disease and tick populations. We intro-
duce a broad view of the classical model presented by Aranda et al. []. The generalization
is attained by changing the ordinary derivative with the fractional Caputo derivative. It is
easy to see that when θ =  we return to the classical model. For the construction of this
model by Aranda et al. [], the compartments of populations and the biological hypothe-
sis are used. This argument is well established in the disease transmission theory. Aranda
et al. use theorems well established in the literature for ordinary differential systems. To
prove our results, it is necessary to use tools different from those used for the integer or-
der. This is due to the fact that the versions of La-Salle invariance theorem used by Aranda
et al. are not found in the literature for fractional-order systems. Therefore, we emphasize
that the work presents collaboration in this direction when using the comparison theory
for fractional-order systems to verify the worldwide stability of DFE point of the disease
by introducing a new type of results in the literature. On the other hand, we also have
a test on the native asymptotic stability of EE point, a result that was just enunciated by
Aranda et al. []. We obtain a generalization of all results in []. Our simulation shows that
the fractional model has great potential to describe the real problem without the need for
adjustment of parameters obtained in the field research. This is due to a greater flexibility
of adjustment obtained with the introduction of the new parameter.

Fractional calculus represents a generalization of the ordinary differentiation and inte-
gration to non-integer and complex order []. The generalization of differential calculus
to non-integer orders of derivatives can be traced back to Leibnitz []. The main reason
for using integer order models was the absence of solution methods for fractional differen-
tial equations. It is an emerging field in the area of applied mathematics and mathematical
physics such as chemistry, biology, economics, image, and signal processing, and it has
many applications in many areas of science and engineering [], for example, viscoelas-
ticity, control theory, heat conduction, electricity, chaos and fractals, etc. []. Various
applications, like in the reaction kinetics of proteins, the anomalous electron transport in
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amorphous materials, the dielectrical or mechanical relation of polymers, the modeling
of glass forming liquids and others, are successfully performed in numerous papers [].

The physical and geometrical meaning of the non-integer integral containing the real
and complex conjugate power-law exponent has been proposed. Finding examples of real
systems described by the fractional derivative is an open issue in the area of fractional
calculus []. Since integer order differential equations cannot precisely describe the ex-
perimental and field measurement data, as an alternative approach, non-integer order
differential equation models are now being widely applied [, ]. The advantage of
fractional-order differential equation systems over ordinary differential equation systems
is that they allow greater degrees of freedom and incorporate memory effect in the model.
In other words, they provide an excellent tool for the description of memory and hered-
itary properties which were not taken into account in the classical integer order model
[]. The calculus of variations is widely applied for some disciplines like engineering,
pure and applied mathematics. Moreover, the researchers have recently proved that the
physical systems with dissipation can be clearly modeled more accurately by using frac-
tional representations []. Recently, most of the dynamical systems based on the integer
order calculus have been modified into the fractional order domain due to the extra de-
gree of freedom and the flexibility which can be used to precisely fit the experimental data
much better than in the case of the integer order modelling.

Purohit and Kalla [] discussed the generalized fractional partial differential equations
involving the Caputo time-fractional derivative and the Liouville space-fractional deriva-
tives. The solutions of these equations are obtained using Laplace and Fourier transforms.
Also Purohit [] discussed the generalized fractional partial differential involving the Hil-
fer time-fractional derivative and the space-fractional generalized Laplace operators oc-
curring in quantum mechanics. Chouhan et al. [] presented the method for deriving
the solution of the generalized forms of fractional differential equation and Volterra-type
differential equation. Nisar et al. [] discussed a generalized fractional kinetic equation
involving generalized Bessel function of the first kind. Also some of interesting nonlinear
models and fractional models have been discussed in [–].

This article is organized in four segments. Introduction is the first segment in which
we elaborate on some history of fractional calculus. In Section , we elaborate notations
related to the concept of FDEs. In Section , we ponder on the fractional-order model
linked with the dynamics of bovine babesiosis and tick populations. Qualitative dynamics
of the model are resoluted by the elementary reproduction number. We provide a com-
prehensive investigation for the global asymptotical stability of DFE point and the native
asymptotical stability of EE point. In Section , numerical imitations are offered to validate
the main outcomes, and finally conclusion is drawn in Section .

