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Abstract
We study the nonexistence of (nontrivial) global solutions for a class of fractional
integro-differential problems in an appropriate underlying space. Integral conditions
on the kernel, and for some degrees of the involved parameters, ensuring the
nonexistence of global solutions are determined. Unlike the existing results, the
source term considered is, in general, a convolution and therefore nonlocal in time.
The class of problems we consider includes problems with sources that are
polynomials and fractional integrals of polynomials in the state as special cases.
Singular kernels illustrating interesting cases in applications are provided and
discussed. Our results are obtained by considering a weak formulation of the problem
with an appropriate test function and several appropriate estimations.
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1 Introduction
We consider the initial value problem

⎧
⎨

⎩

(Dα
+ x)(t) + σ (Dβ

+ x)(t) ≥ ∫ t
 k(t – s)|x(s)|q ds, t > , q > ,

(I–α
+ x)(+) = c, c ∈R,

()

where Dα
+ and Dβ

+ are the Riemann-Liouville fractional derivatives of orders α and β ,
respectively,  ≤ β < α ≤  (see ()-()), and σ = , .

Problem () includes many interesting special cases. When α = , σ =  and k(t) = δ(t)
(the Dirac delta function), the equality in () reduces to the initial value for the Bernoulli
differential equation

⎧
⎨

⎩

x′(t) + x(t) = xq(t), t > , q > ,

x() = x,
()

for which the solution is

x(t) =
((

x–q
 – 

)
e(q–)t + 

) 
–q .
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This solution blows up in the finite time

Tb =


 – q
ln

(
 – x–q


)

if and only if the initial data x >  (see e.g. []).
The nonlinear Volterra integro-differential equation

x′(t) = –c +
∫ t


xq(s) ds, t > , q > , ()

can be transformed by differentiation into the second-order ordinary differential equation

x′′(t) = xq(t). ()

When c =
√


q+ xq+

 , x > , the solution of () is given by

x(t) =
(

 – q


√


q + 
t + x

–q




) 
–q

,

and it blows up in the finite time

Tb =


q – 

√
q + 


x

–q


 .

When α = σ = , β = , x() = x ≥  and k(t) is a positive and locally integrable function
with limt→∞

∫ t
 k(s) ds = ∞, Ma showed in [] that the solution of

x′(t) + x(t) =
∫ t


k(t – s)f

(
x(s)

)
ds, t > , ()

blows up in finite time if and only if, for some β > ,

∫ ∞

ν

(
s

f (s)

) 
β ds

s
< ∞ for any ν > . ()

Here f (t) is assumed to be continuous, nonnegative and nondecreasing for t > , f ≡  for
t ≤ , and limt→∞ f (t)

t = ∞. Clearly, if f (x(s)) = |x(s)|q in (), condition () simply means
that q > .

Recently, Kassim et al. showed in [] that the problem
⎧
⎨

⎩

(Dα
+ x)(t) + (Dβ

+ x)(t) ≥ tθ |x(t)|q, t > ,  < β ≤ α ≤ ,

(I–α
+ x)(+) = c, c ∈R,

has no global solution when c ≥ ,  < q ≤ θ+
–β

and θ > –β .
The authors in [] proved that all nontrivial solutions u ∈ C([, Tmax, C(RN ))) of the

initial value problem
⎧
⎨

⎩

ut – �u =
∫ t

 (t – s)–γ |u|q–u(s) ds, in (, T) ×R
N ,

u(, x) = u(x), in R
N ,

()
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where q > ,  ≤ γ <  and u ∈ C(RN ), blow up in finite time when u ≥  and q ≤
max{ 

γ
,  + –γ

(N–+γ )+ } ∈ (,∞]. See Remark  for the main difference of this result with
the present one. This will clarify our main contribution.

It is known from the definition of Riemann-Liouville fractional derivative that it uses in
someway all the history of the state through a convolution with a singular kernel. More-
over, in the case of fractional integro-differential equations, the source term may involve
additional singularities in the kernel. Because of all these issues, it is difficult to apply the
approaches and methods for integer order existing in the literature to the non-integer
case.

As is well known, studying the nonexistence of solutions for differential equations is as
important as studying the existence of solutions. The sufficient conditions for the nonex-
istence of solutions provide necessary conditions for the existence of solutions. Investigat-
ing the nonexistence of solutions for differential equations provides very important and
necessary information on limiting behaviors of many physical systems. It is also interest-
ing to know what could happen to these solutions in cases such as blowing up in finite
time or at infinity. In industry, knowing the blow-up in finite time can prevent accidents
and malfunction. It helps also improve the performance of machines and extend their life-
span.

