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Abstract
We present a new method to investigate some fractional integro-differential
equations involving the Caputo-Fabrizio derivation and we prove the existence of
approximate solutions for these problems. We provide three examples to illustrate our
main results. By checking those, one gets the possibility of using some discontinuous
mappings as coefficients in the fractional integro-differential equations.

Keywords: approximate solution; Caputo-Fabrizio derivative; fractional
integro-differential equation; generalized α-contractive map

1 Introduction
The fractional calculus has an old history and several fractional derivations where defined
but the most utilized are Caputo and Riemann-Liouville derivations [–]. In , Caputo
and Fabrizio defined a new fractional derivation without singular kernel []. Immediately,
Losada and Nieto wrote a paper about properties of the new fractional derivative [] and
several researchers tried to utilize it for solving different equations (see [–] and the
references therein).

Let b > , u ∈ H(, b) and α ∈ (, ). The Caputo-Fabrizio fractional derivative of order
α for the function u is defined by CFDαu(t) = (–α)M(α)

(–α)
∫ t

 exp( –α
–α

(t – s))u′(s) ds, where t ≥ 
and M(α) is normalization constant depending on α such that M() = M() =  []. Also,
Losada and Nieto showed that the fractional integral of order α for the function u is given
by CFIαu(t) = (–α)

(–α)M(α) u(t) + α
(–α)M(α)

∫ t
 u(s) ds whenever  < α <  []. They showed that

M(α) = 
–α

for all  ≤ α ≤  []. Thus, the fractional Caputo-Fabrizio derivative of order
α for the function u is given by CFDαu(t) = 

–α

∫ t
 exp(– α

–α
(t – s))u′(s) ds, where t ≥  and

 < α <  []. If n ≥  and α ∈ [, ], then the fractional derivative CFDα+n of order n + α is
defined by CFDα+nu := CFDα(Dnu(t)) []. We need the following results.

Theorem . ([]) Let u, v ∈ H(, ) and α ∈ (, ). If u′() = , then CFDα(CFD(u(t))) =
CFD(CFDα(u(t))). Also, we have limα→

CFDαu(t) = u(t) – u(), limα→
CFDαu(t) = u′(t) and

CFDα(λu(t) + γ v(t)) = λCFDαu(t) + γ CFDαv(t).
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Lemma . ([]) Let  < α < . Then the unique solution for the problem CFDαu(t) = v(t)
with boundary condition u() = c is given by u(t) = c + aα(v(t) – v()) + bα

∫ t
 v(s) ds, where

aα = (–α)
(–α)M(α) =  – α and bα = α

(–α)M(α) = α. Note that v() =  whenever u() = .

To discuss the existence of solutions for most fractional differential equations in analytic
methods, the well-known fixed point results such as the Banach contraction principle is
used. In fact, the existence of solutions and the existence of fixed points are equivalent.
As is well known, there are many fractional differential equations which have no exact
solutions. Thus, the researchers utilize numerical methods usually for obtaining an ap-
proximation of the exact solutions. We say that u is an approximate solution for fractional
integro-differential equation whenever we could obtain a sequence of functions {un}n≥

with un → u. We use this notion when we could not obtain the exact solution u. This ap-
pears usually when you want to investigate the fractional integro-differential equation in
a non-complete metric space.

In this manuscript, we prove the existence of approximate solutions analytically for some
fractional integro-differential equations involving the Caputo-Fabrizio derivative. In fact,
the approximate solution of an equation is equivalent to the approximate fixed point of
an appropriate operator. This says that by using numerical methods, one can obtain ap-
proximations of the unknown exact solution. We will not check the estimates of the exact
solution in our examples because our aim is to show the existence of approximate solu-
tions within the analytical method.

Here, we provide some basic needed notions.
Let (X, d) be a metric space, F a selfmap on X, α : X × X → [,∞) a mapping and ε a

positive number. We say that F is α-admissible whenever α(x, y) ≥  implies α(Fx, Fy) ≥ 
[]. An element x ∈ X is called ε-fixed point of F whenever d(Fx, x) ≤ ε. We say
that F has the approximate fixed point property whenever F has an ε-fixed point for
all ε >  []. Some mappings have approximate fixed points, while they have no fixed
points []. Denote by R the set of all continuous mappings g : [,∞) → [,∞) satisfying
g(, , , , ) = g(, , , , ) := h ∈ (, ), g(μx,μx,μx,μx,μx) ≤ μg(x, x, x, x, x) for
all (x, x, x, x, x) ∈ [,∞) and μ ≥  and also g(x, x, x, , x) ≤ g(y, y, y, , y) and
g(x, x, x, x, ) ≤ g(y, y, y, y, ) whenever x, . . . , x, y, . . . , y ∈ [,∞) with xi < yi for
i = , , ,  []. We say that F is a generalized α-contractive mapping whenever there
exists g ∈ R such that α(x, y)d(Fx, Fy) ≤ g(d(x, y), d(x, Fx), d(y, Fy), d(x, Fy), d(y, Fx)) for all
x, y ∈ X ([]).

