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Abstract
We discuss a new nine-point fourth-order and five-point second-order accurate
finite-difference scheme for the numerical solution of two-space dimensional
convection-diffusion problems. The compact operators are defined on a
quasi-variable mesh network with the same order and accuracy as obtained by the
central difference and averaging operators on uniform meshes. Subsequently, a
high-order difference scheme is developed to get the numerical accuracy of order
four on quasi-variable meshes as well as on uniform meshes. The error analysis of the
fourth-order compact scheme is described in detail by means of matrix analysis.
Some examples related with convection-diffusion equations are provided to present
performance and robustness of the proposed scheme.
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1 Introduction
The two-dimensional elliptic equations

–ε∇U + a(x, y)Ux + b(x, y)Uy + c(x, y)U + d(x, y) = , (x, y) ∈ �, (.)

will be considered to develop numerical algorithms for computing the concentration
U(x, y) of mass transfer. Here, ε is viscosity coefficient or diffusion coefficient ( < ε � )
and (a(x, y), b(x, y)) > (β,β) > (, ) on � (closure of � = (, ) × (, )) is velocity vector,
β,β are finite constants. We also assume that a(x, y), b(x, y), c(x, y), d(x, y) are continuous
and c(x, y) ≥  on � in order to ensure the existence of a solution. Let the following smooth
boundary data be given:

U(, y) = ϕ(y), U(, y) = ϕ(y),  ≤ y ≤ , (.)

U(x, ) = ψ(x), U(x, ) = ψ(x),  ≤ x ≤ . (.)

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13662-017-1115-4
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-017-1115-4&domain=pdf
http://orcid.org/0000-0001-7884-8640
mailto:navnitjha@sau.ac.in


Jha and Kumar Advances in Difference Equations  (2017) 2017:64 Page 2 of 13

The second-order partial derivatives in the mathematical model (.) describe the dif-
fusion process, while the first-order partial derivatives are associated with the convection
phenomenon. When ε → , convection dominates the diffusion process, and the solution
values of (.)-(.) exhibit boundary layer behavior, that is, solution changes rapidly in a
small region, while outside the small region solution behavior is smooth. In two dimen-
sions, the boundary layer may occur at x =  and x = , known as normal layer, and/or at
y =  and y = , known as parallel layer, while the one-dimensional convection-diffusion
problems exhibit only normal boundary layer []. Such type of a differential equation is said
to be singularly perturbed. The solution of singular perturbation problems approaches a
discontinuous limit as a small positive quantity (ε), known as perturbation parameter, ap-
proaches zero. Thus, the analysis and numerical solution of singular perturbation prob-
lems are significant.

The convection-diffusion problems occur in the area of fluid dynamics and several
branches of applied mathematics. In the convection-diffusion process, transport phenom-
ena prevail diffusion, whose effects are restricted to a small part of the domain and so-
lution values exhibit multiple characters for small values of diffusion parameter. Thus,
a second-order discretization of the Laplace operator may not ensure the consistency and
stability of the numerical scheme []. The numerical schemes developed by the applica-
tion of an upwind scheme and a central difference operator result in an unstable solu-
tion and are deficient in computational order. Any attempt to obtain solution values up to
the desired accuracies may land up in massive computing time despite a well-structured
block-tridiagonal matrix of the difference equations received by the application of an up-
wind scheme and central differences. Thus, acquiring improved finite-difference methods
for convection-diffusion problems has a significant impact on numerical approximations
of ordinary and partial differential equations [–]. The compact scheme amongst the
various finite-difference replacements of convection-diffusion problems (.)-(.) has re-
ceived more attention due to a minimal width of stencils in the x- and y-coordinate direc-
tions and easy computations. In contrast, high-order difference schemes formulated with
non-compact stencils yield a higher bandwidth of the iteration matrix, and this involves
large arithmetic operations. Numerical simulations with high-order compact difference
schemes depict more accurate solution values on quasi-variable meshes as compared to
some high-order compact scheme on a uniform mesh network. This happens because a
truncation error in a finite-difference approximation depends upon the derivative of the
variable as well as mesh spacing. Therefore, to attain uniformly distributed truncation
errors, it is essential to employ non-uniform meshes, i.e., finer meshes in the region for
largely deviated derivatives and coarse meshes for a smooth function. In this manner, the
error disperses almost uniformly over the domain of integration and renders an accurate
solution to a greater extent. Thus, high-order finite-difference discretization formulated
on a quasi-variable mesh network leads to more precise numerical solutions and brings
unconditional numerical stability [].