There are many results in the literature on the existence of solutions for various classes of
fractional differential equations and fractional integro-differential equations (see [–]).
Agarwal et al. surveyed many of these results in []. They focused on initial and boundary
value problems for fractional differential equations with Caputo fractional derivatives of
orders between  and .

For the issue of nonexistence of local solutions and global solutions for fractional dif-
ferential equations, we refer to [–] and the references therein. However, to the best of
our knowledge, there are no investigations on the nonexistence of solutions for fractional
integro-differential inequalities of type ().

In this paper, we prove the nonexistence of (nontrivial) global solutions for the initial
value problem () under some integral conditions on the kernel k(t). The proof is based on
the test function method due to Mitidieri and Pohozaev [] adopted here to the fractional
case, see also [, , ]. For the purpose of studying the effect of considering one or two
fractional derivatives, we choose σ to be either  or .

Our results could be utilized to identify the limitations of many physical systems and
to analyze the behavior of solutions of some nonlinear fractional differential equations
and inequalities for which the explicit solution may not be available. Also, our results will
extend the abundant results on integer-order problems to the (limited results available for)
fractional-order problems.

The rest of this paper is organized as follows. In the next section we briefly recall some
necessary material from fractional calculus that we use in this paper. Section  is devoted
to the statements and proofs of our results. Some applications and special cases are given
in Section .

2 Preliminaries
In this section we introduce some notation, definitions and preliminary results from frac-
tional calculus.
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Let [a, b] be a finite interval of the real line R. The Riemann-Liouville left-sided and
right-sided fractional derivatives of order  ≤ α ≤  are defined by

(
Dα

a+ x
)
(t) = D

(
I–α

a+ x
)
(t), ()

(
Dα

b– x
)
(t) = –D

(
I–α

b– x
)
(t), ()

respectively, where D = d
dt . Iα

a+ and Iα
b– are the Riemann-Liouville left-sided and right-sided

fractional integrals of order α >  defined by

(
Iα

a+x
)
(t) =



(α)

∫ t

a
(t – s)α–x(s) ds, t > a,

(
Iα

b– x
)
(t) =



(α)

∫ b

t
(s – t)α–x(s) ds, t < b,

()

respectively, provided the right-hand sides exist. We define I
a+x = I

b– x = x. The function

 is the Euler gamma function. In particular, when α =  and α = , it follows from the
definition that

D
a+ x = D

b– x = x and D
a+ x = –D

b– x = Dx.

For more details about fractional integrals and fractional derivatives, the reader is referred
to the books [–].

We denote by Lp(a, b),  ≤ p < ∞, the set of Lebesgue real-valued measurable functions
f on [a, b] for which ‖f ‖Lp < ∞, where

‖f ‖Lp =
(∫ b

a

∣
∣f (t)

∣
∣p dt

)/p

,  ≤ p < ∞.

We denote by Cγ [a, b] and Cμ
γ [a, b] the following two weighted spaces of continuous func-

tions:

Cγ [a, b] =
{

f : (a, b] →R | (t – a)γ f (t) ∈ C[a, b]
}

,

Cμ
γ [a, b] =

{
f : (a, b] →R | f , Dμ

+ f ∈ Cγ [a, b]
}

,
()

respectively, where  ≤ γ < , μ ≥  and C[a, b] is the space of continuous functions.
The next lemma shows that the Riemann-Liouville fractional integral and derivative of

the power functions yield power functions multiplied by certain coefficients and with the
order of the fractional derivative added or subtracted from the power.

Lemma  ([]) If α ≥ , β > , then

(
Iα

b– (b – s)β–)(t) =

(β)


(β + α)
(b – t)β+α–,

(
Dα

b– (b – s)β–)(t) =

(β)


(β – α)
(b – t)β–α–.

Now we consider a useful property of the Riemann-Liouville fractional integral Iα
a+ in

the space Cγ [a, b] defined in ().
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Lemma  ([]) Let  ≤ γ <  and α > γ . If u ∈ Cγ [a, b], then

(
Iα

a+u
)(

a+)
= lim

t→a+

(
Iα

a+u
)
(t) = .

A formula for the fractional integration by parts is given in the next lemma.

Lemma  ([]) Let α ≥ , m ≥ , m ≥  and 
m

+ 
m

≤  + α (m 
=  and m 
=  in the
case when 

m
+ 

m
=  + α). If ϕ ∈ Lm (a, b) and ϕ ∈ Lm (a, b), then

∫ b

a
ϕ(t)

(
Iα

a+ϕ
)
(t) dt =

∫ b

a
ϕ(t)

(
Iα

b–ϕ
)
(t) dt.

