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Abstract
The purpose of this paper is to study solvability of the higher order nonlinear neutral
delay differential equation

dn

dtn
[
x(t) + c(t)x(t – τ )

]
+ (–1)n+1f (t, x(σ1(t)), x(σ2(t)), . . . , x(σk(t)))

= g(t), t ≥ t0,

where n and k are positive integers, τ > 0, t0 ∈ R, f ∈ C([t0, +∞)×R
k ,R),

c,g,σi ∈ C([t0, +∞),R) and limt→+∞ σi(t) = +∞ for i ∈ {1, 2, . . . , k}. Under suitable
conditions, several existence results of uncountably many nonoscillatory solutions
and convergence of Mann iterative approximations for the above equation are
shown. Three nontrivial examples are given to demonstrate the advantage of our
results over the existing ones in the literature.
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1 Introduction and preliminaries
In the past twenty years or so, the existence of oscillatory and nonoscillatory solutions
for a lot of neutral delay linear and nonlinear differential equations has been studied and
discussed by many researchers, for example, see [–] and the references therein.

In , Chuanxi and Ladas [] investigated the first order neutral delay differential
equation

d
dt

[
x(t) + p(t)x(t – τ )

]
+ Q(t)x(t – σ ) = , t ≥ t. (.)

In ,  and , Kulenović and Hadžiomerspahić [, ] and Cheng and Annie []
investigated, respectively, the first and second order neutral delay differential equations
with positive and negative coefficients:

d
dt

[
x(t) + cx(t – τ )

]
+ Q(t)x(t – σ) – Q(t)x(t – σ) = , t ≥ t (.)
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and

d

dt

[
x(t) + cx(t – τ )

]
+ Q(t)x(t – σ) – Q(t)x(t – σ) = , t ≥ t. (.)

Under c �= ± and other conditions, they obtained sufficient conditions for the existence
of nonoscillatory solutions of Eqs. (.) and (.), respectively. In , Zhou and Zhang
[] extended the result in [] to the nth order neutral functional differential equation with
positive and negative coefficients

dn

dtn

[
x(t) + cx(t – τ )

]
+ (–)n+[Q(t)x(t – σ) – Q(t)x(t – σ)

]
= , t ≥ t, (.)

where c �= ±. In , Liu et al. [] extended and improved the results in [, , , ] to the
following nth order neutral delay nonlinear differential equation:

dn

dtn

[
x(t) + cx(t – τ )

]
+ (–)n+f

(
t, x(t – σ), x(t – σ), . . . , x(t – σk)

)

= g(t), t ≥ t, (.)

where c �= –. They gave sufficient conditions for the existence of nonoscillatory solutions
for Eq. (.), constructed the Mann iterative approximations for these nonoscillatory so-
lutions and established the error estimates between these nonoscillatory solutions and
the Mann iterative approximations. At the same time, they also proved the existence of
infinitely many nonoscillatory solutions for Eq. (.).

Inspired and motivated by the results in [–], in this paper, we study the following
higher order nonlinear neutral delay differential equation:

dn

dtn

[
x(t) + c(t)x(t – τ )

]
+ (–)n+f

(
t, x

(
σ(t)

)
, x

(
σ(t)

)
, . . . , x

(
σk(t)

))

= g(t), t ≥ t, (.)

where n and k are positive integers, τ > , t ∈ R, c, g,σi ∈ C([t, +∞),R), limt→+∞ σi(t) =
+∞ for i ∈ {, , . . . , k}, and f ∈ C([t, +∞) ×R

k ,R) satisfies the following condition:

(H) there exist constants M > N >  and functions p, q ∈ C([t, +∞),R+) satisfying

∣∣f (t, u, . . . , uk) – f (t, ū, . . . , ūk)
∣∣

≤ p(t) max
{|ui – ūi| :  ≤ i ≤ k

}
, t ∈ [t, +∞), ui, ūi ∈ [N , M],  ≤ i ≤ k

and

∣
∣f (t, u, . . . , uk)

∣
∣ ≤ q(t), t ∈ [t, +∞), ui ∈ [N , M],  ≤ i ≤ k,

where R = (–∞, +∞), R+ = [, +∞).