Mishra and Sanyasiraju [] presented an exponential compact scheme of high-order
accuracy for convection-dominated equations. Mohanty and Setia [] described fourth-
order discretization of two-space dimensional elliptic equations by means of off-step uni-
formly spaced meshes. Some fourth-order finite-difference discretizations of two-space
dimensional linear and non-linear elliptic problems can be found in [–] and refer-
ences therein. Ghaffar [] obtained a high accuracy compact scheme using non-uniform
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meshes for the Helmholtz equation and solved the difference equations with the help
of the multigrid method. Jha [, ] developed a third-order exponential expanding
mesh compact scheme for mildly non-linear elliptic equations. The Galerkin and Petrov-
Galerkin finite element method for determining the approximate solution values to the
two-dimensional convection-diffusion problems were discussed by Hegarty []. A nine-
point tailored finite point method for solving convection-diffusion-reaction equation was
developed by Shih et al. []. In the context of one dimension, the finite-difference re-
placement of a convection-diffusion equation was extensively discussed in [, ], and
non-uniform mesh compact finite-difference operators for first- and second-order ordi-
nary derivatives associated with the Numerov fourth-order method were obtained in [,
]. Finite-difference methods for convection-diffusion problems showing exponential or
parabolic boundary layer behavior were described in detail by Roos et al. [].

The work presented in this article is organized in the following manner. In Section , we
describe two-dimensional quasi-variable meshes to deal with parallel and normal layer by
means of mesh parameters in the x- and y-directions. Section  discusses compact oper-
ators and high-order approximations of first- and second-order derivatives on minimum
stencils. A new compact scheme of fourth-order accuracy using quasi-variable meshes
has been obtained. The suggested scheme is analyzed for the convergence and the bounds
of the discretization error are obtained in Section . Numerical simulations with some
convection-diffusion problems that exhibit normal and/or parallel layers are carried out
in Section . The paper is concluded at last with remarks and further scope.

2 Quasi-variable meshes
Let L and M be positive integers, and divide the domain [, ] × [, ] into (L + )(M + )
cells with the coordinates (xl, ym), where x = , xl = xl– + hl , l = ()L, xL+ =  and y = ,
ym = ym– + km, m = ()M, yM+ = . The mesh step-size is determined by the stretch-
ing functions hl+ = hl( + αhl), l = ()L and km+ = km( + βkm), m = ()M, by suit-
ably chosen normalization α̃ = αh and β̃ = βk. Since the length of a diffusion space
along the x-direction is one, for a given value of α̃, the relation

∑L+
l= hl =  easily pro-

duces the first mesh step-size h in the x-direction (and similarly in the y-direction).
As an example, h = /( + α̃) if L = . In particular, if α = β = , the meshes are uni-
formly distributed and h = hl, k = km,∀l, m. The mesh step-size is increasing if and only if
hl < hl+∀l = ()L ⇔ hl < hl( + αhl) ⇔ α > . In a similar manner, we can prove that the
mesh step-size is decreasing when α < . Therefore, the mesh-step sequences {hl}L+

l= and,
similarly, {km}M+

m= are monotonic.
Let us consider the uniform mesh partition of the domain P =[, ] = {pl = lh, l = ()L +

}, h = /(L + ). Since the mesh-step sequence is monotonic, it is possible to define a
one-one onto map ψ : P −→P such that ψ(pl) = xl, l = ()L + , and the Jacobian J(p) =
dψ(p)/dp is bounded above and below by some positive constants as  < n ≤ J(p) ≤ N <
∞,∀p ∈P .