2 Preliminaries
For several ages, there have been numerous definitions that fit the notion of fractional
derivatives [, ]. In this article the Riemann-Liouville fractional derivative, the Caputo
fractional derivative, and Grunwald-Letnikov definitions are presented. Firstly, we intro-
duce the definition of Riemann-Liouville fractional integral

Jϕg(x) =


�(ϕ)

∫ x


(x – s)ϕ–g(s) ds, ()

where ϕ > , f ∈ L(R+), and �(·) is gamma function.
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The Riemann-Liouville derivative is given by

Dϕ
Rg(x) =

dm

dxm

[
Jm–ϕg(x)

]
=


�(m – ϕ)

dm

dxm

∫ x


(x – s)m–ϕ–g(s) ds, m –  ≤ ϕ < m. ()

The Caputo fractional derivative (CFD) is agreed to be as follows:

Dϕ
Cg(x) = Jm–ϕ

[
dm

dxm g(x)
]

=


�(m – ϕ)

∫ x


(x – s)m–ϕ–g(m)(s) ds, ()

where m is the first integer not less than ϕ.
The Grunwald-Letnikov derivative is given by

aDϕ
xk

g(x) = lim
h→


hϕ

[ x–a
h ]∑

j=

(–)j
(

ϕ

j

)
g(x – jh), ()

where [·] means the integer part.
The Laplace transform of the CFD is specified by

L
[
Dϕ

Cg(x)
]

= sϕG(s) –
n–∑
j=

g(j)()sϕ–j–. ()

The Mittag-Leffler function is defined by the following infinite power series:

Eα,β (z) =
∞∑

k=

zk

(αk + β)
. ()

The Laplace transform of the functions is

L
[
tβ–Eα,β

(±atα
)]

=
sα–β

sα ∓ a
. ()

Let α,β > , and z ∈C, and the Mittag-Leffler functions satisfy the equality given by The-
orem . in []

Eα,β (z) = zEα,α+β (z) +


�(β)
. ()

Demarcation  A function F is Holder continuous if there are non-negative amounts G,
ν such that

∥∥F(u) – F(v)
∥∥ ≤ G‖u – v‖ν , ()

for all u, v in the purview of F and ν is the Holder exponent. We represent the space of
Holder-continuous functions by G,ν .

We improve a generalized inequality, in which the core appraisal system is a vector frac-
tional order system.
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A non-negative (resp., positive) vector ν means that each constituent of ν is non-
negative (resp., positive). We represent a non-negative (resp., positive) vector by  ≤≤ ν

(resp.,  � ν).
Consider the fractional order system

Dϕ
Cw(t) = g(t, w), ()

with the initial condition w() = w, where Dϕ
Cw(t) = (Dϕ

Cw(t), Dϕ
Cw(t), Dϕ

Cw(t), . . . ,
Dϕ

Cwm(t))H ,  < ϕ < , w(t) ∈ F ⊂ Rm, t ∈ [, H) (H ≤ ∞), F is an open set,  ∈ F , and
g : [, H) ×F → Rm is continuous in t and mollifies the Lipschitz condition

∥∥g
(
t, w′) – g

(
t, w′′)∥∥ ≤ W

∥∥w′ – w′′∥∥, t ∈ [, H) ()

for all w′, w′′ ∈ � ⊂F , where W >  is a Lipschitz constant.

Theorem  (see []) Let u(t), t ∈ [, H), be the solution of system (). If there exists a vec-
tor function w = (w, w, . . . , wm)H : [, H) →F such that wi ∈ G,ν , ϕ < w < , i = , , . . . , m,
and

Dϕ
Cw ≤≤ g(t, w), t ∈ [, H]. ()

If w() ≤≤ u, u∈F , then w ≤≤ u, t ∈ [, H].

Let g: F →Rm, F ∈Rm, we consider the following system of fractional order:

Dϕ
Cx(t) = g(x), x() = x. ()

Demarcation  We say that E is an equilibrium point of () if and only if g(E) = .

Remark  When ϕ ∈ (, ), the fractional system Dϕ
Cx(t) = g(x) has identical equilibrium

points as the arrangement x′(t) = g(x).

Definition  The equilibrium point E of autonomous system () is said to be stable if for
all ε > , ε >  exists such that if ‖x – E‖ < ε, then ‖x – E‖ < ε, t ≥ ; the equilibrium point
E of autonomous system () is said to be asymptotically unwavering if limt→∞ x(t) = E.