In this paper, we use the test function

ϕ(t) :=

⎧
⎨

⎩

T–λ(T – t)λ,  ≤ t ≤ T ,

, t > T .
()

This test function has the following property.

Lemma  Let ϕ be as in () and p > , then for λ > p – ,

∫ T


ϕ–p(t)

∣
∣ϕ′(t)

∣
∣p dt =

λp

(λ – p + )
T –p, T > .

Proof

∫ T


ϕ–p(t)

∣
∣ϕ′(t)

∣
∣p dt

=
∫ T


T–λ+λp(T – t)λ–λp∣∣–λT–λ(T – t)λ–∣∣p dt

= λpT–λ

∫ T


(T – t)λ–p dt =

λp

(λ – p + )
T –p. �

3 The nonexistence results
In this section we study the nonexistence of a global solution for the initial value prob-
lem (). We start with the following lemma.

Lemma  Let  ≤ ν ≤  and p > . Let ϕ be as in () with λ > p – . Suppose that k is
a nonnegative function which is different from zero almost everywhere and t–νpk–p(t) ∈
L

loc[, +∞). Then, for any T > ,

∫ T



(
I–ν

T–
∣
∣ϕ′∣∣)p(t)

(∫ T

t
k(s – t)ϕ(s) ds

)–p

dt ≤ ν,pT –p
∫ T


t–νpk–p(t) dt,

where ν,p = λp

(λ–p+)(
(–ν))p .
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Proof Since

(
I–ν

T–
∣
∣ϕ′∣∣)(t) =



( – ν)

∫ T

t
(s – t)–ν

∣
∣ϕ′(s)

∣
∣ds

=



( – ν)

∫ T

t
(s – t)–νk


p′ (s – t)ϕ


p′ (s)k– 

p′ (s – t)ϕ– 
p′ (s)

∣
∣ϕ′(s)

∣
∣ds

for all  ≤ t < T . Using Hölder’s inequality with 
p + 

p′ = , we find

(
I–ν

T–
∣
∣ϕ′∣∣)(t) ≤ 


( – ν)

(∫ T

t
k(s – t)ϕ(s) ds

) 
p′

×
(∫ T

t
(s – t)–νpk– p

p′ (s – t)ϕ– p
p′ (s)

∣
∣ϕ′(s)

∣
∣p ds

) 
p

. ()

Therefore,

∫ T



(
I–ν

T–
∣
∣ϕ′∣∣)p(t)

(∫ T

t
k(s – t)ϕ(s) ds

)–p

dt

≤ 
(
( – ν))p

∫ T



∫ T

t
(s – t)–νpk– p

p′ (s – t)ϕ– p
p′ (s)

∣
∣ϕ′(s)

∣
∣p ds dt

=


(
( – ν))p

∫ T



∫ s


(s – t)–νpk–p(s – t)ϕ–p(s)

∣
∣ϕ′(s)

∣
∣p dt ds

=


(
( – ν))p

∫ T


ϕ–p(s)

∣
∣ϕ′(s)

∣
∣p

(∫ s


(s – t)–νpk–p(s – t) dt

)

ds. ()

Let τ = s – t in the inner integral, then we obtain the uniform bound

∫ s


τ–νpk–p(τ ) dτ ≤

∫ T


τ–νpk–p(τ ) dτ .

Now the result follows from Lemma . �

Definition  By a global nontrivial solution to problem (), we mean a nonzero function
x(t) defined for all t >  such that x ∈ Cα

–α[, T] for all T >  that satisfies the inequality
and initial conditions in ().

In what follows we provide the conditions under which problem () cannot have global
nontrivial solutions.

Theorem  Let  ≤ β < α ≤  and k be a nonnegative function which is different from zero
almost everywhere. Assume that (t–αq′ + σ q′ t–βq′ )k–q′ (t) ∈ L

loc[,∞) and

lim
T→∞ T –q′

(∫ T


t–αq′

k–q′
(t) dt + σ q′

∫ T


t–βq′

k–q′
(t) dt

)

= , ()

where q′ = q
q– . Then problem () does not admit any global nontrivial solution when c ≥ .
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Proof Assume, on the contrary, that a solution x ∈ Cα
–α[, T] exists for all T > . Multiply-

ing both sides of the inequality in () by the test function ϕ defined in () with λ > q′ – 
and integrating, we obtain

J ≤
∫ T


ϕ(t)

(
Dα

+ x
)
(t) dt + σ

∫ T


ϕ(t)

(
Dβ

+ x
)
(t) dt, ()

where

J :=
∫ T


ϕ(t)

(∫ t


k(t – s)

∣
∣x(s)

∣
∣q ds

)

dt.