It is easy to see that Eq. (.) includes Eqs. (.)-(.) as special cases. Our aim in this pa-
per is to establish a few existence results of uncountably many nonoscillatory solutions for
Eq. (.), to suggest Mann iterative approximations for these nonoscillatory solutions and
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to discuss the error estimates between the approximate solutions and the nonoscillatory
solutions. These results obtained in this paper extend, improve and unify the correspond-
ing results in [, –].

Throughout this paper, we assume that

(H)
∫ +∞

t
sn max{p(s), q(s), |g(s)|}ds < +∞;

(H)
∫ +∞

t
sn– max{p(s), q(s), |g(s)|}ds < +∞;

(H) {λn}n≥ is an arbitrary sequence in [, ] satisfying

∞∑

m=

λm = +∞.

By a solution of Eq. (.), we mean a function x ∈ C([t – τ ,∞),R) for some t ≥ t such
that x(t) + cx(t – τ ) is n-times continuously differentiable in [t,∞) and such that Eq. (.)
is satisfied for t ≥ t. As is customary, a solution of Eq. (.) is said to be oscillatory if it has
arbitrarily large zeros and nonoscillatory otherwise.

Let X denote the Banach space of all continuous and bounded functions on [t, +∞)
with norm ‖x‖ = supt≥t |x(t)|, and A(N , M) = {x ∈ X : N ≤ x(t) ≤ M, t ≥ t} for M > N > .
It is easy to see that A(N , M) is a bounded closed and convex subset of X.

2 Main results
Now we study those conditions under which Eq. (.) possesses uncountably many
nonoscillatory solutions, and the Mann-type iterative sequences converge to these
nonoscillatory solutions.

Theorem . Let (H), (H) and (H) be fulfilled and

c(t) = –, t ≥ t. (.)

Then
(a) for any L ∈ (N , M), there exist θ ∈ (, ) and T > t + τ such that for any

x ∈ A(N , M), the Mann iterative sequence {xm}m≥ generated by the following
iterative scheme:

xm+(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

( – λm)xm(t) + λm[L –
∑∞

i=
∫ +∞

t+iτ
∫ +∞

sn–

· · · ∫ +∞
s

f (s, xm(σ(s)), . . . , xm(σk(s))) ds

· · · dsn– dsn– – (–)n ∑∞
i=

∫ +∞
t+iτ

∫ +∞
sn–

· · · ∫ +∞
s

g(s) ds · · · dsn– dsn–], t ≥ T , m ≥ ,

xm+(T), t ≤ t < T , m ≥ 

(.)

converges to a nonoscillatory solution x ∈ A(N , M) of Eq. (.) and has the following
error estimate:

‖xm+ – x‖ ≤ e–(–θ )
∑m

i= λi‖x – x‖, m ≥ ; (.)

(b) the set of nonoscillatory solutions of Eq. (.) is uncountable.
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Proof First of all we prove that (a) holds. Notice that for any t ≥ t,

∞∑

i=

∫ +∞

t+iτ
sn–p(s) ds < +∞ ⇐⇒

∫ +∞

t
snp(s) ds < +∞.

It follows from (H) that there exist θ ∈ (, ) and T > t + τ satisfying


(n – )!

∞∑

i=

∫ +∞

T+iτ
sn–p(s) ds = θ (.)

and


(n – )!

∞∑

i=

∫ +∞

T+iτ
sn–[q(s) +

∣
∣g(s)

∣
∣]ds ≤ min{L – N , M – L}. (.)

Define a mapping S : A(N , M) → X by

Sx(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

L –
∑∞

i=
∫ +∞

t+iτ
∫ +∞

sn–

· · · ∫ +∞
s

f (s, x(σ(s)), . . . , x(σk(s))) ds

· · · dsn– dsn– – (–)n ∑∞
i=

∫ +∞
t+iτ

∫ +∞
sn–

· · · ∫ +∞
s

g(s) ds · · · dsn– dsn–, t ≥ T ,

Sx(T), t ≤ t < T

(.)

for any x ∈ A(N , M). Put x, y ∈ A(N , M). It follows from (.) and (H) that, for any t ≥ T ,

∣∣Sx(t) – Sy(t)
∣∣

=

∣
∣∣
∣∣

∞∑

i=

∫ +∞

t+iτ

∫ +∞

sn–

· · ·
∫ +∞

s

[
f
(
s, x

(
σ(s)