Theorem  ([]) The equilibrium points of system () are locally asymptotically stable
if all eigenvalues λi of the Jacobian matrix J , calculated in the equilibrium points, satisfy
| arg(λi)| > ϕ π

 .

3 Mathematical model
In this segment, we introduce the fractional model for the BB in bovine and tick popula-
tions. We use the assumptions in Aranda et al. [] and introduce the following hypotheses.

(i) The total of bovine population TB(t) is distributed into three-fold
sub-populations:
(a) the susceptible XB(t) that can turn into infected;
(b) the infected YB(t), that is, bovines infected by Babesia parasite;
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(c) the recovered or controlled ZB(t) that have been cured.
(ii) The birth rate factor of bovine is represented by μB. The birth rate μ is presumed

to be equal to the normal demise.
(iii) TT (t) is the entire population of ticks that is distributed into two-fold

sub-populations:
(a) XT (t) is tick population which may become infected by the disease;
(b) ticks infected by Babesia parasite are represented by YT (t).

(iv) The birth rate factor of ticks is represented by μT , and it is presumed to be equal
to the normal demise rate.

(v) A susceptible bovine can move to the infected sub-population YB(t) as of an
effective transmission due to a sting of an infected tick at rate βB.

(vi) A susceptible tick may be infected if there exists an active diffusion when it bites a
diseased bovine at rate βT .

(vii) We presumed a hundred percent vertical diffusion in the bovine population μB. In
the tick population it befalls with possibility  – p, where p is the possibility that a
susceptible tick was born from an infected one.

(viii) A fraction λB of the diseased bovine is controlled, i.e., free from Babesia parasite.
(ix) A fraction α of the controlled bovine can yield to the susceptible state, α ∈ (, ).
(x) Identical involvement is presumed, i.e., all susceptible bovines have equal

possibility to the diseased, and all susceptible ticks have equal possibility to the
diseased.

In the above conventions, the transmission dynamics of babesiosis disease to bovine and
tick populations can be modeled by the following system []:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

X ′
B = μB(XB + ZB) + αZB – μBXB – βBXB

YT
TT

,

Y ′
B = μBYB + βBXB

YT
TT

– (μB + λB)YB,

Z′
B = λBYB – (μB + α)ZB,

X ′
T = μT (XT + pYT ) – μT XT – βT XT

YB
TB

,

Y ′
T = –μT YT + βT XT

YB
TB

+ ( – p)YB.

()

3.1 Fractional order model
In current years, a substantial attention to the fractional calculus has been shown, which
allows us to consider integration and differentiation of any order. To a large extent, this is
due to the uses of fractional calculus to problems in different areas of research. The benefit
of FDE systems is that they allow greater degrees of freedom and incorporate memory
effect in the model. Now we describe a new system of FDEs to model the babesiosis disease
in bovine and tick populations, and in this system φ ∈ (, ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dφ XB = μB(XB + ZB) + αZB – μBXB – βBXB
YT
TT

,

Dφ YB = μBYB + βBXB
YT
TT

– (μB + λB)YB,

Dφ ZB = λBYB – (μB + α)ZB,

Dφ XT = μT (XT + pYT ) – μT XT – βT XT
YB
TB

,

Dφ YT = –μT YT + βT XT
YB
TB

+ ( – p)YB.

()
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Simplifying system (), using the bovine and tick populations’ constants TB and TT , re-
spectively, and introducing the proportions

U =
XB

TB
, V =

YB

TB
, W =

ZB

TB
, X =

XT

TT
, Z =

XT

TT
, ()

we attain the following fractional system that defines the dynamics of bovine quantity in
each class:

⎧⎪⎪⎨
⎪⎪⎩

Dφ U = (μB + α)( – U – V ) – βBUZ,

Dφ V = βBUZ – λBV ,

Dφ Z = βT ( – Z)V – μT pZ.

()

Defined in the region � = {(U , V , Z) :  ≤ U + V ≤ ,  ≤ Z ≤ }, the system is called com-
mensurate if φ = φ = φ = φ; otherwise it is called incommensurate. The chaotic behavior
of the system, when the total order of system is less than three, is an interesting topic, and
it is connected to the fractal phase space in dynamics. Next we show all variables of the
babesiosis model living in � for all time t ≥ . To establish our first result, we introduce
the following lemma.