Theorem . ([]) Let (X, d) be a metric space, α : X × X → [,∞) a mapping and F a
generalized α-contractive and α-admissible selfmap on X. Assume that there exists x ∈ X
such that α(x, Fx) ≥ . Then F has an approximate fixed point.

2 Main results
Now, we are ready to state and prove our main results.

Lemma . Suppose that u, v ∈ H(, ) and there exists a real number K such that

∣
∣u(t) – v(t)

∣
∣ ≤ K

for all t ∈ [, ]. Then |CFDαu(t) – CFDαv(t)| ≤ –α

(–α) K for all t ∈ [, ].
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Proof Note that

CFDαu(t)

=


 – α

∫ t


exp

(

–
α

 – α
(t – s)

)

u′(s) ds

=


 – α
exp

(

–
α

 – α
(t – s)

)

u(s)|t –


 – α

∫ t



α

 – α
exp

(

–
α

 – α
(t – s)

)

u(s) ds

=


 – α
u(t) –


 – α

exp

(

–
α

 – α
t
)

u() –
α

( – α)

∫ t


exp

(

–
α

 – α
(t – s)

)

u(s) ds

and so

CFDαu(t) – CFDαv(t) ≤ 
 – α

∣
∣
(
u(t) – v(t)

)∣
∣ +


 – α

∣
∣
∣
∣exp

(

–
α

 – α
t
)∣

∣
∣
∣
∣
∣u() – v()

∣
∣

+
α

( – α)

∫ t


exp

(

–
α

 – α
(t – s)

)
∣
∣(u(s) – v(s)

)∣∣ds

≤ 
 – α

K +
α

( – α) K =
 – α

( – α) K

for all t ∈ [, ]. Hence, |CFDαu(t) – CFDαv(t)| ≤ ( –α

(–α) )K for all t ∈ [, ]. �

If u ∈ H(, ) and there exists K ≥  such that |u(t)| ≤ K for all t ∈ [, ], then by using
last result we get |CFDαu(t)| ≤ ( –α

(–α) )K for all t ∈ [, ]. Also by checking the proof of the
last result, one can prove the next lemma.

Lemma . Suppose that u, v ∈ H(, ) with u() = v() and there exists a real number
K such that |u(t) – v(t)| ≤ K for all t ∈ [, ]. Then |CFDαu(t) – CFDαv(t)| ≤ 

(–α) K for all
t ∈ [, ].

Lemma . Suppose that u, v ∈ C[, ] and there is K ≥  such that |u(t) – v(t)| ≤ K for
all t ∈ [, ]. Then |CFIαu(t) – CFIαv(t)| ≤ K for all t ∈ [, ].

Proof Note that for each t ∈ [, ] we have

CFIαu(t) – CFIαv(t) = aα

(
u(t) – v(t)

)
+ bα

∫ t



(
u(s) – v(s)

)
ds ≤ aαK + bαK = K ,

where aα and bα are given in Lemma .. This completes the proof. �

If u is an element of C[, ] such that |u(t)| ≤ K for some K ≥  and all t ∈ [, ], then
the last result implies that |CFIαu(t)| ≤ K for all t ∈ [, ].

Lemma . Let b >  be given and  ≤ α ≤ . If u is an element of H(, b) such that u() =
, u′() = , u′ ∈ H(, b) and CFDαu ∈ H(, b), then CFD(CFIαu(t)) = CFIα(CFDu(t)) =
aαu′(t) + bαu(t) and (CFDαu(t))′ = CFDαu′(t) for all t ≥ . If u′′(t) ≥  for all t ≥ , then
CFDαu is increasing on [, b]. Also, CFDαu is decreasing on [, b] whenever u′′(t) ≤  for all
t ≥ .
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Proof Note that CFIα(CFDu(t)) = aαu′(t) + bα

∫ t
 u′(s) ds = aαu′(t) + bαu(t) and

CFD(CFIαu(t)
)

= CFD
(

aαu(t) + bα

∫ t


u(s) ds

)

= aαu′(t) + bα

(∫ t


u(s) ds

)′

= aαu′(t) + bαu(t)

for all t ≥ . Also, (CFDαu(t))′ = CFD(CFDαu(t)) = CFDα(CFDu(t)) = CFDαu′(t) for all t ≥ .
Since (CFDαu(t))′ = CFDαu′(t) = 

–α

∫ t
 exp(– α

–α
(t – s))u′′(s) ds for all t ≥ , we see that

CFDαu is increasing on [, b] whenever u′′(t) ≥  for all t ∈ [, b]. Also, CFDαu is decreasing
on [, b] whenever u′′(t) ≤  for all t ∈ [, b]. �

Note that the conditions u′ ∈ H(, b) and CFDαu ∈ H(, b) in Lemma . just impose a
unique condition on u. Let γ ,λ : [, ] × [, ] → [,∞) be two continuous maps such that
supt∈I | ∫ t

 λ(t, s) ds| < ∞ and supt∈I | ∫ t
 γ (t, s) ds| < ∞. Consider the maps φ and ϕ defined

by (φu)(t) =
∫ t

 γ (t, s)u(s) ds and (ϕu)(t) =
∫ t

 λ(t, s)u(s) ds. Throughout this paper, we put
γ = supt∈I | ∫ t

 γ (t, s) ds|, λ = supt∈I | ∫ t
 λ(t, s) ds| and η(t) ∈ L∞(I) with η∗ = supt∈I |η(t)|.

