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Abstract
The objective of this paper is to explore the long time behavior of a stochastic SIR
model. We establish a threshold condition called the basic reproduction number
under stochastic perturbation for persistence or extinction of the disease. Especially,
some numerical simulations are applied to support our theoretical results.
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1 Introduction
Epidemiology is the study of the spread of diseases with the objective to trace factors that
are responsible for or contribute to their occurrence. Significant progress has been made
in the theory and application by mathematical research [–].

Recently, we discussed the dynamic of a susceptible-infected-recovered (SIR) epidemic
model with stochastic perturbation [], that is,

⎧
⎪⎪⎨

⎪⎪⎩

dS(t) = [� – μS(t) – βS(t)I(t)] dt – σS(t)I(t) dB(t),

dI(t) = [βS(t)I(t) – (μ + γ + ε)I(t)] dt + σS(t)I(t) dB(t),

dR(t) = [γ I(t) – μR(t)] dt,

(.)

where S, I , R, and B(t) are the susceptible, the infective, the recovered, and a standard
Brown motion, respectively. The parameters (all positive constants) have the following
meaning: � is the birth rate, μ is the death rate, β is the average number of contacts per
infective per day, γ is the recovery rate, ε is the death rate of infective caused by the disease,
and σ  is the intensity of the white noise. We investigated the persistence and extinction
of the disease, and so we gave the threshold of this stochastic model, which is affected by
white noise and is less than the basic reproduction number of the corresponding deter-
ministic system. However, considering stochastic perturbations to have different patterns,
it is interesting to investigate whether the threshold of this model with other stochastic
perturbations has a relation with white noise [–].
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We devote this paper to the study of the following stochastic system:

⎧
⎪⎪⎨

⎪⎪⎩

dS(t) = [� – μS(t) – βS(t)I(t)] dt + σS(t) dB(t),

dI(t) = [βS(t)I(t) – (μ + γ + ε)I(t)] dt + σI(t) dB(t),

dR(t) = [γ I(t) – μR(t)] dt + σR(t) dB(t),

(.)

where B(t), B(t), B(t) are mutually independent Brown motions with intensities
σ 

 , σ 
 , σ 

 , respectively. For any initial value (S(), I(), R()) ∈ R
+, there is a solution

(S(t), I(t), R(t)) ∈ R
+ of system (.) (see []). In this paper, we also intend to give the ba-

sic reproduction number of this system through discussing the long time behavior of the
model, which will be given in the next section. In Section , we illustrate results through
simulations. At the end, a discussion is given to conclude this paper.

Throughout this paper, unless otherwise specified, let (�,F , {Ft}t≥, P) be a complete
probability space with a filtration {Ft}t≥ satisfying the usual conditions (i.e. it is right con-
tinuous and F contains all P-null sets), and let B(t) be a scalar Brownian motion defined
on the probability space.

2 The long time behavior of system (1.2)
In this section, we deduce when the disease will die out and when the disease will prevail.
And so the basic reproduction number of system (.) is given. As the proof in [], we
can conclude to the following lemmas.

Lemma . Let (S(t), I(t), R(t)) be the solution of system (.) with any initial value
(S(), I(), R()) ∈ R

+. Then

lim
t→∞

S(t) + I(t) + R(t)
t

=  a.s. (.)

Remark . In fact, together with the positivity of the solution and (.), we have

lim
t→∞

S(t)
t

= , lim
t→∞

I(t)
t

= , lim
t→∞

R(t)
t

=  a.s. (.)

Lemma . Assume μ > 
 (σ 

 ∨σ 
 ∨σ 

 ). Let (S(t), I(t), R(t)) be the solution of system (.)
with any initial value (S(), I(), R()) ∈ R

+, then

lim
t→∞

∫ t
 S(r) dB(r)

t
= , lim

t→∞

∫ t
 I(r) dB(r)

t
= ,

lim
t→∞

∫ t
 R(r) dB(r)

t
=  a.s.

(.)

Let

R̃ =
β�

μ(μ + γ + ε + σ

 )

= R –
β�

μ(μ + γ + ε)(μ + γ + ε + σ

 )

σ 
 ,

where R = β�

μ(μ+γ +ε) is the basic reproduction of the corresponding deterministic system
[]. Based on these two lemmas, we give mainly the results in this section.
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Theorem . Assume μ > 
 (σ 

 ∨ σ 
 ∨ σ 

 ). Let (S(t), I(t), R(t)) be the solution of system
(.) with any initial value (S(), I(), R()) ∈ R

+. If R̃ < , then

lim sup
t→∞

log I(t)
t

≤
(

μ + γ + ε +
σ 




)

(R̃ – ) <  a.s.

namely, I(t) tends to zero exponentially a.s. In other words, the disease dies out with prob-
ability one.

