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Abstract

This paper is concerned with a class of triple-point integral boundary value problems
for impulsive fractional differential equations involving the Riemann-Liouville
fractional derivative of order & (2 < ¢ < 3). Some sufficient criteria for the existence of
solutions are obtained by applying the contraction mapping principle and the fixed
point theorem. As an application, one example is given to demonstrate the validity of
our main results.
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1 Introduction

Towards the end of the 19th century Liouville and Riemann mentioned the definition of
the fractional derivative which is the generalization of the traditional integer order dif-
ferential and integral calculus. The fractional derivatives provide an excellent tool for the
description of memory and hereditary properties of various materials and processes. The
subject of fractional differential equations is gaining much importance and attention be-
cause of its extensive applications in many engineering and scientific disciplines such as
physics, chemistry, aerodynamics, electrodynamics of complex medium, polymer rheol-
ogy, Bode’s analysis of feedback amplifiers, capacitor theory, electrical circuits, electro-
analytical chemistry, biology, control theory, fitting of experimental data, and so forth.
For more details of the basic theory of fractional differential equations, refer to [1-6] and
the references therein. In recent decades, the boundary value problems of fractional dif-
ferential equations have received a great deal of attention. There are a large number of pa-
pers dealing with the existence, nonexistence, multiplicity of solutions of boundary value
problem for some nonlinear fractional differential equations (see [7-27]).

As we know, many evolutionary processes experience short-time rapid change after un-
dergoing relatively long smooth variation. In order to describe the dynamics of popula-
tions subject to abrupt changes as well as other phenomena such as harvesting, diseases,
and so on, some authors have used an impulsive differential system to describe these kinds
of phenomena since the last century. For the theory of impulsive differential equations, the
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reader can refer to [28—30]. Recently, the boundary value problems of impulsive fractional
differential equations have been studied extensively in the literature (see [31-45]). To the
best of our knowledge, there are few articles involving the impulsive fractional order dif-
ferential equations. Therefore, we will study the existence and uniqueness of solutions for
the following impulsive integral boundary value problems (BVPs for short) of fractional
order differential equations:

o DYu(t) =f(t,u,u, D" u), tHt,
AD*\u(ty) = L(u(t)), k=1,...,m, (1.1)
u(0) =u'(0) = 0, u' (1) = [ g(s,u(s))ds,

where 2 <o <3, =[0,1], Jo = [to,t1], Jx = (e txn] C T (k =1,2,...,m). ;DY is the
Riemann-Liouville fractional derivative of order 2 <& < 3. f € C(J x R3,R), I; € C(R,R),
0<n<1l,geCUxRR),0=ty<ty <<ty <tua =1 ult) =1lim,_o+ u(ty + h) and
u(ty) = limy,_,o- u(ty + h) represent the right and left limits of u(t) at ¢ = &, respectively.
u(ty) = u(t), o, DY u(ty) = o, DY 'u(ty). The right-hand limits u(}) and , D? ' u(z]) all ex-
ist. AD“Mu(ty) = o DY u(t)) — ¢ DY u(ty).

The rest of this paper is organized as follows. In Section 2, we shall introduce some
definitions and lemmas to prove our main results. In Section 3, we give some sufficient
conditions for the existence of single positive solutions for boundary value problem (1.1).
As an application, one interesting example is presented to illustrate the main results in
Section 4. Finally, the conclusion is given to simply recall our studied contents and ob-
tained results in Section 5.

2 Preliminaries
Let C(J,R) be the Banach space of continuous functions from J to R with the norm ||u||¢c =
Supg;<; |#(£)]. Now let us to introduce the useful Banach space PCY(J,R) defined by

PC'(J,R) ={ue CU,R): D¢ 'u(t;) and , DY 'u(t;) exist with
WDV u(t) = o DY u(t),k=0,1,...,m} (2.1)
equipped with the norm ||| pc1 = max{||ullc, ||¢/||lc, o, DY ullc}

Definition 2.1 A function u € PC'(J,R) with its Riemann-Liouville derivative of order «

existing on J is a solution of (1.1) if it satisfies (1.1).

For convenience of the reader, we present here the necessary definitions from fractional
calculus theory. These definitions and properties can be found in the literature [2, 4, 6].

Definition 2.2 The Riemann-Liouville fractional integral of order o > 0 of a function u :

(a, +00) — R is given by

L7 u(t) = ﬁ /t(t —8)*u(s)ds, a>0,

provided that the right-hand side is point-wise defined on (4, +00).
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Definition 2.3 The Riemann-Liouville fractional derivative of order @ > 0 of a continuous

function u : (a, +00) — R is given by

2 - n—o—1
D u(t) = (n o) dt”/(t s) u(s) ds,

where a > 0, n — 1 < @ < n, provided that the right-hand side is point-wise defined on

(a, +00).