Lemma  (see []) Let the function f ∈ C[t, t] and its fractional derivative Dϕ
Cf (t) ∈

C[t, t] for  ≤ ϕ < , and t, t∈ R; then one has

f (t) = f (t) +


�(ϕ)
Dϕ

Cf (τ )(t – t)ϕ ()

for all t ∈ (t, t], where t ≤ τ < t.

Therefore, considering the interval [, t] for any t > , this theorem infers that the
function f : [, t] → R

+ is non-increasing on (, t) if Dϕ
Cf (t) ≤  for all t ∈ (, t) and

non-decreasing on [, t] if Dϕ
Cf (t) ≥  for all t ∈ (, t).

Preposition  The region � = {(U , V , Z) :  ≤ U + V ≤ ,  ≤ Z ≤ } is a positive invariant
set for system of ().

Proof By Theorem . and Remark . in [], we obtain the global presence and rareness
of the elucidations of ().

We denote �+ = {(U , V , Z) : U ≥ , V ≥ , Z ≥ } if (U(), V (), Z()) ∈ U-axis =
{(U , , ) : U ≥ }. Similarly, we can define V -axis and Z-axis. The vector field from ()
confined in U-axis assumes the form F(U , V , Z) = ((μB + α)( – U(t)), , ) by the Laplace
transform properties (), and we obtain the elucidation

(U , V , Z)

=
(
tϕEϕ,ϕ+

(
–(μB + α)tϕ

)
(μB + α) + Eϕ,

(
–(μB + α)tϕ

)
U(), , 

) ∈ U-axis. ()

By the same argument, if (U(), V (), Z()) ∈ V -axis, we obtain

(U , V , Z) =
(
, Eϕ,

(
–λBtϕ

)
V (), 

) ∈ V -axis, ()
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and if (U(), V (), Z()) ∈ Z-axis, we have

(U , V , Z) =
(
, , Eϕ,

(
–μT ptϕ

)
V ()

) ∈ V -axis. ()

This proves that axes U , V , and Z are solutions and positive invariant sets.
Now, we will prove that �+ is a positive invariant set. By way of contradiction, sup-

pose there exists a solution (U , V , Z) such that (U(), V (), Z()) ∈ �+ and the solution
(U , V , Z) to escape of �+. From the previous argument and by the unicity of solutions,
(U , V , Z) does not cross the axis. After the previous conclusion, there are three possibili-
ties.

(i) If the solution (U , V , Z) escapes by the plane U(t) = , then there exists t such that
U(t) = , V (t) > , and Z(t) > ; and for all t > t sufficiently near t, we have
U(t) < . Alternatively, Dϕ

CU(t)|t=t = (μB + α)( – V (t)) > (μB + α) > . From
Lemma , we obtain U ≥ U(t) ≥  for all t sufficiently near t, and it is not true.

(ii) If the solution (U , V , Z) escapes by the plane V (t) = , then there exists t such that
U(t) > , V (t) = , and Z(t) > ; and for all t > t sufficiently near t,we have
V (t) < . Alternatively, Dϕ

CV (t)|t=t = βBU(t)Z(t) > . From Lemma , we obtain
V (t) ≥ V (t) ≥  for all t sufficiently near t, and it is not true.

(iii) If the solution (U , V , Z) escapes by the plane Z(t) = , then there exists t such that
U(t) > , V (t) > , and Z(t) = ; and for all t > t sufficiently near t,we have
Z(t) < . On the other hand, Dϕ

CZ(t)|t=t = βT V (t) > . From Lemma , we obtain
Z ≥ Z(t) ≥  for all t sufficiently near t, and it is false.

Therefore, we obtain U ≥ , V ≥ , and Z ≥  for all t ≥ .
If  ≤ U() + V () ≤ , from the first two equations of system (), we get

Dϕ
C
(
U(t) + V (t)

)
= (μB + α) – (μB + α)

(
U(t) + V (t)

)
– λBV (t)

≤ (μB + α) – (μB + α)
(
U(t) + V (t)

)
. ()

Applying the Laplace transform in the previous inequality, we have

λϕL
(
U(t) + V (t)

)
– λϕ–(U() + V ()

)

≤ λ–(μB + α) – (μB + α)L
(
U(t) + V (t)

)
. ()

That can be written as

L
(
U(t) + V (t)