Therefore,

J(p) >  ⇒ dψ(p)
dp

>  ⇒ ψ(pl+) – ψ(pl)
pl+ – pl

>  ⇒ xl+ – xl

(l + )h – lh
> 

⇒ hl+ >  ∀l.
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Also, J(p) ≤ N ⇒ dψ(p)
dp ≤ N ⇒ ψ(pl+)–ψ(pl)

pl+–pl
≤ N ⇒ xl+–xl

(l+)h–lh ≤ N .
That is,

 < hl+ ≤ Nh, ∀l ⇒ max
l

|hl+| ≤ Nh ⇒ ‖h‖∞ ≤ Nh =
N

L + 
≤ N

L
, (.)

where h = [h, h, . . . , hL+]t .
This implies

‖h‖∞ = O(h) = O
(


L

)

and hence, ‖h‖∞ −→  as L −→ ∞. (.)

Thus, the maximum step-size along the x-direction diminishes with the growth of mesh
points. Likewise, the maximum step-size along the y-direction approaches to zero if M
is very large. Thus, we observed that the mesh step-size is inversely proportional to the
number of mesh points.

Sundqvist and Veronis [] initially discussed such a mesh network in the context of
wind-driven ocean circulation, and later the application to digital electrochemistry was
described by Britz []. Some compact operators related to a quasi-variable mesh were
mentioned in the literature [, ].

3 Finite-difference schemes and compact operators
The operators used to obtain first- and second-order partial derivatives with a mini-
mum stencil width are known as compact. The high-order finite-difference replacement
of equation (.) requires discretization of partial derivatives, and thus we consider the
following approximations:

Uxx
l,m+δ = h–

l
[
( + αhl)–(( + αhl)–Ul+,m+δ – Ul,m+δ

)
+ ( + αhl)–Ul–,m+δ

]
, (.)

Uyy
l+δ,m = k–

m
[
( + βkm)–(( + βkm)–Ul+δ,m+ – Ul+δ,m

)
+ ( + βkm)–Ul+δ,m–

]
, (.)

⎡

⎢
⎣

Ux
l–,m+δ

Ux
l,m+δ

Ux
l+,m+δ

⎤

⎥
⎦= M(hl,α)

⎡

⎢
⎣

Ul–,m+δ

Ul,m+δ

Ul+,m+δ

⎤

⎥
⎦ ,

⎡

⎢
⎣

Uy
l+δ,m–

Uy
l+δ,m

Uy
l+δ,m+

⎤

⎥
⎦= M(km,β)

⎡

⎢
⎣

Ul+δ,m–

Ul+δ,m

Ul+δ,m+

⎤

⎥
⎦ , (.)

where δ = ,±, and for τ ∈ {hl, km}, γ ∈ {α,β},

M(τ ,γ ) =


τ ( + γ τ )

⎡

⎢
⎣

–( + γ τ ) ( + γ τ ) –
–( + γ τ ) γ τ 

 + γ τ ( + γ τ ) – – γ τ ( + γ τ )  + γ τ

⎤

⎥
⎦ .

Now, we define the following operators:

PxUl,m = hlU
x
l,m, PyUl,m = kmUy

l,m, (.)

QxUl,m = h
l Uxx

l,m, QyUl,m = k
mUyy

l,m. (.)

These operators are commutative and derived with a minimum number of stencils
essential to discretize the highest-order partial derivatives present in the convection-
dominated equation (.). In particular, if the meshes are uniformly spaced, that is, h =
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hl, k = km,∀l, m, then Px = μxδx and Qx = δ
x , where μx and δx are averaging and central

differencing operators in the x-direction [].
By means of operators (.)-(.) it is easy to approximate partial- and mixed-order

derivatives of an analytic function G(x, y) at the mesh point (xl, ym) in the following man-
ner:

Gx
l,m = h–

l PxGl,m + O
(
h

l
)
, Gy

l,m = k–
m PyGl,m + O

(
k

m
)
, (.)

Gxx
l,m = h–

l QxGl,m + O
(
h

l
)
, Gyy

l,m = k–
m QyGl,m + O

(
k

m
)
, (.)