Here, we investigate the fractional integro-differential problem

CFDαu(t) = f
(
t, u(t), (φu)(t), (ϕu)(t)

)
()

with boundary condition u() = , where α ∈ (, ).

Theorem . Let η(t) ∈ L∞(I) and f : I ×R
 →R be a continuous function such that

∣
∣f (t, x, y, w) – f

(
t, x′, y′, w′)∣∣ ≤ η(t)

(∣
∣x – x′∣∣ +

∣
∣y – y′∣∣ +

∣
∣w – w′∣∣)

for all t ∈ I and x, y, w, x′, y′, w′ ∈R. Then the problem () with the boundary condition has
an approximate solution whenever 	 = η∗( + γ + λ) < .

Proof Consider the space H endowed with the metric d(u, v) = ‖u – v‖, where ‖u‖ =
supt∈I |u(t)|. Now, define the selfmap F : H → H by

(Fu)(t) = aαf
(
t, u(t), (φu)(t), (ϕu)(t)

)
+ bα

∫ t


f
(
s, u(s), (φu)(s), (ϕu)(s)

)
ds,

where aα and bα are given in Lemma .. Note that

(Fu)(t) = aα
CFDαu(t) + bα

∫ t


f
(
s, u(s), (φu)(s), (ϕu)(s)

)
ds

= aα


 – α

∫ t


exp

(

–
α

 – α
(t – s)

)

u′(s) ds

+ bα

∫ t


f
(
s, u(s), (φu)(s), (ϕu)(s)

)
ds
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for all t. This shows that F maps H into H. Thus, we have

∣
∣(Fu)(t) – (Fv)(t)

∣
∣

≤ aα

∣
∣f

(
t, u(t), (φu)(t), (ϕu)(t)

)
– f

(
t, v(t), (φv)(t), (ϕv)(t)

)∣∣

+ bα

∫ t



∣
∣f

(
s, u(s), (φu)(s), (ϕu)(s)

)
– f

(
s, v(s), (φv)(s), (ϕv)(s)

)∣∣ds

≤ aα

∣
∣η(t)

∣
∣(

∣
∣u(t) – v(t)

∣
∣ +

∣
∣(φu)(t) – (φv)(t)

∣
∣ +

∣
∣(ϕu)(t) – (ϕv)(t)

∣
∣)

+ bα

∫ t



(∣∣u(s) – v(s)
∣
∣ +

∣
∣(φu)(s) – (φv)(s)

∣
∣ +

∣
∣(ϕu)(s) – (ϕv)(s)

∣
∣)

∣
∣η(s)

∣
∣ds

≤ η∗( + γ + λ)[aα + bα]‖u – v‖ = η∗( + γ + λ)‖u – v‖

for all t ∈ I and u, v ∈ H. Now, consider g : [,∞) → [,∞) and α : H × H → [,∞)
defined by g(t, t, t, t, t) = 	t and α(x, y) =  for all x, y ∈ H. One can easily check that
g ∈ R and F is a generalized α-contraction. By using Theorem ., F has an approximate
fixed point which is an approximate solution for the problem (). �

Note that H with the sup norm is not Banach. Thus, we used a new method for inves-
tigation of the problem. Now, we investigate the fractional integro-differential problem

CFDαu(t) = μ
(CFDβu(t) + CFDγ u(t)

)

+ f
(
t, u(t), (φu)(t), (ϕu)(t), CFIθ u(t), CFDδu(t)

)
()

with boundary condition u() = c, where μ ≥  and α,β ,γ , θ , δ ∈ (, ) and c ∈R.

Theorem . Let η(t) ∈ L∞(I) and f : [, ] ×R
 →R be a continuous function such that

∣
∣f (t, x, y, w, u, u) – f

(
t, x′, y′, w′, v, v

)∣
∣

≤ η(t)
(∣
∣x – x′∣∣ +

∣
∣y – y′∣∣ +

∣
∣w – w′∣∣ + |u – v| + |u – v|

)

for all t ∈ I and x, y, w, x′, y′, w′, uu, v, v ∈ R. Then the problem () with the boundary
condition has an approximate solution whenever 	 < , where

	 = η∗
(

 + γ + λ +


( – δ)

)

+ μ

(


( – β) +


( – γ )

)

.