Lemma 2.1 Assume that u € Cla,b],q>p >0, then
D Ilu(t) = J7Pu(t), tela,b) (2.2)

Lemma 2.2 (see [6], pp. 36-39) Let « > 0, n denotes the smallest integer greater than or
equal to o. Then the following assertions hold.
D) ifr>-L,A#a—-i,i=1,2,...,n+1, then fort € [a,b]

" . r'(A+1) -
aD[ (t - ﬂ) = m(t - 61) . (23)

(ii) qu(t—a)o“i = O,i: 1,2,...,n

(iii) D‘}‘al"‘ u(t) = u(t), for all t € [a, b).
(iv) Dfu lfcmd only if there exists ¢; e R (i =1,2,...,n) such that
ut)=c(t-a)’t+ eyt —a) 2+ +c,(t—a)™", telab) (2.4)

(v) Forallt € |a,b], then
o aDiu(t) = c1(t - A et —a) P+t et —a)* " + ult). (2.5)

Lemma 2.3 (Schauder fixed point theorem; see [46]) If U is a closed bounded convex
subset of a Banach space X and T : U — U is completely continuous, then T has at least

one fixed point in U.

Lemma 2.4 For a given y € C(J,R), a function u € PC'(J,R) is a solution of BVP (2.6)

e Diu(t) =y(t), t#t,2<a <3,
AD*Yu(ty) = L(u(ty)), k=1,...,m, (2.6)
u(0) =u/(0) =0, u' (1) = [ g(s, u(s)) ds,

ifand only if u € PC'(J,R) is a solution of the impulsive fractional integral equation

a-1
u(t) = F()/(t s)

tal

F( )ZI u(t

t<t;

_ a2
F( )/ 1-9)""y(s)ds

ng(s, u(s))ds, 0<t=<1 (2.7)
0
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Proof We denote the solution of (2.6) by u(t) = ux(t) in [t txs1] (K =1,2,...

Jo = [0,#1], by (2.5), we have

ta71 + CoztOFZ + C03t0173

uo(t) = ol y(t) + cor
u(0) = u/(0) = 0 implies that ¢3 = co3 = 0. Applying Lemma 2.2, we get

uo(t) = oI y(t) + cnt™ ™,

D‘t’_luo(t) = D‘t’_l[olf‘y(t) + cmt“_I] = /:y(s) ds + T'(a)cor,
and

D*'u(t) = D*uo (t) = D* Muo(tr) + I (u(ty))

= /0t1 y(s)ds + T'(a)eor + I (u(rr)).

For t € 1 = (ts, 2], by (2.5), we get

ta—l

up(t) = o2y (t) + et + et + o3t

and

D‘t"_lul(t) = /ty(s) ds + T'(a)cqy.
0
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,m). For t €

Noting that #(0) = /(0) = 0 and D*'u;(t;) = D* Luy(t), we derive ¢ = ¢13 = 0 and ¢j; =

11(14 t]

co1 + . So we can obtain

wn(®) = oI y(6) + [cm N M]w—l

I'(a)

and

ty 2
D*'u(83) = D*'uy () = D* M (8) + I (u(2)) :/ y(s)ds + T'(a)coy + Z[i(u(t )
0

By the recurrent method, for ¢ € Jy = (¢, ty], k=2,3,...,m, we get
L
u(t) = ol y(t) + |:Co1 T ZI: i(u(t) :|t"“1

F( )/(t )%™ ly(s)dS+|:C()1+F( )Zl M(t):|011

and

i=1
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Du_l”(ﬁ;ﬂ) = Da_luk (t;('”) = Da_luk(tkﬂ) + I (u(tkﬂ))

k+1

= A o _)/(S) ds + F(Ol)C()I + le(u(t,))

i=1

So, for t € J,,, = (£, ts1], we have

’ ’ 1 ! a— 1 - a—
u (t) = Lim(t) = m ‘/(; (t—S) 2_)/(S) ds + (Ol - 1) |:C()1 + m ;I,(M(tl)):|t 2.

By /(1) = [, u(s)y(s) ds, we have

n 1 ! w2 1 &
/0 g(s,u(s))ds = Ta-D ./o (1-9)"y(s)ds + (¢ - 1) |:c01 + ) lzl:li(u(ti))],

which implies that

n 1 m
co1 = ﬁ ./o g(s,u(s)) ds — ﬁ ./0 1 —5)*2y(s) ds — %a) Z[i(u(ti)).