) ≤ (μB + α)
λϕ–(+ϕ)

λϕ + μB + α
+

λϕ–

λϕ + μB + α

(
U() + V ()

)
. ()

From the Laplace transform properties () and (), we infer that

(
U(t) + V (t)

) ≤ tϕEϕ,ϕ+
(
–(μB + α)tϕ

)
(μB + α) + Eϕ,

(
–(μB + α)tϕ

)(
U() + V ()

)

≤ tϕEϕ,ϕ+
(
–(μB + α)tϕ

)
(μB + α) + Eϕ,

(
–(μB + α)tϕ

)
= . ()

Therefore, we have that  ≤ U(t) + V (t) ≤ .
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On the other hand, if  ≤ Z(t) ≤ , from system () we obtain

Dϕ
C(Z) = βT ( – Z)V – μT pZ

≤ (βT + μT p)( – Z).
()

The proof of  ≤ Z(t) ≤  is similar to the previous case. Finally, we conclude that � is a
positive invariant set. �

3.2 Existence and stability of equilibrium points
There are two equilibrium points of system (). Motivated by Aranda et al. [], we will
use the following threshold parameter. For more details on the threshold parameter, see
[, ].

R =
βBβT

λBμT p
. ()

The value that R yields can specify the situations in which the epidemic is likely. In the
drug using context, R tells us, on average, the total number of people that each single
drug user will initiate to drug use through the drug using career.

3.3 R0 sensitivity analysis
To examine the sensitivity of R to each of its factors,

∂R

∂βB
=

βT

λBμT p
> ,

∂R

∂βT
=

βB

λBμT p
> ,

∂R

∂λB
= –

βBβT

(λB)μT p
< ,

∂R

∂μT
= –

βBβT

λB(μT )p
< ,

∂R

∂p
= –

βBβT

λBμT (p) < .

Thus R is increasing with βB & βT and is decreasing with λB, μT & p.

3.4 Stability of DFE
System () has the DFE, i.e., E = (, , ), for all the values of the factors in this system,
whereas only if R > , there is a (unique) EE point, i.e., E = (U∗, V ∗, Z∗), where

U∗ =
λB{(μB + α)βT + pμT (μB + α + λB)}

βT {α(βB + λB) + μBλB + βB(μB + λB)} ,

V ∗ =
(μB + α)(βBβT – λBμT p)

βT {α(βB + λB) + μBλB + βB(μB + λB)} ,

Z∗ =
(μB + α)(βBβT – λBμT p)

(μB + α)βBβT + (μB + α + λB)βBμT p

()

in the interior of �.
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The Jacobian matrix of system () is

J =

⎡
⎢⎣

–(μB + α) – βBZ(t) –(μB + α) –βBU(t)
βBZ(t) –λB βBU(t)

 βT ( – Z(t)) –βT V (t) – μT p

⎤
⎥⎦ . ()

Now the Jacobian of system () at the DFE (, , ) is

J(E) =

⎡
⎢⎣

–(μB + α) –(μB + α) –βB

 –λB βB

 βT –μT p

⎤
⎥⎦ .

(
∗)

Consequently, the eigenvalues of J(E) are

λ = –(μB + α),

λ =
–(λB + μT p) +

√
(λB – μT p) + βBβT


,

λ =
–(λB + μT p) –

√
(λB – μT p) + βBβT


.

()

It is easy to see that λ and λ are negative numbers. If R < , we observe

(λB – μT p) + βBβT = λ
B + μ

T p – λBμT p + βBβT

< λ
B + μ

T p + λBμT p = (λB + μT p).

So,

λ =
–(λB + μT p) +

√
(λB – μT p) + βBβT



<
–(λB + μT p) +

√
(λB + μT p)


= 

and

λ =
–(λB + μT p) –

√
(λB – μT p) + βBβT



<
–(λB + μT p) –

√
(λB + μT p)


= –(λB + μT p) < .

Therefore λ <  and λ < ; then we have that all the eigenvalues of the Jacobian matrix
at E are negative, i.e., | arg(λi)| = π , i = , , , and from Theorem , we have that the DFE
point E is locally asymptotically stable. Consequently, we have the following theorem.

Theorem  If R < , then the disease-free point E is locally asymptotically stable.

Now we will prove the global asymptotic stability of the DFE point.