Proof Consider the space H endowed with the metric d(u, v) = ‖u – v‖, where ‖u‖ =
supt∈I |u(t)|. Define the map F : H → H by

(Fu)(t) = u() + aα

[
μ

(CFDβu(t) + CFDγ u(t)
)

+ f
(
t, u(t), (φu)(t), (ϕu)(t), CFIθ u(t), CFDδu(t)

)
– μ

(CFDβu() + CFDγ u()
)

– f
(
, u(), (φu)(), (ϕu)(), CFIθ u(), CFDδu()

)]

+ bα

∫ t



[
μ

(CFDβu(s) + CFDγ u(s)
)

+ f
(
s, u(s), (φu)(s), (ϕu)(s), CFIθ u(t), CFDδu(s)

)]
ds,
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where aα and bα are given in Lemma .. By using Lemmas . and ., we obtain

∣
∣(Fu)(t) – (Fv)(t)

∣
∣ ≤ ∣

∣u() – v()
∣
∣ + aα

[
μ

∣
∣CFDβu(t) – CFDβv(t)

∣
∣

+ μ
∣
∣CFDγ u(t) – CFDγ v(t)

∣
∣ + μ

∣
∣CFDβu() – CFDβv()

∣
∣

+ μ
∣
∣CFDγ u() – CFDγ v()

∣
∣

+
∣
∣f

(
t, u(t), (φu)(t), (ϕu)(t), CFIθ u(t), CFDδu(t)

)

– f
(
t, v(t), (φv)(t), (ϕv)(t), CFIθ v(t), CFDδv(t)

)∣∣

+
∣
∣f

(
, u(), (φu)(), (ϕu)(), CFIθ u(), CFDδu()

)

– f
(
, v(), (φv)(), (ϕv)(), CFIθ v(), CFDδv()

)∣∣]

+ bα

∫ t



[
μ

∣
∣CFDβu(s) – CFDβv(s)

∣
∣ + μ

∣
∣CFDγ u(s) – CFDγ v(s)

∣
∣

+ μ
∣
∣CFDβu() – CFDβv()

∣
∣ + μ

∣
∣CFDγ u() – CFDγ v()

∣
∣

+
∣
∣f

(
s, u(t), (φu)(s), (ϕu)(s), CFIθ u(s), CFDδu(s)

)

– f
(
s, v(s), (φv)(s), (ϕv)(s), CFIθ v(s), CFDδv(s)

)∣∣]ds

≤ aα

[
μ

∣
∣CFDβu(t) – CFDβv(t)

∣
∣ + μ

∣
∣CFDγ u(t) – CFDγ v(t)

∣
∣

+
∣
∣η(t)

∣
∣(

∣
∣u(t) – v(t)

∣
∣ +

∣
∣(φu)(t) – (φv)(t)

∣
∣ +

∣
∣(ϕu)(t) – (ϕv)(t)

∣
∣

+
∣
∣CFIθ u(t) – CFIθ v(t)

∣
∣ +

∣
∣CFDδu(t) – CFDδv(t)

∣
∣)]

+ bα

∫ t



[
μ

∣
∣CFDβu(s) – CFDβv(s)

∣
∣ + μ

∣
∣CFDγ u(s) – CFDγ v(s)

∣
∣

+
∣
∣η(s)

∣
∣
(∣
∣u(s) – v(s)

∣
∣ +

∣
∣(φu)(s) – (φv)(s)

∣
∣ +

∣
∣(ϕu)(s) – (ϕv)(s)

∣
∣

+
∣
∣CFIθ u(s) – CFIθ v(s)

∣
∣ +

∣
∣CFDδu(s) – CFDδv(s)

∣
∣
)]

ds

≤ η∗
(

 + γ + λ +


( – δ)

)

+ μ

(


( – β) +


( – γ )

)

‖u – v‖

for all u, v ∈ H and t ∈ I . Hence,

‖Fu – Fv‖ ≤ η∗
(

 + γ + λ +


( – δ)

)

+ μ

(


( – β) +


( – γ )

)

‖u – v‖

= 	‖u – v‖

for u, v ∈ H. Now, consider the maps g : [,∞) → [,∞) and α : H × H → [,∞) de-
fined by g(t, t, t, t, t) = 	

 (t + t) and α(x, y) =  for all x, y ∈ H. One can easily see
that g ∈ R and F is a generalized α-contractive map. By using Theorem ., F has an ap-
proximate fixed point which is an approximate solution for the problem (). �

Let k and h be bounded functions on I = [, ] and s an integrable bounded function
on I with M = supt∈I |k(t)|, M = supt∈I |s(t)| < ∞ and M = supt∈I |h(t)| < ∞. Now, we
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investigate the fractional integro-differential problem

CFDαu(t) = μk(t)CFDβu(t) + μ(ϕs)(t)CFDθ
(CFDρu(t)

)

+ f
(
t, u(t), (φu)(t), h(t)CFDνu(t)

)
()

with boundary condition u() = , where μ,μ ≥  and α,β , θ ,ρ,ν ∈ (, ). Note that the
functions k, s and h are not necessarily continuous. Since the left side of equation ()
is continuous, the right side so is as the problem () is a well-defined equation. For this
reason, we supposed continuity of the function f in Theorems . and . where equations
() and () are well defined.