Therefore, for t € J = [0,1], we have

ta—l

n
1/0 g(s, u(s)) ds

o —

1 t
u(t) = m /0 (t =)y (s) ds +

ta—l 1 s m
e |:/(; (1-5s) y(s)ds+i21:1i(u(ti))—;Ii(u(ti))]
—L t_ot—l _ta1|:1 a2 , ]
~ g | e 0ds- Lo -t ds e Y n(utn)

t<t;

ta—l

a-1

/ng(s, u(s)) ds,
0

which indicates that u is a solution of (2.7). Conversely, noting that the above derivations
are reversible, we assert that if « is a solution of the impulsive fractional integral equation
(2.7), then u is also the solution of BVP (2.6). The proof is complete. d

3 Main results
According to Lemma 2.4, we obtain the following lemma.

Lemma 3.1 A function u € PC'(J,R) is a solution of BVP (1.1) if and only if u € PC*(J,R)

is a solution of the impulsive fractional integral equation

u(t) = ﬁ /Ot(t = 8)* 7 f (s, u(s), ' (s), D*uls)) ds

1 ta—l
_ _ o2 / o—1 g X
[/0 (= 5)**f (s, uls), u'(s), D u(s))d“;b(”(t‘))}r(a)
a1
+Of I/Ug(s,u(s))ds, 0<t<l. 3.1)
- 0
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Define an operator T : PC'(J,R) — PC(J,R) as follows:

(Tu)(t) = %a) /0 (t- s)“_lf(s, u(s), u’(s),Do‘_lu(s)) ds
1 , v ta—l
_ |:/0 1- S)a—2f(s,u(s), u'(s),D 1l,t(s)) ds + ;Ii(u(ti))] (@)
+ aa—ll /ng(s, u(s))ds, 0<t=<1.
-1Jo

Then BVP (1.1) has a solution if and only if the operator T exists one fixed point.

Page 6 of 19

(3.2)

Lemma 3.2 Assume that f € C(J] x R%,R), and g € C(J x R,R). Then T : PC*(J,R) —

PC'(J,R) defined by (3.2) is completely continuous.

Proof Note that T is continuous in view of continuity of f, Ix, and g. Now we show that T is
uniformly bounded. In fact, let 2 C PC}(J,R) be bounded, then there exist some positive
constants /; (i = 1,2,3) such that |[f(¢,u,u',D*u)| < I, |g(t,u)| < b, |Ix(u)| < I3, for all

u € Q. Thus for u € 2, we have

|(Tu)(t)| < % /Ot(t—s)“I[f(s,u(s),u/(s),D"‘1u(s))|ds

! a2 ’ o—1 *
+ |:/0 1-5s) [f(s, u(s), u'(s), D u(s)) ! ds + Z’Ii(u(t,»)) |:| —_—

I'(x)

t<t;

tot—l
+

n
/0 |g(s, u(s)) | ds

21 I l
2l by s
I'(a) oa-1

oa-1

|(Tu)/(t)| = ’F;—l) /o (t- s)"‘_zf(s,u(s), u’(s),D“_lu(s)) ds

(o

- i /1(1 —s)“_zf(s u(s), u'(s) D“’lu(s)) ds
F(e-1) Jo R

-

> n
) Z]i(u(ti)) + tﬂf—z/ g(s,uls)) ds

t<t; 0

tA-s? '(s),D*
5/0 ﬁV(S,u(S),u(S):D u(s))| ds

1(1_¢@2
+ /0 %lf(s,u(s),u’(sxD“‘lu(s))!ds

1

n
o )|+ [ e )] ds

t<t;

+

211 + Wllg

= ilniM
_F(a—1)+2n 2

and
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|D*(Tu)(t)|
t 1
= / f(s, u(s), u'(s), D"‘_lu(s)) ds — / a- s)“‘zf(s, u(s), u/(s),D“_lu(s)) ds

—Z[ u(t, + T - 1)/ s,u(s)

t<t;

1
< f If (s, u(s), (), D" uls)) | ds + / (1 -9 |f (s, u(s), u/(5), D* " uu(s)) | s

+Z‘I t) + N« - 1/‘g3, ’ds

t<t;

<2L + ml3 + lzT]F(Ol 1) Ms,

which means that ||u||pc1 < max{M;, M,, M3}, that is, T is uniformly bounded.
=[0,1]. Indeed, for all #, %, € [0,1]

Next, we should prove that T is equicontinuous on J
with f; < t,, we have

t
[Tu) ds</|Tu |ds
5]

<Myt —t) > 0, asty— by,

|(Tu) (&) — (Tu)(&)| =

[(Tw)' (&) - (Tw)' (1)

< o [ (B9 = 9 90, D ) s

* ﬁ 2:2 (s — )" 2|f (s, u(s), 1/ (), D* ' uls)) | ds

Zot—2 _ _ a2 o—1
7“ oD /(1 s) [f(s, ), 1/ (s), D u(s)‘ds

ta -2 ta
D Z| (ult:)) 5 > i(u()]

h<ti<ty
/ lg (s, u(s))| ds

ll Zo-1  Fa-1 a-1 l a-2  Fa-2
—r(a>( AR )“2‘“) ETEICE
Lo
F(’:_Sl)(rgz )4 )(t2 B+ Ly(B2 - %) =0,

as Zl —> Zz,

and

/tzf(s, u(s), u'(s), D" "uls)) ds + Z Ii(u(ti))‘

f 1 <t;<ty

| DN (Tu)(8) - D* N (Tu)(B)| =

5/2[f(s,u(s),u'(s),Da_lu(s))|ds+ Z |Ii(u(ti))|

a L <ti<ty

511(2’2—21)+13(Z’2 —Z’l)—> 0, as 2’1 — 22.
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Thus, for any ¢ > 0 (small enough), there exists § = §(¢) > 0 with independence of #,
ty and u such that ||(Tu)(%) — (Tu)(@)||par < €, whenever |& — | < 8. Therefore, T is
equicontinuous on J = [0,1]. According to the Arzela-Ascoli theorem, it follows that
T :PC (J,R) — PC'(J,R) is completely continuous. O
Theorem 3.1 Assume that the conditions (B,)-(B3) hold.