Gxy
l,m = h–

l k–
m PxPyGl,m + O

(
h

l + k
m
)
. (.)

An immediate application of these operators to equation (.) yields a five-point second-
order accurate discretization scheme. Such kind of a second-order method on a variable
mesh network is known as supra-convergent scheme [].

Now, we describe a new fourth-order scheme for linear Poisson’s equation and then
extend it to the elliptic equation (.), which involves convection terms Ux = ∂U/∂x and
Uy = ∂U/∂y.

By means of a linear combination of functional values Gρ,σ = G(xρ , yσ ), (ρ,σ ) ∈ D =
{l – , l, l + } × {m – , m, m + }, the finite-difference replacement for a simple form of
two-space dimensional elliptic equations (Poisson’s equation)

–ε∇U + G(x, y) =  (.)

is given by

–∇
hl ,km Ul,m + h

l k
mLGl,m = Tl,m, l = ()L, m = ()M, (.)

where

∇
hl ,km ≡ ε

(
k

mQx + h
l Qy

)
+

ε


[
αh

l PxQy + βk
mPyQx

]

+
ε


[
h

l ( + αhl) + k
m( + βkm)

]
QxQy (.)

is a discrete form of the Laplace operator ∇ = ∂
x + ∂

y ,

L≡  +
hl


αPx +

km


βPy +

hlkm


αβPxPy +




( + αhl)Qx +



( + βkm)Qy, (.)

and Tl,m is the local truncation error calculated as

Tl,m = h
l k

mO
(
h

l + h
l k

m + k
m
)
. (.)

The eighth-order of local truncation error obtained here is irrespective of mesh param-
eters α,β being chosen zero or non-zero. Since the operator L in equation (.) is multi-
plied by h

l k
m, this accomplishes an accuracy of order four employed with quasi-variable

meshes (α �=  ∨ β �= ) or uniform meshes (α = β = ).



Jha and Kumar Advances in Difference Equations  (2017) 2017:64 Page 6 of 13

Our main aim is to extend the fourth-order method (.) to the convection-dominated
equation (.) that comprises first-order partial derivatives in the x- and y-directions along
with the function U(x, y).

Let us consider

Fρ,σ = aρ,σ Ux
ρ,σ + bρ,σ Uy

ρ,σ + cρ,σ Uρ,σ + dρ,σ , (ρ,σ ) ∈ D̂= D ∼ {
(l, m)

}
, (.)

U
x
l,m = Ux

l,m + hl
(
αFl+,m + αFl–,m + αUyy

l+,m + αUyy
l–,m

)
, (.)

U
y
l,m = Uy

l,m + km
(
βFl,m+ + βFl,m– + βUxx

l,m+ + βUxx
l,m–

)
, (.)

Fl,m = al,mU
x
l,m + bl,mU

y
l,m + cl,mUl,m + dl,m, (.)

where αi,βi, i = () are unknown parameters to be measured in such a way that

L(Fl,m – Gl,m) = O
(
h

l + h
l k

m + k
m
)
. (.)

By making use of (.), (.)-(.) and (.), the algebraic calculations give us

α = –( + αhl)/
[
ε( + αhl)

]
, α = –α – αh

l /
[
ε

(
 + αh

l + βk
m
)]

,

β = –( + βkm)/
[
ε( + βkm)

]
, β = –β – βk

m/
[
ε

(
 + αh

l + βk
m
)]

,

α = –εα, α = –εα, β = –εβ, β = –εβ.

As a result, we obtain a single compact discretization scheme

–∇
hl ,km Ul,m + h

l k
mLFl,m = Tl,m, l = ()L, m = ()M, (.)

that numerically approximates equation (.) with fourth-order accuracy on a quasi-
variable mesh network as well as on a uniform mesh network. The discretization (.)
yields a non-symmetric matrix after incorporating the boundary values (.)-(.) as

U,m = ϕ(ym), UL+,m = ϕ(ym), m = ()M + , (.)

Ul, = ψ(xl), Ul,M+ = ψ(xl), l = ()L + . (.)