An integration by parts for each integral on the right-hand side of () gives

∫ T


ϕ(t)

(
Dα

+ x
)
(t) dt =

∫ T


ϕ(t)

(
DI–α

+ x
)
(t) dt

=
[
ϕ(t)

(
I–α

+ x
)
(t)

]T
t= –

∫ T


ϕ′(t)

(
I–α

+ x
)
(t) dt ()

and

∫ T


ϕ(t)

(
Dβ

+ x
)
(t) dt =

[
ϕ(t)

(
I–β

+ x
)
(t)

]T
t= –

∫ T


ϕ′(t)

(
I–β

+ x
)
(t) dt. ()

As ϕ(T) = , ϕ() =  and (I–α
+ x)(+) = c, we can write () as

∫ T


ϕ(t)

(
Dα

+ x
)
(t) dt = –c –

∫ T


ϕ′(t)

(
I–α

+ x
)
(t) dt.

Also, since I–β

+ x = Iα–β

+ I–α
+ x, x ∈ C–α[, T] and β < α, we see from Lemma  that

(I–β

+ x)(+) = . Hence () reduces to

∫ T


ϕ(t)

(
Dβ

+ x
)
(t) dt = –

∫ T


ϕ′(t)

(
I–β

+ x
)
(t) dt,

and () becomes

J ≤ –c –
∫ T


ϕ′(t)

(
I–α

+ x
)
(t) dt – σ

∫ T


ϕ′(t)

(
I–β

+ x
)
(t) dt. ()

Having in mind that c ≥  and ϕ′ is negative, we entail that

J ≤
∫ T



(
–ϕ′(t)

)(
I–α

+ x
)
(t) dt + σ

∫ T



(
–ϕ′(t)

)(
I–β

+ x
)
(t) dt

≤
∫ T



(
–ϕ′(t)

)(
I–α

+ |x|)(t) dt + σ

∫ T



(
–ϕ′(t)

)(
I–β

+ |x|)(t) dt. ()

Applying Lemma  to each integral on the right-hand side of (), we obtain

J ≤
∫ T



∣
∣x(t)

∣
∣
(
I–α

T–
(
–ϕ′))(t) dt + σ

∫ T



∣
∣x(t)

∣
∣
(
I–β

T–
(
–ϕ′))(t) dt. ()
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To obtain a bound for the expression J , we rewrite J as

J =
∫ T



∣
∣x(s)

∣
∣q

(∫ T

s
k(t – s)ϕ(t) dt

)

ds =
∫ T



∣
∣x(s)

∣
∣qK(s) ds, ()

where

K(s) :=
∫ T

s
k(t – s)ϕ(t) dt,  ≤ s < t ≤ T . ()

Next, we insert K

q (t)K– 

q (t) inside each integral on the right-hand side of () and apply
Hölder’s inequality

J ≤ J

q

(∫ T


K –q′

(t)
(
I–α

T–
(
–ϕ′))q′

(t) dt
) 

q′
+ σ

(∫ T


K

–q′
q (t)

(
I–β

T–
(
–ϕ′))q′

(t) dt
) 

q′

or

J ≤ q′–
(∫ T


K –q′

(t)
(
I–α

T–
(
–ϕ′))q′

(t) dt + σ q′
∫ T


K

–q′
q (t)

(
I–β

T–
(
–ϕ′))q′

(t) dt
)

.

Using Lemma , we get

J ≤ T –q′
(∫ T


t–αq′

k–q′
(t) dt + σ q′

∫ T


t–βq′

k–q′
(t) dt

)

, ()

where  = q′– max{α,q′ ,β ,q′ }. Assumption () leads to a contradiction since the so-
lution is supposed to be nontrivial. �

Our Theorem  shows that the fractional damping is not able to remove the effect of
nonlinearity. It provides sufficient conditions on the exponent q and on the family of ker-
nels, which leads to the nonexistence of global solutions.

As a corollary of Theorem , we have the following result.

Corollary  Let  ≤ β < α ≤  and k be a nonnegative function which is different from zero
almost everywhere with t–αq′k–q′ , t–βq′k–q′ (t) ∈ L

loc[, +∞). Suppose that, for any T > ,
there are some positive constants c, c, θ, θ with

 < θ, θ <


q – 
()

such that
∫ T


t–αq′

k–q′
(t) dt ≤ cTθ and

∫ T


t–βq′

k–q′
(t) dt ≤ cTθ , ()

where q′ = q
q– . Then problem () does not admit any global nontrivial solution when c ≥ .

