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Abstract
By utilizing the coincidence degree theory and the related continuation theorem, as
well as some prior estimates, we investigate the existence of positive periodic
solutions of a neutral predator-prey system with monotone functional responses.
New sufficient criteria are established for the existence of periodic solutions. Some
well-known results in the literature are generalized.
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1 Introduction
Recently, many contributions [–] focused on the existence of periodic solution of neu-
tral predator-prey systems. In these references, by using the effective Mawhin coincidence
degree theory, a set of new and interesting sufficient conditions are obtained for the exis-
tence of periodic solution of neutral predator-prey systems. Attracted by the above work,
in this paper, we are interested in the following neutral predator-prey system with mono-
tone functional responses [–]:

⎧
⎨

⎩

x′(t) = x(t)[a(t) – b(t)x(t – σ (t)) – c(t)x′(t – σ (t))] – r(t)f ( x(t)
y(t) )y(t),

y′(t) = y(t)[–d(t) + k(t)f ( x(t–τ (t))
y(t–τ (t)) )],

(.)

where x(t), y(t) stand for the population densities of prey and predator at time t, re-
spectively. a(t), b(t), r(t), d(t), k(t) are the intrinsic growth rate of the prey, the density-
dependent coefficient of the prey, capture rates, the death rates of predator and maxi-
mal predator growth rates at time t, respectively. σ (t), τ (t) are delays. The function f (ν)
is called the functional response. In many predator-prey interactions, especially in micro-
bial dynamics or chemical kinetics, the functional response has the monotone property.
Throughout this paper, we impose the following hypotheses on the function f (ν) due to
its monotonicity.

() f ∈ C[, +∞), f () = ,
() f ′(ν) >  for ν ∈ [, +∞),
() limν→+∞ f (ν) = μ > , μ is a constant.
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The most popular monotone functional response which has been studied extensively
by the authors is f (ν) = ν/(α + ν), that proposed by Michaelis and Menten in the con-
text of studying enzymatic reactions [–]. Another type, known as the Holling type-
III functional response [], takes the form f (ν) = ν/(α + ν) and, in the general case,
f (ν) = νn/(α + νn), n > , it is known as the sigmoidal response function. A similar type of
celebrated response function is f (ν) = ν/((α + ν)(β + ν)) found in [].

In this paper, using a prior estimation technique and a continuation theorem, we show
that system (.) with all of the monotone functional responses always has at least one pos-
itive ω-periodic solution. Our result extends previous work. In Section , for the reader’s
convenience, we will present some basic results from Gaines and Mawhin, then we study
the existence of periodic solutions in Section . In Section , we will apply the main result
of the paper to some more concrete predator-prey models.

2 Preliminaries
Before exploring the existence of periodic solution, we shall make some preparations. We
now recall Mawhin’s coincidence degree theory [], which our study is based upon.

Let X,Z be normed vector spaces, L : Dom L ⊂ X → Z be a linear mapping, N : X → Z

be a continuous mapping.
The mapping L will be called a Fredholm mapping of index zero if dim Ker L =

codim Im L < +∞ and Im L is closed in Z.
If L is a Fredholm mapping of index zero there exist continuous projectors P : X→ X and

Q : Z → Z such that Im P = Ker L, Im L = Ker Q = Im(I –Q). It follows that L|Dom L∩Ker P :
(I – P)X → Im L is invertible. We denote the inverse of that map by KP .

If � is an open bounded subset of X, the mapping N will be called L-compact on �̄ if
QN(�̄) is bounded and KP(I – Q)N : �̄ →X is compact.

Since Im Q is isomorphic to Ker L, there exists an isomorphism J : Im Q → Ker L.

Lemma . (Continuation theorem) Let L be a Fredholm mapping of index zero and let
N be L-compact on �̄. Suppose the following.

(i) For each λ ∈ (, ), every solution x of Lx = λNx is such that x /∈ ∂�;
(ii) QNx �=  for each x ∈ ∂� ∩ Ker L;

(iii) deg{JQN ,� ∩ Ker L, } �= .
Then the equation Lx = Nx has at least one solution lying in Dom L ∩ �̄.

For convenience of our formulation, we introduce the following notations:

|φ| = max
t∈[,ω]

{∣
∣φ(t)

∣
∣
}

, φ̄ =

ω

∫ ω


φ(t) dt, φ̂ =


ω

∫ ω



∣
∣φ(t)

∣
∣dt,

where φ(t) is a continuous ω-periodic function.
In addition, let

ψ(t) =
eu(t)

ev(t) , g(ν) =
f (ν)
ν

, m = sup
ν∈[,+∞)

g(ν).