(B)) feC( xR3R), for all (t,u,v,w),(t,it,v,w) €] x R®, there exist some functions yr; €
L([0,1]) (i =1,2,3) such that

(&, uv,w) = f (&2, 9, )] < |y2(6)| |t
+ [¥2®)|lv = V] + [W3(8) | lw = w.
(B2) Ix € C(R,R), for all u,v € R, there exist some constants Ly > 0 such that
|Ic() - )| < Llu—vl, k=1,2,...,m.
(Bs) g€ C(,R), forall (t,u),(t,v) €] x R, there exists a function ¥ € L([0,1]) such that
gt w) —g(&v)| < W ©1u—v].

Ifp =2 [y[IWa()| + [Ya(6)| + [Ws(s)l]ds + Xty Lic + Tle = 1) [ [ (s)| ds < 1, then BVP (1.1)

has a unique solution on J.

Proof Let M = sup,s |f(£,0,0,0)| + sup,; |g(¢,0)| and B, = {u € PC(/,R) : ||ulpcr < r},
where r > — [(2 + (o = 1)nM + Y}, x(0)]]. Define an operator T : B, — PC(J,R) as
(3.2). It is obv10us that T is jointly continuous and maps bounded subsets of /] x R to
bounded subsets of R. We will prove Theorem 3.1 through the following two steps.

Step 1. We show that T(B,) C B,. In fact, noting that #(0) = #/(0) = D*'%(0) = 0, we
have, foru € B,, t € ] = [0,1],

|(Tu)(2)|

al o—1
_F(a)/(t s) [f(s, ), 1/ (s),D S) |ds+ / |g s,u(s |ds

L2 U (1= 5)*2f (5, (5), 4 (5), D" 'u(s)) | s + 3|1 (u(22) ]

t<t;

1 ‘ a-1 / o—1
< ) /(; (t-s) [[f(s, u(s), ' (s), D 'u(s)) - f(s, 0,0, 0)| + [f(s, 0,0,0)|] ds

ta_l ' a-2 / a—1 _
+ T /0 (1= 8)*>[|f (s, u(s), u/(s), D" "u(s)) = £(5,0,0,0)| + |f(5,0,0,0)|] ds
a-1

+

t
iy 2 1te) = 1 ()| + [ (u(0))]]

t<t;

tot—l
+

n
/ [lg(s u(s)) - g(s,0)| +|g(s,0)|] ds

a-1 0
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rfo [a(s)] + 12 ()] + [Ys(s)|] ds + M ffol[llﬁl(S)I + [Y2(s)] + [Y3(s)[] ds + M

I'(a) I"(er)
1 m
WZIL/JHI/( ‘ds+
2f0[|1/f1(s [+ [¥2(s)] + [¥3(s)[] . 1 & 1 7
|: ") ) kX: _1/0 |1/f(s)|ds:|r

2
[r(oo ] Z“k 0
1 n
< [2[0 [[¥1(9)] + [w2(s)| + [W3(s)|] ds + ;Lk +T(« —1)/0 !w(s)\ds}r

+[2+4 (@ =1)n]M + [ (0)]
k=1

<pr+(l-p)r=r,

|(Tu)' (2)|

a-2 1
S _1)/(15 s) [f(s,u(s)u(s)D M(S)|ds

toz2 1

(a 1 Jo

1)Z|I u(t) t* 2/ |g s, u(s) {ds

t<t;

1-s)“" 2{f(s u(s), u'(s), D*~ 1u(s))’ds

- t(t_S)a2
- 0 F(a—l)

[If (s, u(s), ' (s), D* " uu(s)) — f(5,0,0,0)| + |f(s,0,0,0)|] ds

U el - s))? , .
" fo Tin[[f(s,u(s),u(s),D Lu(s)) - £(5,0,0,0)| + |f(s,0,0,0)| ] ds

toz—2

* o= L) - ()| + 1) ]

t<t;

n
+ t"’Z/ [lg (s u(s)) — g(s,0)| + |g(s,0)|] ds
Vfo U (s)] + [¥a(s)] + [¥3(s)[] ds + M Vfol[|1ﬁ1(s)| + Y (8)| + [r3(s)] ds + M