Theorem . Let η(t) ∈ L∞(I) and f : [, ] ×R
 → R be a function such that

∣
∣f (t, x, y, w) – f

(
t, x′, y′, w′)∣∣ ≤ η(t)

(∣
∣x – x′∣∣ +

∣
∣y – y′∣∣ +

∣
∣w – w′∣∣)

for all t ∈ I and x, y, w, v, x′, y′, w′, v′ ∈R. Then the problem () has an approximate solution
whenever 	 < , where

	 =
(

 +


( – β) +


( – θ )( – ρ) +


( – ν)

)
[
μM + μλM + η∗( + γ + M)

]
.

Proof Consider the space H endowed with the metric d(u, v) = ‖u – v‖, where

‖u‖ = max
t∈I

∣
∣u(t)

∣
∣ + max

t∈I

∣
∣CFDβu(t)

∣
∣ + max

t∈I

∣
∣CFDθ

(CFDρu(t)
)∣
∣ + max

t∈I

∣
∣CFDνu(t)

∣
∣.

Define the map F : H → H by

(Fu)(t) = aα

[
μk(t)CFDγ

(CFDβu(t)
)

+ μ(ϕs)(t)CFDθ
(CFDρu(t)

)

+ f
(
t, u(t), (φu)(t), h(t)CFDνu(t)

)]

+
∫ t



[
μk(s)CFDγ

(CFDβu(s)
)

+ μ(ϕs)(t)CFDθ
(CFDρu(s)

)

+ f
(
t, u(s), (φu)(s), h(s)CFDνu(s)

)]
ds

for all t ∈ I , where aα and bα introduced in Lemma .. By using Lemma ., we get

[
μk(t)CFDγ

(CFDβu(t)
)

+ μ(ϕs)(t)CFDθ
(CFDρu(t)

)
+ f

(
t, u(t), (φu)(t), h(t)CFDνu(t)

)]

–
[
μk(t)CFDγ

(CFDβv(t)
)

+ μ(ϕs)(t)CFDθ
(CFDρv(t)

)

+ f
(
t, v(t), (φv)(t), h(t)CFDνv(t)

)]

≤ μ
∣
∣k(t)

∣
∣
∣
∣CFDγ

(CFDβ
(
u(t) – v(t)

))∣
∣ + μ

∣
∣(ϕs)(t)

∣
∣
∣
∣CFDθ

(CFDρ
(
u(t) – v(t)

))∣
∣

+
∣
∣f

(
t, u(t), (φu)(t), h(t)CFDνu(t)

)
– f

(
t, v(t), (φv)(t), h(t)CFDνv(t)

)∣
∣

≤ μM‖u – v‖ + μλM‖u – v‖ + η∗(‖u – v‖ + γ‖u – v‖ + M‖u – v‖)

=
[
μM + μλM + η∗( + γ + M)

]‖u – v‖
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for all t ∈ I and u, v ∈ H. Hence

∣
∣(Fu)(t) – (Fv)(t)

∣
∣ ≤ [

μM + μλM + η∗( + γ + M)
]‖u – v‖ = 	‖u – v‖

for all t ∈ I and u, v ∈ H. Also, we have

∣
∣CFDβ (Fu – Fv)(t)

∣
∣ ≤ 

( – β)

[
μM + μλM + η∗( + γ + M)

]‖u – v‖,

∣
∣CFDθ

(CFDρ(Fu – Fv)(t)
)∣
∣

≤ 
( – θ )( – ρ)

[
μM + μλM + η∗( + γ + M)

]‖u – v‖,

and |CFDν(Fu–Fv)(t)| ≤ 
(–ν) [μM +μλM +η∗(+γ +M)]‖u–v‖ for all u, v ∈ H and

t ∈ I . Hence, ‖Fu – Fv‖ ≤ 	‖u – v‖ for all u, v ∈ H. Now, consider the maps g : [,∞) →
[,∞) and α : H × H → [,∞) defined by g(t, t, t, t, t) = 	 max{t, t, t, 

 (t + t)}
and α(x, y) =  for all x, y ∈ H. One can check that g ∈ R and F is a generalized α-
contraction. By using Theorem ., F has an approximate fixed point which is an approx-
imate solution for the problem (). �

Let k, s, h, g and q be bounded functions on [, ] with M = supt∈I |k(t)| < ∞, M =
supt∈I |s(t)| < ∞, M = supt∈I |h(t)| < ∞, M = supt∈I |g(t)| < ∞, and M = supt∈I |q(t)| < ∞.
Here, we investigate the fractional integro-differential problem

CFDαu(t) = λk(t)CFDβu(t) + μs(t)CFIρu(t)

+ f
(
t, u(t), (φu)(t), h(t)CFIνu(t), g(t)CFDδu(t)

)

+
∫ t


f

(
s, u(s), (ϕu)(s), q(t)CFDγ u(s)

)
ds ()

with boundary condition u() = , where λ,μ ≥  and α,β ,ρ,ν, δ,γ ∈ (, ). Note that the
maps k, s, h, g and q should be chosen such that the right side of equation () is continuous.