It is easy to see that  < m < +∞.
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3 The existence of positive periodic solution
In this section, we shall study the existence of at least one positive periodic solution of
system (.). By exploiting the continuation theorem of the coincidence degree, we derive
a set of easily verifiable sufficient conditions for the existence of positive periodic solution
of system (.).

Now, we state our main theorem.

Theorem . Suppose that the following conditions hold.
(H) a,σ , τ ∈ C(R,R), b, c, r, d, k ∈ C(R, [, +∞)) are ω-periodic functions, ā, b̄, d̄ > .
(H) c ∈ C(R,R),σ ∈ C(R,R),σ ′(t) < , b(t) > h′(t) for any t ∈ [,ω], where

h(t) = c(t)
–σ ′(t) .

(H) |c|eA < , where A = ln[ā maxt∈[,ω]{ –σ ′(t)
b(t)–h′(t) }] + |h| maxt∈[,ω]{ ā

b(t)–h′(t) } +
(â + ā)ω.

(H) ā > mr̄,μk̄ > d̄.
Then system (.) has at least one positive ω-periodic solution.

Proof It is easy to see the solution of system (.) remains positive for t ≥ . So we can
make change of variables as follows:

x(t) = eu(t), y(t) = ev(t)

and derive that
⎧
⎨

⎩

u′(t) = a(t) – b(t)eu(t–σ (t)) – c(t)eu(t–σ (t))u′(t – σ (t)) – r(t)g(ψ(t)),

v′(t) = –d(t) + k(t)f (ψ(t – τ (t))).
(.)

It is easy to see that if system (.) has an ω-periodic solution (u∗, v∗)T , then (x∗, y∗)T =
(eu∗ , ev∗ )T is a positive ω-periodic solution of system (.). To this end, it suffices to prove
that system (.) has at least one ω-periodic solution.

In order to apply Lemma ., we set

X = Z =
{

z(t) =
(
u(t), v(t)

)T ∈ C
(
R,R), z(t + ω) = z(t)

}

and define

|z|∞ = max
t∈[,ω]

{∣
∣u(t)

∣
∣ +

∣
∣v(t)

∣
∣
}

, ‖z‖ = |z|∞ +
∣
∣z′∣∣∞.

Then both X and Z are Banach spaces when they are endowed with the norms ‖ · ‖ and
| · |∞, respectively.

Define operators L, P, and Q as follows:

L : Dom L ∩X → Z, Lz = z′, Pz = Qz =

ω

∫ ω


z(t) dt,

where Dom L = {z|z ∈ X : z(t) ∈ C(R,R)}. Obviously, Ker L = R
, Im L = {z ∈ Z :

∫ ω

 z(t) dt = } is closed in Z and

dim Ker L = codim Im L = .
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Therefore, L is a Fredholm mapping of index zero. This indicates that L has a unique in-
verse. We define by Kp : Im L → Ker P ∩ Dom L the inverse of L. By a direct calculation, we
obtain

Kp(z) =
∫ t


z(s) ds –


ω

∫ ω



∫ t


z(s) ds dt.

Moreover, by the above definitions of P and Q, it can be seen that P, Q are both continuous
projectors satisfying

Im P = Ker L, Im L = Ker Q = Im(I – Q).

Define N : X → Z by the form

Nz =

(
a(t) – b(t)eu(t–σ (t)) – c(t)eu(t–σ (t))u′(t – σ (t)) – r(t)g(ψ(t))

–d(t) + k(t)f (ψ(t – τ (t)))

)

.

Then it follows that QN : X → Z reads

QNz =

(

ω

∫ ω

 [a(t) – b(t)eu(t–σ (t)) – c(t)eu(t–σ (t))u′(t – σ (t)) – r(t)g(ψ(t))] dt

ω

∫ ω

 [–d(t) + k(t)f (ψ(t – τ (t)))] dt

)

=

(

ω

∫ ω

 [a(t) – (b(t) – h′(t))eu(t–σ (t)) – r(t)g(ψ(t))] dt

ω

∫ ω

 [–d(t) + k(t)f (ψ(t – τ (t)))] dt

)

.

Here, at the first row of the matrix, we use the deformation


ω

∫ ω


c(t)eu(t–σ (t))u′(t – σ (t)

)
=


ω

∫ ω



c(t)
 – σ ′(t)

(
eu(t–σ (t)))′ dt

=
h(t)
ω

eu(t–σ (t))
∣
∣
∣
∣

ω


–


ω

∫ ω


h′(t)eu(t–σ (t)) dt

= –

ω

∫ ω


h′(t)eu(t–σ (t)) dt.