)
, . . . , x

(
σk(s)

))

– f
(
s, y

(
σ(s)

)
, . . . , y

(
σk(s)

))]
ds · · · dsn– dsn–

∣∣
∣∣
∣

≤
∞∑

i=

∫ +∞

t+iτ

∫ +∞

sn–

· · ·
∫ +∞

s

p(s)

× max
{∣∣x

(
σi(s)

)
– y

(
σi(s)

)∣∣ :  ≤ i ≤ k
}

ds · · · dsn– dsn–

≤
∞∑

i=

∫ +∞

t+iτ

∫ +∞

sn–

· · ·
∫ +∞

s

∫ +∞

s

p(s) ds ds · · · dsn– dsn–‖x – y‖

=
∞∑

i=

∫ +∞

t+iτ

∫ +∞

sn–

· · ·
∫ +∞

s

p(s) ds

∫ s

s

ds · · · dsn– dsn–‖x – y‖

=
∞∑

i=

∫ +∞

t+iτ

∫ +∞

sn–

· · ·
∫ +∞

s

∫ +∞

s

p(s)

× (s – s) ds ds · · · dsn– dsn–‖x – y‖

=
∞∑

i=

∫ +∞

t+iτ

∫ +∞

sn–

· · ·
∫ +∞

s

∫ +∞

s

p(s) ds
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×
∫ s

s

(s – s) ds ds · · · dsn– dsn–‖x – y‖

=
∞∑

i=

∫ +∞

t+iτ

∫ +∞

sn–

· · ·
∫ +∞

s

∫ +∞

s




p(s)

× (s – s) ds ds · · · dsn– dsn–‖x – y‖
= · · ·

=
∞∑

i=

∫ +∞

t+iτ

∫ +∞

sn–


(n – )!

p(s)(s – sn–)n– ds dsn–‖x – y‖

=
∞∑

i=

∫ +∞

t+iτ


(n – )!

ds

∫ s

t+iτ
p(s)(s – sn–)n– dsn–‖x – y‖

=
∞∑

i=

–


(n – )!

∫ +∞

t+iτ

[
p(s)(s – sn–)n–]∣∣sn–=s

sn–=t+iτ ds‖x – y‖

=
∞∑

i=


(n – )!

∫ +∞

t+iτ
p(s)

(
s – (t + iτ )

)n– ds‖x – y‖. (.)

In light of (.) and (.), we get that

∣
∣Sx(t) – Sy(t)

∣
∣ ≤ 

(n – )!

∞∑

i=

∫ +∞

t+iτ
sn–

 p(s) ds‖x – y‖ ≤ θ‖x – y‖, t ≥ T ,

which yields that

‖Sx – Sy‖ ≤ θ‖x – y‖, x, y ∈ A(N , M). (.)

Using (.) and (.), we gain that, for t ≥ T ,

Sx(t) = L –
∞∑

i=

∫ +∞

t+iτ

∫ +∞

sn–

· · ·
∫ +∞

s

f
(
s, x

(
σ(s)

)
,

. . . , x
(
σk(s)

))
ds · · · dsn– dsn–

– (–)n
∞∑

i=

∫ +∞

t+iτ

∫ +∞

sn–

· · ·
∫ +∞

s

g(s) ds · · · dsn– dsn–

≤ L +
∞∑

i=

∫ +∞

t+iτ

∫ +∞

sn–

· · ·
∫ +∞

s

(
q(s) +

∣∣g(s)
∣∣)ds · · · dsn– dsn–

≤ L +


(n – )!

∞∑

i=

∫ +∞

t+iτ

(
s – (t + iτ )

)n–(q(s) +
∣∣g(s)

∣∣)ds

≤ L +


(n – )!

∞∑

i=

∫ +∞

T+iτ
sn–


(
q(s) +

∣∣g(s)
∣∣)ds

≤ L + min{L – N , M – L}
≤ M
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and

Sx(t) = L –
∞∑

i=

∫ +∞

t+iτ

∫ +∞

sn–

· · ·
∫ +∞

s

f
(
s, x

(
σ(s)

)
,

. . . , x
(
σk(s)

))
ds · · · dsn– dsn–

– (–)n
∞∑

i=

∫ +∞

t+iτ

∫ +∞

sn–

· · ·
∫ +∞

s

g(s) ds · · · dsn– dsn–

≥ L –
∞∑

i=

∫ +∞

t+iτ

∫ +∞

sn–

· · ·
∫ +∞

s

(
q(s) +

∣∣g(s)
∣∣)ds · · · dsn– dsn–

≥ L –


(n – )!