Theorem . Let ξ, ξ, ξ, ξ, ξ ′
, ξ ′

, and ξ ′
 be nonnegative real numbers. Suppose that

f : [, ] ×R
 →R and f : [, ] ×R

 →R are integrable functions such that

∣
∣f(t, x, y, w, v) – f

(
t, x′, y′, w′, v′)∣∣ ≤ ξ

∣
∣x – x′∣∣ + ξ

∣
∣y – y′∣∣ + ξ

∣
∣w – w′∣∣ + ξ

∣
∣v – v′∣∣

and |f(t, x, y, w) – f(t, x′, y′, w′)| ≤ ξ ′
|x – x′| + ξ ′

|y – y′| + ξ ′
|w – w′| for all real numbers x,

y, w, v, x′, y′ and w′ and t ∈ I . If 	 < , then the problem () has an approximate solution,
where 	 := max{ 

(–β) , 
(–δ) , 

(–γ ) }[λ M
(–β) +μM +ξ +ξγ +ξM +ξ

M
(–δ) +ξ ′

 +ξ ′
λ +

ξ ′


M
(–γ ) ].

Proof Consider the space H endowed with the metric d(u, v) = ‖u – v‖, where

‖u‖ = max
{

sup
t∈I

∣
∣u(t)

∣
∣, sup

t∈I

∣
∣CFDβu(t)

∣
∣, sup

t∈I

∣
∣CFIρu(t)

∣
∣, sup

t∈I

∣
∣CFIνu(t)

∣
∣,

sup
t∈I

∣
∣CFDδu(t)

∣
∣, sup

t∈I

∣
∣CFDγ u(t)

∣
∣
}

.
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Define the map F : H → H by

(Fu)(t) = aα

[

λk(t)CFDβu(t) + μs(t)CFIρu(t)

+ f
(
t, u(t), (φu)(t), h(t)CFIνu(t), g(t)CFDδu(t)

)

+
∫ t


f

(
s, u(s), (ϕu)(s), q(t)CFDγ u(s)

)
ds

]

+ bα

[∫ t


λk(s)CFDβu(s) + μs(s)CFIρu(s)

+ f
(
s, u(s), (φu)(s), h(s)CFIνu(s), g(s)CFDδu(s)

)

+
∫ t



∫ s


f

(
r, u(r), (ϕu)(r), q(r)CFDγ u(r)

)
dr ds

]

,

where aα and bα are introduced in Lemma .. By using Lemmas . and ., we obtain

∣
∣
∣
∣

[

λk(t)CFDβu(t) + μs(t)CFIρu(t) + f
(
t, u(t), (φu)(t), h(t)CFIνu(t), g(t)CFDδu(t)

)

+
∫ t


f

(
s, u(s), (ϕu)(s), q(t)CFDγ u(s)

)
ds

]

–
[

λk(t)CFDβv(t) + μs(t)CFIρv(t) + f
(
t, v(t), (φv)(t), h(t)CFIνv(t), g(t)CFDδv(t)

)

+
∫ t


f

(
s, v(s), (ϕv)(s), q(t)CFDγ v(s)

)
ds

]∣
∣
∣
∣

≤ λ
∣
∣k(t)

∣
∣
∣
∣CFDβ

(
u(t) – v(t)

)∣∣ + μ
∣
∣s(t)

∣
∣
∣
∣CFIρ

(
u(t) – v(t)

)∣∣

+
∣
∣f

(
t, u(t), (φu)(t), h(t)CFIνu(t), g(t)CFDδu(t)

)

– f
(
t, v(t), (φv)(t), h(t)CFIνv(t), g(t)CFDδv(t)

)∣∣

+
∫ t



∣
∣f

(
s, u(s), (ϕu)(s), q(s)CFDγ u(s)

)
– f

(
s, v(s), (ϕv)(s), q(s)CFDγ v(s)

)∣∣ds

≤
[

λ
M

( – β) ‖u – v‖ + μM‖u – v‖ + ξ‖u – v‖ + ξγ‖u – v‖ + ξM‖u – v‖

+ ξ
M

( – δ) ‖u – v‖ + ξ ′
‖u – v‖ + ξ ′

λ‖u – v‖ + ξ ′


M

( – γ )

]

‖u – v‖

=
[

λ
M

( – β) + μM + ξ + ξγ + ξM + ξ
M

( – δ) + ξ ′
 + ξ ′

λ + ξ ′


M

( – γ )

]

× ‖u – v‖

for all u, v ∈ H and t ∈ I . Hence,

∣
∣(Fu)(t) – (Fv)(t)

∣
∣

≤ aα

∣
∣
∣
∣λk(t)CFDβ

(
u(t) – v(t)

)
+ μs(t)CFIρ

(
u(t) – v(t)

)

+ f
(
t, u(t), (φu)(t), h(t)CFIνu(t), g(t)CFDδu(t)

)
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– f
(
t, v(t), (φv)(t), h(t)CFIνv(t), g(t)CFDδv(t)

)

+
∫ t



(
f

(
s, u(s), (ϕu)(s), q(s)CFDγ u(s)

)
– f

(
s, v(s), (ϕv)(s), q(s)CFDγ v(s)

))
ds

∣
∣
∣
∣

+ bα

[∫ t



∣
∣
∣
∣λk(s)CFDβ

(
u(s) – v(s)