From this, in turn, we obtain Kp(I – Q)N : X →X,

Kp(I – Q)Nz =

⎛

⎜
⎝

∫ t
 [a(s) – (b(s) – h′(s))eu(s–σ (s)) – r(s)g(ψ(s))] ds

–h(t)eu(t–σ (t)) + h()eu(–σ ())
∫ t

 [–d(s) + k(s)f (ψ(s – τ (s)))] ds

⎞

⎟
⎠

–

⎛

⎜
⎝


ω

∫ ω


∫ t

 [a(s) – (b(s) – h′(s))eu(s–σ (s)) – r(s)g(ψ(s))] ds dt
– 

ω

∫ ω

 [h(t)eu(t–σ (t)) – h()eu(–σ ())] dt

ω

∫ ω


∫ t

 [–d(s) + k(s)f (ψ(s – τ (s)))] ds

⎞

⎟
⎠

–

(
( t
ω

– 
 )

∫ ω

 [a(s) – (b(s) – h′(s))eu(s–σ (s)) – r(s)g(ψ(s))] ds
( t
ω

– 
 )

∫ ω

 [–d(s) + k(s)f (ψ(s – τ (s)))] ds

)

.

It is not difficult to check by the Lebesgue convergence theorem that QN and Kp(I – Q)N
are both continuous. By virtue of the Arzela-Ascoli theorem, we know that Kp(I – Q)N(�)
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is relatively compact and QN(�) is bounded for any open set � ⊂ X. Hence N is L-
compact on �.

Now we need to find an appropriate open and bounded subset � ⊂ X. Corresponding
to the operator equation Lz = λNz for λ ∈ (, ), we have

⎧
⎨

⎩

u′(t) = λ[a(t) – b(t)eu(t–σ (t)) – c(t)eu(t–σ (t))u′(t – σ (t)) – r(t)g(ψ(t))],

v′(t) = λ[–d(t) + k(t)f (ψ(t – τ (t)))].
(.)

Suppose that (u(t), v(t))T is an arbitrary ω-periodic solution of system (.) for a certain
λ ∈ (, ). Integrating (.) over the interval [,ω], we obtain

∫ ω



[(
b(t) – h′(t)

)
eu(t–σ (t)) + r(t)g

(
ψ(t)

)]
dt = āω (.)

and
∫ ω


k(t)f

(
ψ

(
t – τ (t)

))
= d̄ω. (.)

From the first equation of (.) and (.), one can see

∫ ω



∣
∣
∣
∣

d
dt

[
u(t) + λh(t)eu(t–σ (t))]

∣
∣
∣
∣dt

= λ

∫ ω



∣
∣a(t) –

(
b(t) – h′(t)

)
eu(t–σ (t)) – r(t)g

(
ψ(t)

)∣
∣dt

≤
∫ ω



∣
∣a(t)

∣
∣dt +

∫ ω



[(
b(t) – h′(t)

)
eu(t–σ (t)) + r(t)g

(
ψ(t)

)]
dt

= (â + ā)ω. (.)

Let t = ϕ(ς ) be the inverse function of ς = t – σ (t). It is easy to verify that b(ϕ(ς )),
h′(ϕ(ς )),σ ′(ϕ(ς )) are all ω-periodic functions.

From (.), it follows that

∫ ω



(
b(t) – h′(t)

)
eu(t–σ (t)) dt =

∫ ω–σ (ω)

–σ ()

b(ϕ(ς )) – h′(ϕ(ς ))
 – σ ′(ϕ(ς ))

eu(ς ) dς

=
∫ ω



b(ϕ(t)) – h′(ϕ(t))
 – σ ′(ϕ(t))

eu(t) dt < āω.

Then

∫ ω



[
b(ϕ(t)) – h′(ϕ(t))

 – σ ′(ϕ(t))
eu(t) +

(
b(t) – h′(t)

)
eu(t–σ (t))

]

dt < āω.

By the mean value theorem of differential calculus, we see that there exists � ∈ [,ω]
such that

b(ϕ(�)) – h′(ϕ(�))
 – σ ′(ϕ(�))

eu(�) +
(
b(�) – h′(�)

)
eu(�–σ (�)) < ā.
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Noting that b(t) > g ′(t), t ∈ [,ω], we derive

b(ϕ(�)) – h′(ϕ(�))
 – σ ′(ϕ(�))

eu(�) < ā,
(
b(�) – h′(�)

)
eu(�–σ (�)) < ā,

which imply that

u(�) ≤ ln

[

ā max
t∈[,ω]

{
 – σ ′(t)

b(t) – h′(t)

}]

, eu(�–σ (�)) ≤ max
t∈[,ω]

{
ā

b(t) – h′(t)

}

.