Mo —1) o —1)
;Xm:[L r+ | (0)|]+r/n|1/f(s)|ds+ M
Ma—1) & k k ; n
211+ ) + [Ys0llds 1 & "
_|: T +F(a—1)§Lk+/o |¢(s)|ds:|r

m

2 1
+ [—F(a ) + n:|M+ —F(a ) Z|Ik(0)|

k=1

1 m n
< [2/ [[¥1(9)] + [w2(s)] + st(S)I]dHZLHF(a—I)/ II/f(S)IdS}r
0 k=1 0



Zhao and Liang Advances in Difference Equations (2017) 2017:50 Page 10 of 19

+[2+4 T =1)n]M + |1 (0)]
k=1

<pr+(l-p)r=r
and

|D""1(Tu)(t)|
/ [f s, u(s), 1 (s), D* Yul(s) )‘ds+ /1(1 —s)“_2V(s,u(s),u/(s),D“_lu(s))|ds
+Z\I IENCE 1/\gsu )| ds

< /t[[f(s, u(s), u'(s), D*u(s)) - f(s,0,0,0)| +|f(s,0,0,0)|] ds
0
1
+ / 1- s)“‘z[[f(s, u(s), u'(s),Do‘_lu(s)) -f(s,0,0, 0)| + V(s, 0,0, 0)|] ds
0

+T(@-1) /:Hg(s, u(s)) — g(s,0)| + |g(s,0)|] ds
+ ) [ 11(w(0) - 1i(w(0))] + [ ((0)) ]

t<t;

1 1
< r/o [[v1)] + [v2(s)] + st(s)\]als+M+r/O [[v1@)] + [W2 )] + |w3(s)|] ds + M

+ Z[Lkr+ |Ik(0)|] + Mo - 1)[r/(;n|¢(s)| ds + nM]

[

+[2+ T -Dn]M+ ) | (0)]
k=1

_

[|1/f1(s| |1/12s)| |1/f3(s)| ds+ZLk+F(oz 1)/ |1//S)|ds:|r

k=1

<pr+(l-p)r=r,

which imply that || Tu| pc1 <1, thatis, T(B,) C B,.
Step 2. We show that T is a contraction mapping. Indeed, for all u,v € B,, for each t €
J =[0,1], we obtain

|(Tu (t) - (Tv) (t)|

“tT@ / (&~ )7 f (s, u(5), 2/ (), D*Mu(s)) — f (5, v(s), V' (5), D" (s)) | s

+ F(:O:) / 1= 8)*2|f (s, (), ' (8), D* M ua(s)) = f (s, v(s),V/(5), D "'v(s)) | ds
ta - Z‘ V(t sv(s)‘ds

t<t;
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['(e) I(e)

1 n
+ﬁ/0 |1ﬁ(s)|ds:|||u—vllpc1

1 m n
< [2/ [[va@)] + [¥a(s)] + [was)|]ds+ Y Li+ Tler - 1)/ W ()] ds} llot =Vl pen
0 k=1 0

[Zfo O] + W2 + [Ys6)llds 1 ki

= P”M_V”pcl;

|(Tw)' (£) - (Tv)'(2)|

t a-2
< /0 (It, (—as)_ D If (s, (), ' (), D* " ua(s)) = f (s, v(s), v (5), D*"'w(s)) | ds

-2 1 . / . | B
Sy | Q=95 1096, 9) (5150 9, D v09) | s

1o 2
Mo 1)2:|I u(t) v(t) t* 2/ |g S, U s) (s,v(s))|ds

AN @)+ V2] + [Ys)lds 1 m "
[ F(ot 1) F((x—l) ;Lk +/0\ |1/I(S)|dsj| ||I/£—V”PC1

1 m n
< [2/ [926)] + [926)] + [ws(0)]]ds + 3 Lo + T~ 1) / )| ds} = vilpe
0 = 0
=pllu—vlipc,
and
| D N(Tu)(t) - DN (Tv)(2)|
< /t[f(s, u(s), u'(s), D*u(s)) — f (s, v(s), V' (s), D*'v(s)) | ds
0
1
+ / A= 9)*2|f (s, u(s), ' (), D*"u(s)) —f (s, v(s),V/ (), D 'W(s)) | ds
0

+Z|I u(tl - V(t, )| + (e — 1)/ s,u(s) (s,v(s))|ds

t<t;

1 m
< [2[ [la(s)] + | wals)| + \wg(s)y]dHZmr(a—l)/"!w(sws} llse =Vl per
0 Py 0

=pllu—vlpc

which indicates || Tu — Tv||pc1 < p|lu —v||pc1, where p = 2f()1[|1//1(s)| + o (s)| + [Yr3(s)|] ds +
YL+ Dl — 1) fon |¥/(s)| ds < 1. Therefore T is a contraction mapping on PC'(J,R).
According to the contraction mapping principle, we conclude that T has a unique fixed
point u(t) € PC'(J,R), which is the unique solution of BVP (1.1). The proof is complete. (]

Now we give a simple and easily verifiable result as follows.
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Corollary 3.1 Assume that the conditions (By), (Bs), and (B}) hold.