)
+ μs(s)CFIρ

(
u(s) – v(s)

)

+ f
(
s, u(s), (φu)(s), h(s)CFIνu(s), g(s)CFDδu(s)

)

– f
(
s, v(s), (φv)(s), h(s)CFIνv(s), g(s)CFDδv(s)

)

+
∫ s



(
f

(
r, u(r), (ϕu)(r), q(r)CFDγ u(r)

))
– f

(
r, v(r), (ϕv)(r), q(r)CFDγ v(r)

)
dr

∣
∣
∣
∣ds

]

≤ aα

[

λ
M

( – β) + μM + ξ + ξγ + ξM + ξ
M

( – δ) + ξ ′
 + ξ ′

λ + ξ ′


M

( – γ )

]

× ‖u – v‖

+ bα

∫ t



[

λ
M

( – β) + μM + ξ + ξγ + ξM + ξ
M

( – δ) + ξ ′
 + ξ ′

λ

+ ξ ′


M

( – γ )

]

‖u – v‖ds

≤ [aα + bα]
[

λ
M

( – β) + μM + ξ + ξγ + ξM + ξ
M

( – δ) + ξ ′
 + ξ ′

λ

+ ξ ′


M

( – γ )

]

‖u – v‖ := 	′‖u – v‖

for all u, v ∈ H. Also by using Lemmas . and ., we get

∣
∣CFDβFu(t) – CFDβFv(t)

∣
∣ ≤ 

( – β) 	′‖u – v‖,

|CFDδFu(t) – CFDδFv(t)| ≤ 
(–δ) 	′‖u – v‖, |CFDγ Fu(t) – CFDγ Fv(t)| ≤ 

(–γ ) 	′‖u – v‖,
|CFIρFu(t)–CFDρFv(t)| ≤ 	′‖u–v‖ and |CFIνFu(t)–CFDνFv(t)| ≤ 	′‖u–v‖ for all u, v ∈ H

and t ∈ I . Hence, we obtain

‖Fu – Fv‖ ≤ max

{


( – β) ,


( – δ) ,


( – γ )

}

	′‖u – v‖ = 	‖u – v‖

for all u, v ∈ H. Consider the maps g : [,∞) → [,∞) and α : H × H → [,∞) defined
by g(t, t, t, t, t) = 	

 (t + t + t) and α(x, y) =  for all x, y ∈ H. One can check that
g ∈ R and F is a generalized α-contraction. By using Theorem ., F has an approximate
fixed point which is an approximate solution for the problem (). �

Here, we provide three examples to illustrate our some main results.

Example . Define the functions η ∈ L∞([, ]) and γ ,λ : [, ]× [, ] → [,∞) by η(t) =
e–(π t+), γ (t, s) = sin() and λ(t, s) = et–s. Then η∗ = 

e , γ = sin() and λ ≤ e. Put α = 
 .

Consider the problem

CFD

 u(t) = e–(π t+)

[

t + u(t) +




∫ t


sin()u(s) ds +




∫ t


esu(s) ds

]

()
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with boundary condition u() =  and the function f (t, x, y, w) = e–(π t+)(t + x + 
 y +


 w). Note that 	 = η∗( + γ + λ) < . < . By utilizing Theorem ., () has an
approximate solution.

Example . Define the functions η ∈ L∞([, ]) and γ ,λ : [, ]×[, ] → [,∞) by η(t) =
π

e(t+) , γ (t, s) = et–s and λ(t, s) = log esin(ln(π |t–s|+)). Then η∗ = π

e , γ ≤ e and λ ≤ log e. Put
α = 

 , μ = 
 , μ = 

 , β = 
 , θ = 

 , ρ = 
 and ν = 

 . Consider the functions k(t) =
sin t, h(t) = tan–(t), and s(t) = 

n whenever x = m
n ∈ Q ∩ [, ] with (m, n) =  and s(t) = 

whenever x ∈ Qc ∩ [, ] or x = . Then M = supt∈[,] |k(t)| = , M = supt∈[,] |s(t)| =  and
M = supt∈[,] |h(t)| = π

 . Consider the fractional integro-differential problem

CFD

 u(t) =




sin(t)CFD

 u(t)

+




(∫ t


log

(
esin(ln(π |t–s|+)))s(s) ds

)
CFD



(CFD


 u(t)

)

+
π

e(t+)

[

t + u(t) +
∫ t


et–su(s) ds + tan–(t)CFD


 u(t)

]

()

with boundary condition u() = . Put f (t, x, y, w, v) = π

e(t+) (t + x + y + w). Note that 	 =
( + 

(–β) + 
(–θ )(–ρ) + 

(–ν) )[μM + μλM + η∗( + γ + M)] < . < . Then by
using Theorem ., it implies that () has an approximate solution.