Combining with (.), we obtain

u(t) + λh(t)eu(t–σ (t)) ≤ u(�) + λh(�)eu(�–σ (�)) +
∫ ω



∣
∣
∣
∣

d
dt

[
u(t) + λh(t)eu(t–σ (t))]

∣
∣
∣
∣dt

≤ ln

[

ā max
t∈[,ω]

{
 – σ ′(t)

b(t) – h′(t)

}]

+ |h| max
t∈[,ω]

{
ā

b(t) – h′(t)

}

+ (â + ā)ω

:= A.

As λh(t)eu(t–σ (t)) ≥ , we get

u(t) ≤ A, t ∈ [,ω]. (.)

From the first equation of (.) and (.), for any t ∈ [,ω], we have

∣
∣u′(t)

∣
∣ = λ

∣
∣a(t) – b(t)eu(t–σ (t)) – c(t)eu(t–σ (t))u′(t – σ (t)

)
– r(t)g

(
ψ(t)

)∣
∣

≤ |a| + |b|eA + |c|eA
∣
∣u′∣∣

 + m|r|,

which implies that

∣
∣u′∣∣

 ≤ 
 – |c|eA

[|a| + |b|eA + m|r|
]

:= A′. (.)

Note that (u(t), v(t))T ∈X, there exist ξi,ηi ∈ [,ω], i = , , such that

u(ξ) = min
t∈[,ω]

{
u(t)

}
, u(η) = max

t∈[,ω]

{
u(t)

}
,

v(ξ) = min
t∈[,ω]

{
v(t)

}
, v(η) = max

t∈[,ω]

{
v(t)

}
.

(.)

Let q(t) = b(t) – h′(t). It follows from (.) that

āω – q̄eu(η) ≤ āω –
∫ ω



(
b(t) – h′(t)

)
eu(t–σ (t)) dt

=
∫ ω


r(t)g

(
ψ(t)

)
dt ≤ mr̄ω,

which indicates

u(η) ≥ ln

(
ā – mr̄

q̄

)

.
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Therefore, it follows from (.) that, for any t ∈ [,ω],

u(t) ≥ u(η) –
∫ ω



∣
∣u′(t)

∣
∣dt ≥ ln

(
ā – mr̄

q̄

)

– A′ω := A,

which together with (.) implies that

|u| ≤ max
{|A|, |A|

}
:= A. (.)

By virtue of (.), we know that there exists a θ ∈ [,ω] satisfying

f
(
ψ

(
θ – τ (θ )

))
k̄ω = d̄ω.

Noting that ψ(t) is an ω-periodic function in terms of the periodicity of (u(t), v(t)) and
τ (t), we choose ζ ∈ [,ω] such that ψ(ζ ) = ψ(θ – τ (θ )). Then, from the above expression,
we have

f
(
ψ(ζ )

)
=

d̄
k̄

. (.)

From the properties of f , it is easy to see that f has an inverse function on the interval
[, +∞), namely f –. Then we have

ψ(ζ ) =
eu(ζ )

ev(ζ ) = f –
(

d̄
k̄

)

> .

Combining with (.), we get

ev(ξ) ≤ eA/f –
(

d̄
k̄

)

, ev(η) ≥ e–A/f –
(

d̄
k̄

)

.

From the second equation of (.) and (.), we obtain

∫ ω



∣
∣v′(t)

∣
∣dt = λ

∫ ω



∣
∣–d(t) + k(t)f

(
ψ

(
t – τ (t)

))∣
∣dt ≤ (d̂ + d̄)ω.

Consequently,

v(t) ≤ v(ξ) +
∫ ω



∣
∣v′(t)

∣
∣dt ≤ A – ln

{

f –
(

d̄
k̄

)}

+ (d̄ + d̂)ω := B

and

v(t) ≥ v(η) –
∫ ω



∣
∣v′(t)

∣
∣dt ≤ –A – ln

{

f –
(

d̄
k̄

)}

+ (d̄ + d̂)ω := B,

which yield

|v| ≤ max
{|B|, |B|

}
:= B. (.)
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By using the property of f and (.), we have

∣
∣v′∣∣

 = max
t∈[,ω]

{∣
∣v′(t)

∣
∣
} ≤ |d| + μ|k| := B′. (.)