Proof To prove this corollary, it suffices to notice that conditions () and () imply that
hypothesis () is fulfilled. Indeed, in virtue of (), we have

 ≤ T –q′
(∫ T


t–αq′

k–q′
(t) dt + σ q′

∫ T


t–βq′

k–q′
(t) dt

)

≤ cT –q′+θ + σ q′
cT –q′+θ .



Ahmad et al. Advances in Difference Equations  (2017) 2017:59 Page 9 of 11

We find from () that  – q′ + θ and  – q′ + θ are both negative and condition ()
follows. �

4 Applications
Our results can be applied to a variety of kernels that appear in the literature. The following
corollary of Theorem  is concerned with the Riemann-Liouville fractional integral kernel.

Corollary  Let  ≤ β < α ≤  and q > . Suppose that k(t) ≥ at–γ , t > , for some constant
a > , where  – q( – α) < γ <  + q(β – ). Then problem () does not admit a global
nontrivial solution when c ≥ .

Proof It suffices to show that the function k satisfies (). Indeed, since k(t) ≥ at–γ ; a > ,
then k–q′ (t) ≤ a–q′ tγ (q′–), q′ = q

q– and

∫ T


t–αq′

k–q′
(t) dt ≤ a–q′

∫ T


tγ (q′–)–αq′

dt =
a–q′

γ (q′ – ) – μq′ + 
Tγ (q′–)–μq′+,

∫ T


t–βq′

k–q′
(t) dt ≤ a–q′

γ (q′ – ) – βq′ + 
Tγ (q′–)–βq′+.

Hence,

T –q′
(∫ T


t–αq′

k–q′
(t) dt + σ q′

∫ T


t–βq′

k–q′
(t) dt

)

≤ a–q′

γ (q′ – ) – αq′ + 
T–γ +q′(γ –α–) +

a–q′
σ q′

γ (q′ – ) – βq′ + 
T–γ +q′(γ –β–).

It follows from  – q( – α) < γ <  + q(β – ) that () is satisfied. �

Remark  Notice that the kernel treated in Problem  fits into the special case consid-
ered in Corollary . Treating a more general kernel is not the main difference with the
work in []. The problems, the results and the arguments are different. Indeed, we treated
a fractional equation (or inequality) and proved a ‘nonexistence’ result, whereas in [] they
studied the heat equation (order one) and proved a ‘blow-up’ result. Even in the fractional
context, introducing a fractional damping presents a challenge as it is known that damping
competes with the nonlinear force. It tends to annihilate (or at least reduce) the destabi-
lizing effect produced by the nonlinear source.

Remark  Corollary  can be considered also as a consequence of Corollary  with

c =
a–q′

γ (q′ – ) – αq′ + 
, c =

a–q′
σ q′

γ (q′ – ) – βq′ + 
,

θ = γ
(
q′ – 

)
– αq′ +  =

q( – α) + γ – 
q – 

,  < α ≤ ,

θ = γ
(
q′ – 

)
– βq′ +  =

q( – β) + γ – 
q – 

,  ≤ β < α ≤ .

It is clear from  – q( – α) < γ <  + q(β – ) that  < θ, θ < 
q– .
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Remark  Observe that the upper bound of the exponent γ is controlled by the order β

of the lower derivative.

As an example of the kernels in Corollary , we have the following case when the right-
hand side of () is the Riemann-Liouville fractional integral of |x(t)|q.

Example  The problem

(
Dα

+x
)
(t) +

(
Dβ

+x
)
(t) ≥ (

I–γ

+
∣
∣x(s)

∣
∣q)(t), t > , q > ,

(
I–α

+ x
)(

+)
= c, c ∈R,

()

is a special case of problem () with

k(t) = t–γ ,  – q( – α) < γ <  + q(β – ),  ≤ β < α < .

Therefore, as a consequence of Corollary , problem () does not admit a global nontriv-
ial solution when c ≥ .
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25. Podlubny, I, Petraŝ, I, Vinagre, BM, O’leary, P, Dorčák, L: Analogue realizations of fractional-order controllers. Fractional
order calculus and its applications. Nonlinear Dyn. 29, 281-296 (2002)

26. Samko, SG, Kilbas, AA, Marichev, OI: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach,
New York (1987)

27. Furati, K, Kassim, M, Tatar, N-e: Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput.
Math. Appl. 64(6), 1616-1626 (2012)


	On the nonexistence of global solutions for a class of fractional integro-differential problems
	Abstract
	Keywords

	Introduction
	Preliminaries
	The nonexistence results
	Applications
	Competing interests
	Authors' contributions
	Acknowledgements
	References