∞∑

i=

∫ +∞

t+iτ

(
s – (t + iτ )

)n–(q(s) +
∣
∣g(s)

∣
∣)ds

≥ L –


(n – )!

∞∑

i=

∫ +∞

T+iτ
sn–


(
q(s) +

∣
∣g(s)

∣
∣)ds

≥ L – min{L – N , M – L}
≥ N ,

which imply that S(A(N , M)) ⊆ A(N , M). Consequently, (.) means that S : A(N , M) →
A(N , M) is a contraction mapping. Hence S has a unique fixed point x ∈ A(N , M), that is,

x(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L –
∑∞

i=
∫ +∞

t+iτ
∫ +∞

sn–
· · · ∫ +∞

s
f (s, x(σ(s)), . . . , x(σk(s))) ds

· · · dsn–dn– – (–)n ∑∞
i=

∫ +∞
t+iτ

∫ +∞
sn–

· · · ∫ +∞
s

g(s) ds · · · dsn– dsn–, t ≥ T ,

x(T), t ≤ t < T .

It follows that, for t ≥ T + τ ,

x(t – τ )

= L –
∞∑

i=

∫ +∞

t+(i–)τ

∫ +∞

sn–

· · ·
∫ +∞

s

f
(
s, x

(
σ(s)

)
, . . . , x

(
σk(s)

))
ds · · · dsn– dsn–

– (–)n
∞∑

i=

∫ +∞

t+(i–)τ

∫ +∞

sn–

· · ·
∫ +∞

s

g(s) ds · · · dsn– dsn–.

Consequently, we know that, for t ≥ T + τ ,

x(t) – x(t – τ )

=
∫ +∞

t

∫ +∞

sn–

· · ·
∫ +∞

s

f
(
s, x

(
σ(s)

)
, . . . , x

(
σk(s)

))
ds · · · dsn– dsn–

+ (–)n
∫ +∞

t

∫ +∞

sn–

· · ·
∫ +∞

s

g(s) ds · · · dsn– dsn–.



Jiang et al. Advances in Difference Equations  (2017) 2017:60 Page 7 of 12

In view of (.) and the above equation, we easily verify that x is a nonoscillatory solution
of Eq. (.). It follows from (.), (.) and (.) that, for each t ≥ T ,

∣∣xm+(t) – x(t)
∣∣

=

∣
∣∣
∣∣
( – λm)xm(t) + λm

[

L –
∞∑

i=

∫ +∞

t+iτ

∫ +∞

sn–

· · ·
∫ +∞

s

f
(
s, xm

(
σ(s)

)
,

. . . , xm
(
σk(s)

))
ds · · · dsn– dsn–

– (–)n
∞∑

i=

∫ +∞

t+iτ

∫ +∞

sn–

· · ·
∫ +∞

s

g(s) ds · · · dsn– dsn–

]

– x(t)

∣
∣∣∣
∣

≤ ( – λm)
∣∣xm(t) – x(t)

∣∣ + λm
∣∣Sxm(t) – Sx(t)

∣∣

≤ [
( – λm) + λmθ

]‖xm – x‖
≤ e–(–θ )

∑m
i= λi‖x – x‖, m ≥ ,

which yields that (.) holds. Thus (.) and (H) ensure that xm → x as m → +∞.
Next we prove that (b) holds. It follows from (a) that for any distinct L and L ∈ (N , M),

there exist SLj : A(N , M) → A(N , M), θj ∈ (, ) and Tj > t + τ satisfying

SLj x(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Lj –
∑∞

i=
∫ +∞

t+iτ
∫ +∞

sn–
· · · ∫ +∞

s
f (s, x(σ(s)),

. . . , x(σk(s))) ds · · · dsn– dsn–

– (–)n ∑∞
i=

∫ +∞
t+iτ

∫ +∞
sn–

· · · ∫ +∞
s

g(s) ds · · · dsn– dsn–, t ≥ Tj,

SLj x(Tj), t ≤ t < Tj,


(n – )!