(B) f € C(JxR3R),forall (t,u,v,w),(t,it,v,w) €] x R3, there exist some constants N; > 0
(i=1,2,3) such that

[f (&, u, v, w) = f(t, 10,9, W)| < Nilu — it] + No|v =] + N3|w — ]

If p = “QarNo+Na) Yo Le+T(@-1) fon |\ (s)| ds < 1, then BVP (1.1) has a unique solution

a-1
on].

Proof Let M = sup,; |f(£,0,0,0)| + sup,; Ig(¢,0)] and B, = {u € PC(,R) : |ulpcr <1},
where r > ﬁ[ g + Do -1n)M + Y ey Hx(0)]]. Define an operator T : B, — PC(/,R)
as (3.2). It is obvious that T is jointly continuous and maps bounded subsets of /] x R to
bounded subsets of R. Similarly, we will prove Corollary 3.1 through the following two
steps.

Step 1. We show that T(B,) C B,. In fact, noting that #(0) = #/(0) = D*~u(0) = 0, we
have, foru € B,,t € ] = [0,1],

|(Tu)(2))|

§/t(t_s)a_1V(s, u(s), u' (s), D* Lu(s) |ds+

tal

/ }gsu(s |ds

[/ (1= 9)*2[f (s, u(s), (), D" 'ua(s)) | ds + ) | i () ]

t<t;

L ! _ -l / a—1 _
< F(a)/o (= 8)* 7 [|f (s, uls), u/(s), D "uls)) = £(5,0,0,0)| + |f(5,0,0,0)|] ds

ta—l

1
a-2 / o—1
+ @) /0 (1-5s) Hf(s, u(s), u'(s), D 'u(s)) - f(s, 0,0, 0)| + [f(s, 0,0,0)|] ds

-1

t
* F @) > [ (u2)) - 1:((0)) | + [7:((0)) []

t<t;

o -1
+

n
/ [|g(s,u(s)) - g(s,0)| + |g(s, 0[] ds

oa-1 0

- 2[(N7 + Ny + N3)r + M|

1 & " M
@ ;[Lkw 1(0)]] + ﬁ/o (o) ds+ =

- IN'a +1)
(N1 +N2 +N3) 1 "
_|: T+ D) T kX: / |1ﬁ(s)|ds:|r

2 n 1 &
+ [F(a+1) + a—1]M+ T ;Uk(o)

Ol(Nl +N2 +N3)
<|—————+
- oa-1

o
+
o —

<pr+(l-p)r=r,

Lk+F(a—1)/onW(s)’ds:|r

k=1

-+ Do - 1);7]1\/1 + Y |(0)]

k=1
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|(Tw)'(0)]

t(t_s)oz—Z
- 0 F((X—l)

ta—Z 1 w2 ) -
+ a1 |:/o (1-5s) [f(s, u(s), u'(s), D "uls)) | ds + Z|It(u(tt)) [|

L<t;

[f(s, u(s), u’(s),DO‘_lu(s)) } ds + t*72 /n !g(s, u(s)) ‘ ds
0

B /t (t_s)a_z[[f(s u(s), ' (s) Da’lu(s)) —f(5,0,0 0)| + V(s 0,0 O)Hds
=)y Tla—1) W \&HHE

LA -s)e? 1oy -
+/0 Tin[[f(s,u(s),u (), D*'u(s)) - f(s,0,0,0)| +|f(s,0,0,0)|] ds

toz—2

* Ty 2olte) () + |1 (@)

t<t;

n
e /0 [lg(s u(s)) — (s, 0)] + |g(s,0)|] ds

m

2[(N1 + Na + N3)r + M] 1 n
20+ s s +F(a_1)Z[Lkr+|Ik(0)|]+r/0 | (5)| s +

k=1
2(N; + N + N3) 1 m "
) [ M)  T-1) ng+/0 Ws)lds]r
2 1 m
' [W ’ ”]M+ oD ;‘Ik(o)’

< [“(N”—M +F(oe—1)/n|1//(s)|ds+ ZL,(}
0 k=1

a-—-1

+ [a‘il +T( —l)n:|M+ 3 |5 (0)

k=1

<pr+(Q-pr=r,
and
D (Tu) 1)

< /[ [f(s, u(s), u’(s),D"‘_lu(s)) ‘ ds + /1(1 B [f(s, u(s), u/(s),D“_lu(s)) ’ ds
0 0

n
+ Z|Ii(u(ti))| + Mo — 1)/0 |g(s,u(s))|ds

t<t;

< /t[[f(s, u(s), u'(s),D*'u(s)) - f(s,0,0,0)| +|f(s,0,0,0)|] ds
0

1

+ / 1- S)“_Z[[f(s, u(s), u'(s),D"‘_lu(s)) —-f(s,0,0, 0)| + V(s, 0,0, 0)|] ds
0

+ 2 [10(0) = 1i(w(0) | + [1:((0))]]

t<t;

n
+ (e —1)/(; [lg (s, u(s)) — g(s,0)| + |g(s,0)|] ds
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3 m
erNi+M+ ZlONJFM+X:L/<7‘+|11<(0)|
i=0 k=1

+ ' —1)|:r/0 |1//(s)|ds+ nMi|

- [M +2Lk+r(a—1)fn|w<s>lds}r
= 0

a-1

o
I'( 1)n |M I(
o[ -] +Z|k
<pr+(1-pr=r
which imply that || Tu| pc1 <r, thatis, T(B,) C B,.