From (.), (.), (.), and (.), we obtain

‖z‖ =
∥
∥(u, v)T∥

∥ = |z|∞ +
∣
∣z′∣∣∞ ≤ A + A′ + B + B′.

In addition, it follows from the given conditions that the system of algebraic equations

⎧
⎨

⎩

ā – b̄eu – r̄g( eu

ev ) = ,

d̄ – k̄f ( eu

ev ) = ,
(.)

has a unique solution (u∗, v∗)T ∈ R
.

Set D = A+A′ +B+B′ +D, where D is taken sufficiently large so that the unique solution
(u∗, v∗)T of (.) satisfies

∥
∥
(
u∗, v∗)T∥

∥ =
∣
∣u∗∣∣ +

∣
∣v∗∣∣ < D.

Clearly, D is independent of λ. We now take

� =
{

z =
(
u(t), v(t)

)T |z ∈X,‖z‖ < D
}

.

It is clear that � satisfies the condition (i) in Lemma .. When z = (u, v)T ∈ ∂� ∩ Ker L =
∂� ∩R

, z = (u, v)T is a constant vector in R
 with ‖z‖ = ‖(u, v)T‖ = |u| + |v| = D.

Thus, we have

QNz =

(
ā – b̄eu – r̄g( eu

ev )
d̄ – k̄f ( eu

ev )

)

�=
(




)

.

This implies that condition (ii) in Lemma . is satisfied.
Finally, we show that condition (iii) in Lemma . holds too.
Taking J = I : Im Q → Ker L, (u, v)T → (u, v)T , a direct calculation gives

deg(JQN ,� ∩ Ker L, ) = sgn det

(
–b̄eu – r̄g ′(ψ)ψ ′

u –r̄g ′(ψ)ψ ′
v

k̄f ′(ψ)ψ ′
u –k̄f ′(ψ)ψ ′

v

)

= sgn
{

k̄b̄f ′(ψ)eu–v} �= .

We have verified all the requirements of the Mawhin coincidence theorem in �. So system
(.) has at least one ω-periodic solution. By the medium of (.), we derive that system
(.) has at least one positive ω-periodic solution. This completes the proof. �

4 Applications
In order to illustrate some features of our maim theorem, we explore the existence of pos-
itive periodic solutions of some more concrete models, which have been extensively stud-
ied in the literature. In the sequel, the parameters α,β >  are constants.
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Example . Taking the monotone functional response f (ν) = ν/(α + ν), we obtain the
following neutral predator-prey system:

⎧
⎨

⎩

x′(t) = x(t)[a(t) – b(t)x(t – σ (t)) – c(t)x′(t – σ (t))] – r(t)x(t)y(t)
αy(t)+x(t) ,

y′(t) = y(t)[–d(t) + k(t)x(t–τ (t))
αy(t–τ (t))+x(t–τ (t)) ].

(.)

Theorem . Assume that (H), (H), (H) are satisfied. Moreover,

(H) αā > r̄, k̄ > d̄.

Then system (.) has at least one positive ω-periodic solution.

Example . Choose the monotone functional response f (ν) = νn/(α + νn), n ≥ , we
have the following neutral predator-prey system:

⎧
⎨

⎩

x′(t) = x(t)[a(t) – b(t)x(t – σ (t)) – c(t)x′(t – σ (t))] – r(t)xn(t)y(t)
αyn(t)+xn(t) ,

y′(t) = y(t)[–d(t) + k(t)xn(t–τ (t))
αyn(t–τ (t))+xn(t–τ (t)) ].

(.)

Theorem . Assume that (H), (H), (H) are satisfied. Moreover,

(H) n n√αā > r̄, k̄ > d̄.

Then system (.) has at least one positive ω-periodic solution.

Example . Select the monotone functional responses f (ν) = ν/((α + ν)(β + ν)), we get
the following neutral predator-prey system:

⎧
⎨

⎩

x′(t) = x(t)[a(t) – b(t)x(t – σ (t)) – c(t)x′(t – σ (t))] – r(t)x(t)y(t)
(αy(t)+x(t))(βy(t)+x(t)) ,

y′(t) = y(t)[–d(t) + k(t)x(t–τ (t))
(αy(t–τ (t))+x(t–τ (t)))(βy(t–τ (t))+x(t–τ (t))) ].

(.)

Theorem . Assume that (H), (H), (H) are satisfied. Moreover,

(H) (
√

αβ + α + β)ā > r̄, k̄ > d̄.

Then system (.) has at least one positive ω-periodic solution.
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