∞∑

i=

∫ +∞

Tj+iτ
sn–p(s) ds = θj

and


(n – )!

∞∑

i=

∫ +∞

Tj+iτ
sn–(q(s) +

∣
∣g(s)

∣
∣)ds ≤ min{Lj – N , M – Lj}

for each x ∈ A(N , M) and j ∈ {, }. Note that the contraction mappings SL and SL have
fixed points x and y ∈ A(N , M), respectively, that is, x and y are two nonoscillatory solu-
tions of Eq. (.). Put T = max{T, T}, θ = max{θ, θ}. It is clear that


(n – )!

∞∑

i=

∫ +∞

T+iτ
sn–p(s) ds ≤ θ

and

∣
∣x(t) – y(t)

∣
∣

=

∣
∣∣
∣∣
L – L –

∞∑

i=

∫ +∞

t+iτ

∫ +∞

sn–

· · ·
∫ +∞

s

[
f
(
s, x

(
σ(s)

)
, . . . , x

(
σk(s)

))
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– f
(
s, y

(
σ(s)

)
, . . . , y

(
σk(s)

))]
ds · · · dsn– dsn–

∣∣
∣∣
∣

≥ |L – L| –
∞∑

i=

∫ +∞

t+iτ

∫ +∞

sn–

· · ·
∫ +∞

s

p(s) ds · · · dsn– dsn–‖x – y‖

≥ |L – L| –


(n – )!

∞∑

i=

∫ +∞

T+iτ
sn–

 p(s) ds‖x – y‖

≥ |L – L| – θ‖x – y‖, t ≥ T ,

which yields that

‖x – y‖ ≥ |L – L| – θ‖x – y‖.

That is,

‖x – y‖ ≥ |L – L|
 + θ

> .

Hence x �= y. It follows that for any distinct L and L ∈ (N , M), the corresponding nonoscil-
latory solutions x and y ∈ A(N , M) of Eq. (.) are distinct. Consequently, the set of
nonoscillatory solutions of Eq. (.) is uncountable. This completes the proof. �

The proofs of Theorems .-. are similar to the proof of Theorem ., hence are omit-
ted.

Theorem . Let (H), (H) and (H) hold. Assume that there exists C ∈ (, ) such that
 ≤ c(t) ≤ C for t ≥ t and M > 

–C N . Then
(a) for any L ∈ (CM + N , M), there exist θ ∈ (, ) and T > t + τ such that for each

x ∈ A(N , M), the Mann iterative sequence {xm}m≥ generated by the following
iterative scheme:

xm+(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

( – λm)xm(t) + λm{L – c(t)xm(t – τ )

+ 
(n–)!

∫ +∞
t (s – t)n–f (s, xm(σ(s)),

. . . , xm(σk(s))) ds

+ (–)n

(n–)!
∫ +∞

t (s – t)n–g(s) ds}, t ≥ T , m ≥ ,

xm+(T), t ≤ t < T , m ≥ 

(.)

converges to a nonoscillatory solution x ∈ A(N , M) of Eq. (.), and the error estimate
(.) holds;

(b) the set of nonoscillatory solutions of Eq. (.) is uncountable.

Theorem . Let (H), (H) and (H) hold. Assume that there exists C ∈ (, ) such that
–C ≤ c(t) ≤  for t ≥ t and M > 

–C N . Then
(a) for any L ∈ (N , ( – C)M), there exist θ ∈ (, ) and T > t + τ such that for each

x ∈ A(N , M), the Mann iterative sequence {xm}m≥ generated by (.) converges to a
nonoscillatory solution x ∈ A(N , M) of Eq. (.), and the error estimate (.) holds;

(b) the set of nonoscillatory solutions of Eq. (.) is uncountable.
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Theorem . Let (H), (H) and (H) hold. Assume that there exists C >  such that c(t) ≥
C for t ≥ t and C

C– N < M. Then
(a) for any L ∈ ( 

C M + N , M), there exist θ ∈ (, ) and T > t + τ such that for each
x ∈ A(N , M), the Mann iterative sequence {xm}m≥ generated by the following
iterative scheme:

xm+(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

( – λm)xm(t) + λm{L – 
c(t+τ ) xm(t + τ )

+ 
c(t+τ )(n–)!