Theorem  If R < , then the disease-free point E is worldwide asymptotically stable.
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Proof Suppose that (U , V , Z) is the elucidation of system (). Creating the variation of
variables M =  – U , we obtain the new system

⎧⎪⎪⎨
⎪⎪⎩

Dφ M = –(μB + α)M + (μB + α)V + βBZ – βBMZ,

DφV = βB( – M)Z – λBV ,

Dφ Z = βT ( – Z)V – μT pZ.

()

It is easy to see that

–(μB + α)(M – V ) + βB( – M)Z ≤ –(μB + α)(M – V ) + βBZ,

βB( – M)Z – λBV ≤ βBZ – λBV ,

βT ( – Z)V – μT pZ ≤ βT V – μT pZ.

()

From the above, it follows that the solutions (M, V , Z) of system () satisfy the differential
inequality

⎧⎪⎪⎨
⎪⎪⎩

Dφ M ≤ –(μB + α)(M – V ) + βBZ,

Dφ V ≤ βBZ – λBV ,

Dφ Z ≤ βT V – μT pZ.

()

Moreover, inspired by (), let (S, T , W ) be the solution of the fractional linear system

⎧⎪⎪⎨
⎪⎪⎩

Dφ S = –(μB + α)(S – T) + βBW ,

Dφ T = βBW – λBT ,

Dφ W = βT T – μT pW

()

with ICs (S(), T(), W ()) ∈ �. The Jacobian of system () is

J =

⎡
⎢⎣

–(μB + α) –(μB + α) –βB

 –λB βB

 βT –μT p

⎤
⎥⎦ . ()

So the Jacobian at the DFE is

J(E) =

⎡
⎢⎣

–(μB + α) –(μB + α) –βB

 –λB βB

 βT –μT p

⎤
⎥⎦ ,

(
∗)

and the eigenvalues of J(E) are the same as derived above. Here we have proved that
all the eigenvalues are negative. Thus | arg(λi)| = π , i = , , , and we can conclude that
limt→∞ S = , limt→∞ T = , limt→∞ W = . So, by Theorem , we have (M, V , Z) ≤≤
(S, T , W ). This implies that limt→∞(M, V , Z) = (, , ), and it follows that (U , V , Z) con-
verges to the DFE point E = (, , ), when R < . �
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3.5 Stability of EE
Now we will show the local stability of the EE point E with the help of some definitions
[, ].

Definition  Let Q be any matrix of real and complex numbers with order n × m, let
qi,...,jk be the minor of A determined by the rows (i, . . . , ik) and the columns (j, . . . , jk), with
 ≤ i < i < · · · < ik ≤ n, and  ≤ j < j < · · · < jk ≤ m. The kth multiplicative compound
matrix of Qk of Q is the ( n

k )× ( n
k ) matrix whose entries, written in a lexicographic order, are

qi,...,jk . When Q is an n × m matrix with columns q, q, . . . , qk , Qk is the exterior product
q ∧ q ∧ · · · ∧ qk .

Definition  Let Q = qij be an n × n matrix, its kth additive compound matrix of Qk of
Q is the ( n

k ) × ( n
k ) matrix given by Q[k] = |D(I + hQ)(k)| = , where D is a differentiation

with respect to h. For any integers i = , . . . , ( n
k ), let (i) = (i, . . . , ik) be the ith member in the

lexicographic ordering of all k-tuples of integers such that  ≤ i < i < · · · < ik ≤ in, then

bij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

qii + · · · + qik ik , if (i) = (j),

(–)r+sqir is , if one entry of is of (i) does not occur in (j) and js
does not occur in (i),

, if (i) differs from (j) in two or more enteries.

Remark  For n = , the matrices Q[k] are as follows:

Q[] = Q, Q[] =

⎡
⎢⎣

q + q q –q

q q + q q

–q q q + q

⎤
⎥⎦ ,

Q[] = q + q + q.

()

Lemma  Let O be a  ×  real matrix. If tr(O) < , det(O) < , and det(O[]) <  are all
negative, then all eigenvalues of O have negative real parts.

Theorem  If R > , (μB + α) > βT , and (μB + α) > βB, then EE point E is locally asymp-
totically stable.

Proof The Jacobian matrix of system () is given in ().
From ()

tr
(
J(E)

)
= –(μB + α) – βBZ – λB – βT V – μT p < .