Example . Define the functions γ ,λ : [, ] × [, ] → [,∞) by λ(t, s) = et–s

e and
γ (t, s) = . Then γ =  and λ ≤ e. Put α = 

 , β = 
 , ν = 

 , δ = 
 , γ = 

 , λ = 
 , μ = ,

ξ = 
 , ξ = 

 , ξ = 
 , ξ ′

 = 
 , ξ ′

 = 
 , and ξ ′

 = 
 . Let s be an arbitrary bounded

map, q(t) = tan–(t), h(t) = sin(t) for all t ∈ I , k(t) =  whenever x ∈ Q ∩ [, ] and k(t) = 
whenever x ∈ Qc ∩ [, ] and g(t) =  whenever x ∈ Q ∩ [, ] and g(t) =  whenever
x ∈ Qc ∩ [, ]. Then M = supt∈[,] |k(t)| = , M is a real number, M = supt∈[,] |h(t)| = ,
M = supt∈[,] |g(t)| =  and M = supt∈[,] |q(t)| = π

 . Now, consider the well-defined frac-
tional integro-differential problem

CFD

 u(t)

=



k(t)CFD


 u(t) +




t +



u(t) +



sin(t)CFI


 u(t) +




g(t)CFD

 u(t)

+
∫ t



[



s +




u(s) +




∫ s



es–r

e
u(r) dr +




tan– CFD

 u(s)

]

ds ()

with boundary condition u() = . Put f(t, x, y, w, v) = 
 t + ξx + ξy + ξw + ξv and

f(t, x, y, w) = 
 t + ξ ′

x + ξ ′
y + ξ ′

w for all t ∈ I and x, y, w, v ∈R. Note that

	 = max

{


( – β) ,


( – δ) ,


( – γ )

}

×
[

λ
M

( – β) + μM + ξ + ξγ + ξM + ξ
M

( – δ) + ξ ′
 + ξ ′

λ + ξ ′


M

( – γ )

]

< . < .
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Thus, taking into account Theorem . we conclude that the problem () has an approxi-
mate solution.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Each of the authors contributed to each part of this study equally and approved the final version of the manuscript.

Author details
1Department of Mathematics, Cankaya University, Balgat, Ankara, 06530, Turkey. 2Institute of Space Sciences,
Magurele-Bucharest, Romania. 3Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran.

Acknowledgements
The authors express their gratitude to the Professor JJ Nieto and an unknown referee for their helpful suggestions, which
improved the final version of this paper. Research of the second and third authors was supported by Azarbaijan Shahid
Madani University.

Received: 9 September 2016 Accepted: 17 January 2017

References
1. Podlubny, I: Fractional Differential Equations. Academic Press, San Diego, CA (1999)
2. Samko, G, Kilbas, AA, Marichev, S: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach,

Yverdon (1993)
3. Kilbas, AA, Srivastava, MH, Trujillo, JJ: Theory and Application of Fractional Differential Equations. North Holland

Mathematics Studies, vol. 204 (2006)
4. Magin, RL: Fractional Calculus in Bioengineering. Begell House Publishers, Redding (2006)
5. Baleanu, D, Diethelm, K, Scalas, E, Trujillo, JJ: Fractional Calculus Models and Numerical Methods. Series on

Complexity, Nonlinearity and Chaos. World Scientific, Singapore (2012)
6. Caputo, M, Fabrizio, M: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2),

73-85 (2015)
7. Losada, J, Nieto, JJ: Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2),

87-92 (2015)
8. Alsaedi, A, Baleanu, D, Etemad, S, Rezapour, Sh: On coupled systems of time-fractional differential problems by using

a new fractional derivative. J. Funct. Spaces 2016, Article ID 4626940 (2016)
9. Atangana, A: On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation. Appl.

Math. Comput. 273(6), 948-956 (2016)
10. Atangana, A, Alkahtani, BT: Analysis of the Keller-Segel model with a fractional derivative without singular kernel.

Entropy 17(6), 4439-4453 (2015)
11. Atangana, A, Nieto, JJ: Numerical solution for the model of RLC circuit via the fractional derivative without singular

kernel. Adv. Mech. Eng. 7, 1-7 (2015)
12. Gomez-Aguilar, JF, Yepez-Martinez, H, Calderon-Ramon, C, Cruz-Orduna, I, Escobar-Jimenez, RF, Olivares-Peregrino,

VH: Modeling of a mass-spring-damper system by fractional derivatives with and without a singular kernel. Entropy
17(9), 6289-6303 (2015)

13. Doungmo, G, Emile, F, Pene, MK, Mwambakana, JN: Duplication in a model of rock fracture with fractional derivative
without singular kernel. Open Math. 13, 839-846 (2015)

14. Al-Salti, N, Karimov, ET, Sadarangani, K: On a differential equation with Caputo-Fabrizio fractional derivative of order
1 < β ≤ 2 and application to mass-spring-damper system. Prog. Fract. Differ. Appl. 2(4), 257-263 (2016)

15. Miandaragh, MA, Postolache, M, Rezapour, Sh: Some approximate fixed point results for generalized α-contractive
mappings. Sci. Bull. “Politeh.” Univ. Buchar., Ser. A, Appl. Math. Phys. 75(2), 3-10 (2013)


	A new method for investigating approximate solutions of some fractional integro-differential equations involving the Caputo-Fabrizio derivative
	Abstract
	Keywords

	Introduction
	Main results
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