Step 2. We show that T is a contraction mapping. Indeed, for all u,v € B,, for each t €
J =[0,1], we obtain

|(Tu)(®) - (TV)(2)|

=T a)/ (= 9)* 7 f (s, u(s), ' (), D*u(s)) — f (5, v(s5), V' (5), D* " w(s)) | ds

ta—l

/0 (1= 8)*2|f (s, u(s), 1 (), D* uu(s)) = f (s, v(s), V' (5), D* ' v(s)) | ds

o1 o1
¢ Z|I (u(t) - L(v(t) / lg(s,u(s)) —g(s,v(s))| ds
t<t;
N1+N2+N3 N1+N2+N3 n
|: Ma+1) * Ma+1) ZLk+ —1/0 }w(s)|ds:|||u—v||PC1

< O((Nl +N2 +N3)
- a-1

m n
+Y L+ T —1)/ ¥ )| ds} It~ vliper = pllu—vilper,
k=1 0

|(Tu) (£) - (Tv) (¢)]

< /t o If (s, u(s), ' (s), D" u(s)) — £ (s, v(s), v/ (), D* ' ¥(s)) | s
~Jo Ta-1) ’ ’ ’ o ’

toz—2

+ m/ (1= 9)*?|f (s, u(s), (), D* " u(s)) = f (5, v(s), V'(5), D* ' w(s)) | ds

)Z| u(t) v(t) t* 2/ |g S, U s) (s,v(s))|ds

t<t;

2(N1+N2 +N3) 1 i n
= |: @) + FaD) kXﬂ:L“-/O |1/f(s)|ds:| lu = vl pcr

Ni + Ny + N3)
S[w ZLk+F(a 1)/ |¢(s|ds:|||u Vlipat = pllu—=vlper,

a-1 k=1

and
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| D (Tu)(e) - D (Tv)(2)|
< / 1 160, 16), D (9) (515, 9, D)
0
1
+ f (1=5)*7|f (s, uls), ' (s), D*"u(s)) = f (5, v(s),V(s), D* M (s)) | ds
0

+ Z|I u(tl V(tl))| + (o — 1)/ s,u(s) (s, v(s))|ds

t<t;

Ni+No+ N3 — "
< N1+N2+NB+#+ZLHF(0¢—1)/ | (s)| ds |llu - Vlpc
CU—]. 1 0

N; +N; + N e "
- w+2u+r(a—n/ [ (s)| ds |llu = Vllper = pllu =V pcr,
a-—1 P 0

which indicates ||Tu — Tv||pc1 < pllu — v||pc1, where p = W + > L+ T —
1) foﬂ | (s)| ds < 1. Therefore T is a contraction mapping on PC*(J,R). According to the
contraction mapping principle, we conclude that T has a unique fixed point u(¢) €

PCY(J,R), which is the unique solution of BVP (1.1). The proof is complete. g

For some fixed r > 0, considering BVP (1.1) on the cylinder R = [0,1] x B(0, r), we obtain
the following theorem.

Theorem 3.2 Assume that conditions (By)-(Bg) hold. Then BVP (1.1) has at least one so-
lution in ], provided that ¢ = > ;" Ly + T'(a = 1) [} [¥(s)| ds < 1.

(Ba) f € CUxR3,R), forall (t,u,u',D*'u) € ] xR3, there existp € (0,1), h € Ly,([0,1], R*)
such that |f (t,u,u',D*'u)| < h(t), where Ly;,([0,1],R*) denotes space 1/p-Lebesgue
measurable functions from [0,1] to R* with the norm ||v|, = (fo1 |v(s)|1ly ds)?, for
v e Lyy([0,1],RY).

(Bs) Ix € C(R,R), for all u € R, there exist some constants Ly > 0 such that |I;(u)| < Li|ul,
k=1,2,...,m

(Bs) g€ C(,R), forall (t,u) € (J,R), there exists € L[0,1] such that |g(t,u)| < |y (£)||u].
Proof Let B;, be a closed bounded convex subset of PC'([0,1],R) defined by B; = {u :

lul <A} 2> A, A=+ (G o) Pl yp.
Define the operator T : B, — PC([0,1],R) as (3.2). For u € 3B;, we have

|(Tu)(2)|

t (t_S)a—l .
5/0 W[f(s, u(s), ' (s), D' ul(s)) |ds

u(s) | ds

tOt—l

1
a2 o — 1
) [/0 (1= (s 96, D |ds+;|1 ]
L1 -s)t L1-s)22
5/ 7r Rl Ol

ZL}u t)’

t<t;