To see that det(J(E)) < , we proceed as follows.
Since

–(μB + α) =
–βBUZ

( – U – V )
, λB =

βBUZ
V

, μT p =
βT ( – Z)V

Z
, ()
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substituting () in (), we have

det
(
J(E)

)
=

∣∣∣∣∣∣∣

–βBUZ
(–U–V ) – βBZ –βBUZ

(–U–V ) –βBU

βBZ – βBUZ
V βBU

 βT ( – Z) –βT V – βT (–Z)V
Z

∣∣∣∣∣∣∣
.

On simplification

det
(
J(E)

)
=

∣∣∣∣∣∣∣

βBZ(–V )
(–U–V )

–βBUZ
(–U–V ) –βBU

βBZ – βBUZ
V βBU

 βT ( – Z) – βT V
Z

∣∣∣∣∣∣∣
. ()

We can easily see that det(J(E)) < , because all the parameters are positive constants.
Now we will show that det(J [](E)) < .
For this,

det
(
J [](E)

)

=

∣∣∣∣∣∣∣
–(μB + α) – βBZ – λB βBU βBU

βT – βT Z –(μB + α) – βBZ – βT V – μT p –(μB + α)
 βBZ –λB – βT V – μT p

∣∣∣∣∣∣∣
,

det
(
J [](E)

)

= –
[(

(μB + α) + βBZ + λB
)(

(μB + α) + βBZ + βT V + μT p
)
(λB + βT V + μT p)

]

+ βTβBU( – Z)[βBZ + λB + βT V + μT p] –
(
(μB + α) + βBZ + λB

)(
(μB + α)βBZ

)

≤ –
[(

(μB + α) + βBZ + λB
)(

(μB + α) + βBZ + βT V + μT p
)
(λB + βT V + μT p)

]

+ βTβB[βBZ + λB + βT V + μT p] –
(
(μB + α) + βBZ + λB

)(
(μB + α)βBZ

)

= –(λB + βT V + μT p)
[
(μB + α + βBZ + λB)(μB + α + βBZ + βT V + μT p) – βTβB

]

– βBZ
[
(μB + α + λB + βT V )(μB + α) – βTβB

]
.

Analyzing the terms of equality above, we have

(μB + α + βBZ + λB)(μB + α + βBZ + βT V + μT p) > βTβB,

(μB + α + λB + βT V )(μB + α) > βTβB.

Then det(J [](E)) < , and from Lemma , the EE point E is locally asymptotically stable.
Hence the end of the proof of Theorem . �

4 Numerical simulations
In this section, we simulate different possible scenarios to check the effect that some val-
ues of fractional exponent φ have on the dynamics of bovine babesiosis disease and tick
populations. For comparison purposes, we will use the same parameters as Aranda et al.
[].
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4.1 Adams-Bashforth-Moulton method
For numerical elucidations of system (), one can use the generalized Adams-Bashforth-
Moulton method. To provide the estimated elucidation by means of this algorithm, con-
sider the following nonlinear fractional differential equation []:

Dα
t y(t) = f

(
t, y(t)

)
,  ≤ t ≤ T ,

y(k)() = y(k)
 , k = , , , . . . , m – , where m = [α].

()

The equation is equivalent to the Volterra integral equation

y() =
m–∑
k=

y(k)


tk

k!
+


�(α)

∫ t


(t – s)α–f

(
x, y(t)

)
ds. ()

Diethelm et al. used the predictor-corrector scheme [–] based on the Adams-
Bashforth-Moulton algorithm to integrate (). Also, by setting h = T

N , tn = nh, and
n = , , , . . . , N ∈ Z+, () can be discretized as follows []:

Un+ = U() +
hφ

�(φ + )
(
(μB + α)

(
 – Up

n+ – V p
n+

)
– βBUp

n+Zp
n+

)

+
hφ

�(φ + )

n∑
j=

aj,n+
(
(μB + α)( – Uj – Vj) – βBUjZj

)
,

V n+ = V () +
hφ

�(φ + )
(
βBUp

n+Zp
n+ – λBV p

n+
)

+
hφ

�(φ + )

n∑
j=

aj,n+(βBUjZj – λBVj),

Zn+ = Z() +
hφ

�(φ + )
(
βT

(
 – Zp

n+
)
V p

n+ – μT pZp
n+

)