The lexicographical ordering of the unknown values Ul,m in equation (.) gives rise to
a block tri-diagonal linear system of equations and can be easily computed by means of
the Gauss-Seidel iterative formula. For the programming, we must neglect the truncation
error Tl,m from equation (.) and replace the exact value Ul,m = U(xl, ym) by its approx-
imate value ul,m.

4 Convergence analysis and error bounds
In this section, we discuss the upper bounds of discretization errors and derive the nec-
essary convergence conditions for scheme (.). The compact scheme (.) determines
the exact solution values U = [Ul,m], and in terms of the mesh-ratio parameter ζl,m = km/hl ,
it can be expressed as

–∇
hl ,km Ul,m + h

l ζ

l,mLFl,m = Tl,m, l = ()L, m = ()M, (.)
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where Tl,m = O(h
l ) and

∇
hl ,km = h–

l ∇
hl ,km ≡ ε

(
ζ 

l,mQx + Qy
)

+
ε


hl

[
αPxQy + βζ 

l,mPyQx
]

+
ε


[
 + αhl + ζ 

l,m( + βhlζl,m)
]
QxQy.

Our aim is to compute approximate solution vector u = [ul,m] that satisfies

–∇
hl ,km ul,m + h

l ζ

l,mLfl,m = , l = ()L, m = ()M, (.)

where

fp,q = aρ,σ ux
ρ,σ + bρ,σ uy

ρ,σ + cρ,σ uρ,σ + dρ,σ ≈ Fρ,σ , (ρ,σ ) ∈ D̂, (.)

fl,m = al,mux
l,m + bl,muy

l,m + cl,mul,m + dl,m ≈ Fl,m (.)

and the formula for ux
ρ,σ , uy

ρ,σ , (ρ,σ ) ∈ D̂ is obtained from (.), and ux
l,m, uy

l,m are obtained
from (.)-(.) upon replacing the symbol U by u.

Let ε = U – u be the discretization error vector and εl,m = Ul,m – ul,m, l = ()L, m = ()M
be the point-wise error.

By subtracting (.) from (.), the discretization error satisfies the relation

–∇
hl ,kmεl,m + h

l ζ

l,mLEl,m = Tl,m, l = ()L, m = ()M, (.)

where Eρ,σ = Fρ,σ – fρ,σ , (ρ,σ ) ∈D and to be explicit

Eρ,σ = aρ,σ εx
ρ,σ + bρ,σ εy

ρ,σ + cρ,σ ερ,σ , (ρ,σ ) ∈ D̂, (.)

El,m = al,mε
x
l,m + bl,mε

y
l,m + cl,mεl,m. (.)

Here, the expressions for εx
ρ,σ , εy

ρ,σ , (ρ,σ ) ∈ D̂ and ε
x
l,m, εy

l,m are obtained from equations
(.) and (.)-(.), respectively, upon interchange of U by ε.

Representing the system of linear equations (.) in a matrix-vector form, one obtains

Mε + T = 0, (.)

where T(hl) = [Tl,m]t
l=()L,m=()M is the sixth-order error vector and M = [Mi,j]i,j=()LM =

[RS R] is the block tri-diagonal coefficient matrix and, in particular, when maxl hl → ,
that is, for a sufficiently small value of mesh spacing, we find

R =
ε



[
–( + ζ 

i,j) –( – ζ 
i,j) –( + ζ 

i,j)
]

and

S =
ε



[
–(ζ 

i,j – ) ( + ζ 
i,j) –(ζ 

i,j – )
]

as tri-diagonal matrices.

Theorem . The block tri-diagonal matrix M is irreducible provided the mesh-ratio
parameter ζi,j ∈ (/

√
,

√
) for all i, j = ()LM.
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Proof It is evident that the matrix M has positive diagonal values since ζi,j is positive
for all i and j. Further, M has non-positive off-diagonal values provided /

√
 < ζi,j <

√
.