∫ +∞
t+τ

(s – t – τ )n–

× f (s, xm(σ(s)), . . . , xm(σk(s))) ds

+ (–)n

c(t+τ )(n–)!
∫ +∞

t+τ
(s – t – τ )n–g(s) ds}, t ≥ T , m ≥ ,

xm+(T), t ≤ t < T , m ≥ 

(.)

converges to a nonoscillatory solution x ∈ A(N , M) of Eq. (.), and the error estimate
(.) holds;

(b) the set of nonoscillatory solutions of Eq. (.) is uncountable.

Theorem . Let (H), (H) and (H) hold. Assume that there exists C >  such that c(t) ≤
–C for t ≥ t and C

C– N < M. Then
(a) for any L ∈ (N , ( – 

C )M), there exist θ ∈ (, ) and T > t + τ such that for each
x ∈ A(N , M), the Mann iterative sequence {xm}m≥ generated by (.) converges to
a nonoscillatory solution x ∈ A(N , M) of Eq. (.), and the error estimate (.) holds;

(b) the set of nonoscillatory solutions of Eq. (.) is uncountable.

Theorem . Let (H), (H) and (H) hold. Assume that there exists C ∈ (, 
 ) such that

|c(t)| ≤ C for t ≥ t and N < ( – C)M. Then
(a) for any L ∈ (CM + N , ( – C)M), there exist θ ∈ (, ) and T > t + τ such that for each

x ∈ A(N , M), the Mann iterative sequence {xm}m≥ generated by (.) converges to a
nonoscillatory solution x ∈ A(N , M) of Eq. (.), and the error estimate (.) holds;

(b) the set of nonoscillatory solutions of Eq. (.) is uncountable.

Theorem . Let n = , (H), (H) and (H) hold and c(t) =  for t ≥ t. Then
(a) for any L ∈ (N , M), there exist θ ∈ (, ) and T > t + τ such that for every

x ∈ A(N , M), the Mann iterative sequence {xm}m≥ generated by the following
iterative scheme:

xm+(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

( – λm)xm(t) + λm{L +
∑+∞

j=
∫ t+jτ

t+(j–)τ

× f (s, xm(σ(s)), . . . , xm(σk(s))) ds

–
∑+∞

j=
∫ t+jτ

t+(j–)τ g(s) ds}, t ≥ T , m ≥ ,

xm+(T), t ≤ t < T , m ≥ 

(.)

converges to a nonoscillatory solution x ∈ A(N , M) of Eq. (.), and the error estimate
(.) holds;

(b) the set of nonoscillatory solutions of Eq. (.) is uncountable.

Theorem . Let n ≥ , (H), (H) and (H) hold and c(t) =  for t ≥ t. Then
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(a) for any L ∈ (N , M), there exist θ ∈ (, ) and T > t + τ such that for arbitrary
x ∈ A(N , M), the Mann iterative sequence {xm}m≥ generated by the following
iterative scheme:

xm+(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

( – λm)xm(t)

+ λm{L + 
(n–)!

∑+∞
j=

∫ t+jτ
t+(j–)τ

∫ +∞
u (s – u)n–

× f (s, xm(σ(s)), . . . , xm(σk(s))) ds du

+ (–)n

(n–)!
∑+∞

j=
∫ t+jτ

t+(j–)τ
∫ +∞

u g(s) ds du}, t ≥ T , m ≥ ,

xm+(T), t ≤ t < T , m ≥ 

(.)

converges to a nonoscillatory solution x ∈ A(N , M) of Eq. (.), and the error estimate
(.) holds;

(b) the set of nonoscillatory solutions of Eq. (.) is uncountable.

Remark . Theorems .-. extend, improve and unify a few known results due to
Cheng and Annie [], Kulenović and Hadžiomerspahić [, ], Liu et al. [] and Zhou and
Zhang [] and others.

3 Examples
In this section, in order to illustrate the advantage of our results, we consider the following
three examples.