+
hφ

�(φ + )

n∑
j=

aj,n+
(
βT ( – Zj)Vj – μT pZj

)
,

where

Up
n+ = U() +


�(φ)

n∑
j=

bj,n+
(
(μB + α)( – Uj – Vj) – βBUjZj

)
,

V p
n+ = V () +


�(φ)

n∑
j=

bj,n+(βBUjZj – λBVj),

Zp
n+ = Z() +


�(φ)

n∑
j=

bj,n+
(
βT ( – Zj)Vj – μT pZj

)
,
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with

aj,n+ =

⎧⎪⎪⎨
⎪⎪⎩

nφi+ – (n – φi)(n + )φi , j = ,

(n – j + )φi+ + (n – j)φi+ – (n – j + )φi+,  ≤ j ≤ n,

, j = n + ,

and

bj,n+ =
hφi

φi

(
(n – j + )φi – (n – j)φi

)
,  ≤ j ≤ n,

with i = , , .

4.2 Disease-free equilibrium

Figure 1 Dynamic of bovine babesiosis disease U, V , and Z with φ1 = φ2 = φ3 = 1.

Figure 2 Dynamic of U with φ1 = 1 (solid line), φ1 = 0.9 (dotted dashed line), φ1 = 0.8 (dashed line),
and φ1 = 0.7 (dotted line).RETRACTED A
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Figure 3 Dynamic of V with φ2 = 1 (solid line), φ2 = 0.9 (dotted dashed line), φ2 = 0.8 (dashed line),
and φ2 = 0.7 (dotted line).

Figure 4 Dynamic of Z with φ3 = 1 (solid line), φ3 = 0.9 (dotted dashed line), φ3 = 0.8 (dashed line),
and φ3 = 0.7 (dotted line).

4.3 Endemic equilibrium

Figure 5 Dynamic of bovine babesiosis disease U, V , and Z with φ1 = φ2 = φ3 = 1.RETRACTED A
RTIC
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Figure 6 Dynamic of U with φ1 = 1 (solid line), φ1 = 0.9 (dotted dashed line), φ1 = 0.8 (dashed line),
and φ1 = 0.7 (dotted line).

Figure 7 Dynamic of V with φ2 = 1 (solid line), φ2 = 0.9 (dotted dashed line), φ2 = 0.8 (dashed line),
and φ2 = 0.7 (dotted line).

Figure 8 Dynamic of Z with φ3 = 1 (solid line), φ3 = 0.9 (dotted dashed line), φ3 = 0.8 (dashed line),
and φ3 = 0.7 (dotted line).

5 Conclusions
We have obtained the worldwide asymptotical stability of disease-free equilibrium using
comparison theory of fractional differential equations since R < . Therefore the proof
that the endemic equilibrium point, when R > , μB + α > βB, and μB + α > βT , is locally
asymptotically stable was attained using the linearization theorem for fractional differen-
tial equations. Moreover, if R < , then the system evolves to the endemic equilibrium
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point. To return to a disease-free status, the R value should be greater than . R <  is
achieved when parameters βB and βT are very small or when parameters λB, μT , and p
are very large. Therefore, a biological strategy to combat babesiosis disease would have to
focus on one of these parameters. These results were confirmed by numerical simulations
using the Adams-Bashforth-Moulton algorithm. Numerical simulations of an improved
epidemic model with arbitrary order have shown that fractional order is related to relax-
ation time, in other words, the time taken to reach equilibrium. The chaotic behavior of
the system when the total order of system is less than three is sketched. A comparison
between four different values of the fractional order is shown in Figures , , , and , with
the same control parameter as μB = ., α = ., βB = ., λB = .,
βT = ., μT = ., p = .. Figures , , , and  show different behaviors for
φ = ., φ = ., φ = ., and φ = . For all four cases, the disease evolves to the disease-
free equilibrium point and endemic equilibrium point; however, it is slower when φ = .,
when φ = ., it is slower than φ = .. And it is much slower when φ = .. Numerical
simulations with different order show that the system decays to equilibrium condition like
power law t–φ , as previously established in []. This result provides an important insight
about the use of fractional order to model the dynamics of babesiosis disease and tick
population. The proof shown here should be used as a guide in the study of equilibrium
conditions in similar problems, such as tuberculosis [], malaria [], or toxoplasmosis
disease [].
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