Now, if we label LM distinct points in the xy-plane as , , . . . , LM and draw an arrow from
i to j such that Mi,j �= , then, for any two distinct points i and j, there exists a directed path
that joins the ordered pair of nodes i and j. Therefore, the graph G(M) of the matrix M
is connected, and hence M is an irreducible matrix [, ]. This completes the proof. �

Theorem . For a sufficiently small value of mesh step-sizes and c(x, y) ≥ , the block
tri-diagonal matrix M is monotone.

Proof Let ζ = minl,m ζl,m, c = minl,m cl,m, l = ()L, m = ()M, and ϑj, (j = , . . . , LM) denote
the jth row element sum of the matrix M. Since c(x, y) ≥ , therefore c = minl,m c(xl, ym) ≥
. Thus, for a sufficiently small mesh step-size (i.e., maxl hl → ), the following asymptotic
bounds on the weak row sums can be computed:

ϑj ≥ 


ε
(
 + ζ ) > , j = , L,

ϑj ≥ ε > , j = ()L – ,

ϑ(r–)L+j ≥ εζ  > , r = ()M – , j = , L,

ϑ(r–)L+j ≥
⎧
⎨

⎩

cζ h
 , α > ,

cζ h
L+, α < ,

r = ()M – , j = ()L – , c ≥ 

ϑ(M–)L+j ≥ 


ε
(
 + ζ ) > , j = , L,

ϑ(M–)L+j ≥ ε > , j = ()L – .

Note that, except corresponding to the main diagonal, all of the weak row element sums
are positive and off-diagonal values of the matrix M are non-positive for sufficiently small
values of mesh step-size. Since M is irreducible (Theorem .), it follows that the matrix
M is monotone, and this completes the proof. �

Theorem . The matrix M is monotone if and only if the elements of the inverse matrix
M– are non-negative.

Proof See Henrici []. �

Theorem . If h = maxl hl , then ‖ε‖∞ ≤ O(h).

Proof By means of Theorems . and ., one obtains that the matrix M is invertible and
M– ≥ . For notational convenience, we denote M– = [M–

i,j ]i,j=()LM, and I is a matrix
of order LM ×  having all entries as one. Then the matrix identity M–(MI) = I gives
rise to

LM∑

j=

M–
i,j ϑj = , i = ()LM. (.)
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If h = maxl hl , then h = h for α <  and h = hL+ for α > . Thus, in view of each M–
i,j ≥ 

and ϑj > , relation (.) gives rise to the following inequalities for i = ()LM:

M–
i,j ≤ 

ϑj
≤ 

ε( + ζ )
+ O(h), j = , L,

L–∑

j=

M–
i,j ≤ 

minj=()L– ϑj
≤ 

ε
+ O(h),

M–∑

r=

M–
i,(r–)L+j ≤


minr=()M– ϑ(r–)L+j

≤ 
εζ  + O(h), j = , L,

M–∑

r=

L–∑

j=

M–
i,(r–)L+j ≤

⎧
⎪⎪⎨

⎪⎪⎩

∑LM
j= M–

i,j ϑj = , c = ,


min
j=()L–

r=()M–

ϑ(r–)L+j
≤ 

cζh + O(h), c > ,

M–
i,(M–)L+j ≤


ϑ(M–)L+j

≤ 
ε( + ζ )

+ O(h), j = , L,

L–∑

j=

M–
i,(M–)L+j ≤


minj=()L– ϑ(M–)L+j

≤ 
ε

+ O(h).

The matrix-vector norm in the following analysis is taken to be

∥
∥M–∥∥∞

= max
i=()LM

[
|M–

i, | +
∑L–

j= |M–
i,j | + |M–

i,L| + |M–
i,(M–)L+| +

∑L–
j= |M–

i,(M–)L+j|
+ |M–

i,LM| +
∑M–

r= (|M–
i,(r–)L+| +

∑L–
j= |M–

i,(r–)L+j| + |M–
i,rL|)

]

and ‖T‖∞ = maxl=()L |O(h
l )| ≈ O(h).

As a result of combining the above inequalities and equation (.), we obtain

‖ε‖∞ ≤ ∥
∥M–∥∥∞ ·‖T‖∞ ≤ 

cζ  h +



 + ζ  + ζ 

ε( + ζ )ζ  h + O
(
h). (.)