(s)‘ ‘u(s)‘ ds
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L) ([
(oot

1 ||M||pc1/
— YL
* @) k§=1 dllullpet + —— i |v(s)| ds

L-p\"7 (1= \"]Whlw | ” 17
f[(ﬁ) +<a—p—1) ]F [ 2t _1/0|w(s)|dsi|

— 1-p
< |:1+ (aiplil> ]||h||1/p+)»|:ZLk+ F(a_l)/:|1p(s)|dsj| =A+Xro <A,

k=1

|(Tu)' (2)|

t(t_s)a—Z
“Jo F(a 1)

Fa-1) |:/ 1 - 9)*2|f (s, uls), u/(s), D* " u(s)) |ds+Z|I (u(t) :|

_/0 r( —1)h()d /

e D > Lifu(s)| + / | (s)||u(s)| ds

t<t;

a-1/ (! w2 \'P/ 1 1 \?
o) ([
— 1 a=2 1-p 1 P
+(;(—a;</0 1-s)tr ds) (/0 (h(s)) ds)
a-1& "
—_— L 1 1 d
+ F(a)k%j cllloc +||u||pc/0 |¥(s)] ds
L-p \"7 Ml |
52(“‘”<a—p—1) @) [r( )ZL”/ |‘“S)|ds}
1-p r
< [1+ (a_p_l) ]||h||1/p+x[ZLk+r o - 1)/ |I//(S)|dsi| =A+h0 <A,

k=1

[f(s, u(s), u’(s),D"‘_lu(s)) ‘ ds + t*72 /n |g(s, u(s)) ‘ ds

h( )ds

S

and
| D" (Tu)(2)|
/Lfsu ,u'(s), D" 1u(s)‘ds+/ (1—5)2|f (s, u(s), (), D us)) | ds
+ 3 (ue))| + T (e - 1/|gsu )| ds

t<t;

1
5/0 h(s)ds+[(1 $)*2h(s)ds + Y Liju(t;)| + T(@ - 1f|1/f )|[u(s)] ds

t<t;

Page 16 of 19
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"s\»—‘
—_

</ol(h(s)) >p+</01(1‘5)”d5>1_p</ h(s))” d. ) ZLk”MHpa

n
r(a—l)uunmfo ()| ds

- 1-p " 1
=[1+(a1_7p’i1> i|||h||1/p+)»|:§Lk+F((x—l)/o |w(s)|dsi| —A+r0<h

Therefore, T'(B;) C B;.. By Lemma 3.2, we see that T: B, — B, is completely continuous.
Thus BVP (1.1) has at least one solution by Lemma 2.3. The proof is complete. d

4 lllustrative example

As an application of the main results, we consider the following impulsive fractional dif-
ferential equation with integral boundary conditions:

tth% u(t) =f(t,u, u/,D% u), t#t,
AD3u(t) = L(u(t),  k=1,...,m, 1)
u(0)=u'(0)=0,  u'@)=[]glsuls)ds,

herete] = [0,1],tk:1—2ik (k=1,2,...,m),a=2,n=21.

2 2
Casel Let
4 _t %

St i, D) = fu Dl

10 + 1y (), (£), D2 u(t)) 20 + his(u(2), ! (£), D2 (1))

.\ A0

(1 + 0315 + o (u(®), ' (£), D3 u(£))
_ lu(gd)l R0

Ik(u(tk)) = m +1, g(t,u) = 20

where /;(u,',D3u) > 0 (i = 1,2,3). By simple computation, we have 1 (s) = S0 Wals) =
B Va) = g Li = 0 (9 =25,

1 m
_2/0 [[¥1(9)] + [Wa(s)| + |1//3(s)|]ds+;Lk+l"(a—l)fon|1ﬁ(s)|ds

1 1 1-e' 1 1 rQ)
=—+—+ +—11- +—
25 20 10 4 5m+l 12
264 + 25/
<— <1
600

Thus, all the assumptions of Theorem 3.1 are satisfied. Hence BVP (4.1) has a unique so-
lution on J = [0, 1].

Case 2 Take

£2(u + u + D3 u)?

3
f(tu,u/,D2u) = .
( 1+(u+u+D%u)2
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Li(u(ty)) and g(t, u) are the same as Case 1. It is clear that |f(z, u, u’,D% u)| < t* £ h(t) and
0=Y 1L+ T(a=1) [ 1¥(s)ds < 62‘4/; < 1. Thus, BVP (4.1) has at least one solution in
J =1[0,1] by Theorem 3.2.

5 Conclusions

Compared with previous papers involving impulsive fractional order differential equa-
tions, the impulse of our boundary value problem (1.1) is related to the fractional order
derivative, namely, AD*Lu(t;) = It (u(t)). It is difficult and challenging to find the Green
function of (1.1). Our results are new and interesting. Our methods can be used to study
the existence of positive solutions for the high order or multiple-point boundary value
problems of nonlinear fractional differential equation with the impulses involving the frac-
tional order derivative. However, there exist some difficulties and complexities to address
the structure of the Green function for these boundary value problems.
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