Example . Consider the nth order neutral delay differential equation

dn

dtn

[
x(t) – x(t – τ )

]

+ (–)n+
{

e–t
cos(

√
t – t) +

sin
√

t
 + tn+ x(t – τ

)
x(

√
t)

}

= te–t sin
(
t – t + 

)
, t ≥ , (.)

where τ is a positive number. Let {λn}n≥ be an arbitrary sequence in [, ] satisfying (H),
M and N be constants with M > N > . Put t = , k = ,

σ(t) = t – τ , σ(t) =
√

t,

f (t, u, u) = e–t
cos(

√
t – t) +

sin
√

t
 + tn+ u

 u
,

c(t) = –, g(t) = te–t sin
(
t – t + 

)
,

p(t) =
M

 + tn+ , q(t) = e–t +
M

 + tn+

for t ≥ , ui ∈ R and i ∈ {, }. It is easy to verify that (H) and (H) hold. It follows from
Theorem . that Eq. (.) possesses uncountably many nonoscillatory solutions, and for
each L ∈ (N , M) the Mann iterative sequence {xn}n≥ generated by (.) converges to some
nonoscillatory solution of Eq. (.), and the error estimate (.) holds. But the results in
[, –] are inapplicable for Eq. (.).
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Example . Consider the nth order neutral delay differential equation

dn

dtn

[
x(t) + tx(t – τ )

]
+ (–)n+

{
t – 
tn+ ln

(
 +

∣∣x(
√

t – τ )
∣∣)

+
 – t cos t

t + tn+ x(t – ) –
x(t –

√
t – )

tn+ + x(t – )

}

=
√

t + t sin(t)
tn+ + ln t

, t ≥ , (.)

where τ is a positive number. Let {λn}n≥ be an arbitrary sequence in [, ] satisfying (H),
M and N be constants with  < 

 N < M. Put t = , k = , C = ,

σ(t) =
√

t – τ , σ(t) = t – ,

σ(t) = t –
√

t – , σ(t) = t – ,

f (t, u, u, u, u) =
t – 
tn+ ln

(
 + |u|

)
+

 – t cos t
t + tn+ u

 –
u


tn+ + u


,

c(t) = t, g(t) =
√

t + t sin(t)
tn+ + ln t

,

p(t) =
t – 
tn+ +

M| – t cos t|
t + tn+ +

M(M + tn+)
(N + tn+) ,

q(t) =
t – 
tn+ ln( + M) +

M| – t cos t|
t + tn+ +

M

N + tn+

for t ≥ , ui ∈ R and i ∈ {, , , }. Clearly, (H) and (H) hold. It follows from Theorem
. that Eq. (.) possesses uncountably many nonoscillatory solutions, and for any L ∈
( 

 M + N , M), the Mann iterative sequence {xn}n≥ generated by (.) converges to some
nonoscillatory solution of Eq. (.), and the error estimate (.) holds. However, the results
in [, –] are not applicable for Eq. (.).

Example . Consider the higher order nonlinear neutral delay differential equation

dn

dtn

[
x(t) –

t – sin t
t

x(t – τ )
]

+ (–)n+
{

 – tn+

tn+ x(
√

t)

+
t(t – )
tn+ + cos t

sin(x(t)
)

+
 – t – t

tn+ + |x(t)|
}

=
 + tn cos tn

tn+ , t ≥ , (.)

where τ is a positive number. Let {λn}n≥ be an arbitrary sequence in [, ] satisfying (H),
M and N be constants with M > N > . Put t = , k = , C = – 

 ,

σ(t) =
√

t, σ(t) = t, σ(t) = t,

f (t, u, u, u) =
 – tn+

tn+ u
 +

t(t – )
tn+ + cos t

sin u
 +

 – t – t

tn+ + |u
|

,

c(t) = –
t – sin t

t
, g(t) =

 + tn cos tn

tn+ ,
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p(t) =
M(tn+ – )

tn+ +
Mt|t – |

tn+ + cos t
+

M(t + t – )
(tn+ + N) ,

q(t) =
M(tn+ – )

tn+ +
t|t – |
tn+ + cos t

+
t + t – 
tn+ + N

for t ≥ , ui ∈ R and i ∈ {, , }. Obviously, (H) and (H) hold. It follows from Theo-
rem . that Eq. (.) possesses uncountably many nonoscillatory solutions, and for any
L ∈ (N , 

 M), the Mann iterative sequence {xn}n≥ generated by (.) converges to some
nonoscillatory solution of Eq. (.), and the error estimate (.) holds. However, the results
in [, –] are not applicable for Eq. (.).
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