That is, ‖ε‖∞ ≤ O(h) and ‖ε‖∞ →  as h = max hl → . This completes the proof. �

Theorem . corroborates the fourth-order convergence of the new compact scheme
(.) for obtaining the numerical solution values of convection-dominated problems
(.)-(.) in the quasi-variable mesh network. Note that the restriction c = minl,m cl,m ≥ 
in (.) pertains the assumption c(x, y) ≥  on � in Section .

5 Comparison of numerical and exact solution values
In order to examine the performance of the quasi-variable mesh compact finite differ-
ence method discussed in Section , we consider some examples having parallel and/or
normal boundary layers and investigate the nature of solution values. The maximum ab-
solute errors (E∞) and root mean squared errors (E) of analytical solution values Ul,m and
approximate solution values ul,m at the mesh point (xl, ym) and corresponding numerical
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Table 1 Accuracies in solution values at ε = 10–2 in Example 5.1

L + 1 α̃ β̃ E∞ E2 �∞ �2

4 0 0 7.62e–01 4.70e–01 – –
8 0 0 3.28e–01 1.24e–01 1.2 1.9
16 0 0 6.59e–02 1.68e–02 2.3 2.9
32 0 0 6.69e–03 1.28e–03 3.3 3.7
4 –0.900 –0.820 1.55e–00 6.07e–01 – –
8 –0.520 –0.340 7.39e–02 3.93e–02 4.4 3.9
16 –0.060 –0.090 3.28e–03 1.67e–03 4.5 4.6
32 –0.002 –0.007 4.01e–04 8.71e–05 3.1 4.3

convergence order are computed by means of the formulas

E =

[


LM

L∑

l=

M∑

m=

|Ul,m – ul,m|
]/

,

E∗
 =

[


(L + )(M + )

L+∑

l=

M+∑

m=

|Ul,m – ul,m|
]/

, � = log

[ E

E∗


]

,

E∞ = max
l=()L

m=()M

|Ul,m – ul,m|,

E∗
∞ = max

l=()L+
m=()M+

|Ul,m – ul,m|, �∞ = log

[E∞
E∗∞

]

.

The above estimates are obtained using quasi-variable meshes (α �=  or β �= ) as well
as for constant mesh step-size (α =  and β = ). To ease the computational work, we
have taken L = M, and Dirichlet’s boundary values are received from the known analytic
solutions. The Gauss-Seidel iterative method for the solution of linear difference equations
uses the tolerance of error as – []. Simulations with second-order accurate supra-
convergent scheme show slow converging results, and thus they are not mentioned in the
tabulated results. The Maple’s CodeGeneration tool symbolically obtained the compact
schemes, and C programming on the Macintosh operating system performed numerical
computing.

Example . ([, ]) Consider the singularly perturbed problems

ε∇U(x, y) =


 + y
Ux(x, y) –

 – ε( + y)
 + y

ey–x,  < x, y < 

that possess an analytic solution as U(x, y) = ey–x + ( + y)+/ε//ε . Given ε = –, the
behavior of the solution changes sharply and can be easily captured by means of the quasi-
variable mesh compact scheme as presented in Table .

Example . ([]) Consider the constant coefficients convection-diffusion problem

∇U(x, y) = ηUx(x, y) + ηUy(x, y) – δU(x, y) + g(x, y),  < x, y < .

The analytic solution is taken as U(x, y) = xyexy sin(πx) sin(πy), and thus g(x, y) can be
calculated accordingly. The convergence order with η = π , δ = π is reasonable with
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Table 2 Accuracies in solution values in Example 5.2 with η = 100π ,δ = 30π2

L + 1 α̃ β̃ E∞ E2 �∞ �2

4 0 0 5.82e–02 3.52e–02 – –
8 0 0 2.39e–02 1.16e–02 1.3 1.6
16 0 0 6.07e–03 2.38e–03 2.0 2.3
32 0 0 6.00e–04 2.02e–04 3.3 3.6
4 0.440 0.2900 7.39e–02 4.01e–02 – –
8 0.280 0.2700 8.58e–03 1.59e–03 3.1 4.7
16 0.103 0.1020 2.61e–04 8.93e–05 4.9 4.2
32 0.000 0.0423 4.35e–05 5.15e–06 2.6 4.1

Table 3 Accuracies in solution values with uniform meshes in Example 5.3

L + 1 α̃ β̃ E∞ E2 �∞ �2

Re = 1
4 0 0 4.15e+01 2.32e+01 – –
8 0 0 3.63e+01 1.78e+01 0.1 0.3
16 0 0 6.10e–01 2.66e–01 5.9 6.1
Re = 10
4 0 0 3.00e+01 1.19e+01 – –
8 0 0 2.62e+01 1.17e+01 0.2 0.03
16 0 0 1.03e–00 4.63e–01 4.7 4.7
Re = 103

4 0 0 1.84e+01 8.95e+00 – –
8 0 0 1.16e+01 4.85e+00 0.6 0.8
16 0 0 4.95e+00 8.42e–01 1.2 2.5
Re = 104

4 0 0 1.80e+01 8.84e+00 – –
8 0 0 1.14e+01 4.75e+00 0.6 0.8
16 0 0 4.86e+00 8.43e–01 1.2 2.5

coarse quasi-variable meshes, whereas the uniform mesh solution values deteriorate in
both order and accuracies as shown in Table .

Example . ([]) Consider the variable coefficient two-space dimensional convection-
diffusion equation on a rectangular domain  < x, y < :

ε∇U(x, y) =
(
x – 

)
(y – )Ux(x, y) + xy( – y)Uy(x, y) + g(x, y).

The analytical solution is U(x, y) = sin(πx) + sin(πx) + cos(πx) + cos(πx). Here,
ε = /Re and Re is the Reynolds number. Table  presents the error in solution values
from lower to higher Reynolds number ( ≤ Re ≤ ) by using the uniform mesh compact
scheme, and the expected computational order of accuracy is not achieved. At the same
time, the fourth-order compact method on quasi-variable meshes yields a satisfactory re-
sult as shown in Table .

6 Concluding remarks
We have proposed a compact finite-difference algorithm for finding fourth-order accu-
rate numerical solution values to the two-dimensional convection-diffusion problems on a
rectangular network. Based on the idea of supra-convergence that provides second-order
convergence on variable meshes, a new fourth-order convergent method is proposed on
quasi-variable meshes, and the application of the new scheme is illustrated with several
convection-diffusion problems exhibiting parallel and/or normal boundary layers. The
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Table 4 Accuracies in solution values with quasi-variable meshes in Example 5.3

L + 1 α̃ β̃ E∞ E2 �∞ �2

Re = 1
4 6.75 1.15 1.18e–02 9.94e–03 – –
8 0.70 0.60 1.08e–03 4.41e–04 4.1 4.5
16 0.12 0.10 8.65e–05 2.05e–05 3.6 4.4
Re = 10
4 6.75 1.15 1.77e–02 9.74e–03 – –
8 0.70 0.60 1.08e–03 4.41e–04 4.0 4.5
16 0.12 0.10 8.65e–05 2.05e–05 3.6 4.4
Re = 103

4 6.75 1.15 3.24e–02 2.38e–02 – –
8 0.70 0.60 1.08e–03 4.41e–04 4.9 5.8
16 0.12 0.10 8.55e–05 2.02e–05 3.7 4.4
Re = 104

4 6.75 1.15 1.36e–02 8.63e–03 – –
8 0.70 0.60 1.08e–03 4.41e–04 3.7 4.3
16 0.12 0.10 7.57e–05 1.86e–05 3.8 4.6

coarse quasi-variable meshes make the algorithm more efficient in comparison with uni-
formly spaced fine meshes despite the fact that both of them are fourth-order accurate
methods. The new method improves maximum absolute and root mean squared errors of
solution values as well as their computational order of convergence. It is possible to extend
such a technique to three-dimensional convection-diffusion problems.
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