Proof Note that

S(t) – S()
t

= � – μ

∫ t
 S(s) ds

t
– β

∫ t
 S(s)I(s) ds

t
+ σ

∫ t
 S(s) dB(s)

t
,

I(t) – I()
t

= β

∫ t
 S(s)I(s) ds

t
– (μ + γ + ε)

∫ t
 I(s) ds

t
+ σ

∫ t
 I(s) dB(s)

t
,

R(t) – R()
t

= γ

∫ t
 I(s) ds

t
– μ

∫ t
 R(s) ds

t
+ σ

∫ t
 R(s) dB(s)

t
,

(.)

then

μ

∫ t
 S(s) ds

t
+ (μ + γ + ε)

∫ t
 I(s) ds

t

= � –
S(t) + I(t)

t
+

S() + I()
t

+ σ

∫ t
 S(s) dB(s)

t
+ σ

∫ t
 I(s) dB(s)

t

:= � + ϕ(t),

where ϕ(t) has the property that

lim
t→∞ϕ(t) =  (.)

according to (.) and (.). Then

lim
t→∞

μ
∫ t

 S(s) ds + (μ + γ + ε)
∫ t

 I(s) ds
t

= �. (.)

In addition,

log I(t) = log I() + β

∫ t


S(s) ds –

(

μ + γ + ε +
σ 




)

t + σB(t)

= log I() +
β�

μ
t –

β(μ + γ + ε)
μ

∫ t


I(s) ds +

β

μ
ϕ(t)t –

(

μ + γ + ε +
σ 




)

t

+ σB(t)

=
[

β�

μ
–

(

μ + γ + ε +
σ 




)]

t –
β(μ + γ + ε)

μ

∫ t


I(s) ds + log I() +

β

μ
ϕ(t)t

+ σB(t)

≤
[

β�

μ
–

(

μ + γ + ε +
σ 




)]

t + log I() +
β

μ
ϕ(t)t + σB(t) (.)
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and

lim
t→∞


t

[

log I() +
β

μ
ϕ(t)t + σB(t)

]

=  a.s.

by (.) and the property of the Brown motion. If R̃ < , from (.), we have

lim sup
t→∞

log I(t)
t

≤ β�

μ
–

(

μ + γ + ε +
σ 




)

=
(

μ + γ + ε +
σ 




)

(R̃ – ) < ,

as required. �

Theorem . Assume μ > 
 (σ 

 ∨ σ 
 ∨ σ 

 ). Let (S(t), I(t), R(t)) be the solution of system
(.) with any initial value (S(), I(), R()) ∈ R

+. If R̃ < , then

lim
t→∞


t

∫ t


S(r) dr =

�

μ
, lim

t→∞ I(t) = , lim
t→∞ R(t) =  a.s.

Proof We have R̃ < , let –κ = (μ + γ + ε + σ

 )(R̃ – ) < . It follows from the result of

Theorem . that, for arbitrary small constant  < ξ < min{/,κ/}, there exist a constant
T = T(ω) and a set �ξ such that P(�ξ ) ≥  – ξ and for t ≥ T , ω ∈ �ξ , log I(t) ≤ – κ

 t, and so
I(t) ≤ e–κt/. Therefore lim supt→∞ I(t) ≤  a.s., which together with the positivity of the
solution implies

lim
t→∞ I(t) =  a.s. (.)

Therefore, from (.), (.), and the third equations of (.), it is easy to obtain

lim
t→∞


t

∫ t


S(s) ds =

�

μ
, lim

t→∞ R(t) =  a.s.

The proof of this result is completed. �

In the previous, we show the extinction of the disease. Now, we investigate conditions
for the prevalence of the disease.

Theorem . Assume μ > 
 (σ 

 ∨ σ 
 ∨ σ 

 ). Let (S(t), I(t), R(t)) be the solution of system
(.) with any initial value (S(), I(), R()) ∈ R

+. If R̃ > , then

lim
t→∞


t

∫ t


S(s) ds =

�

μR̃
a.s.,

lim
t→∞


t

∫ t


I(s) ds =

μ(μ + γ + ε + σ

 )

β(μ + γ + ε)
(R̃ – ) a.s.,

lim
t→∞


t

∫ t


R(s) ds =

γ (μ + γ + ε + σ

 )

β(μ + γ + ε)
(R̃ – ) a.s.
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Proof If R̃ > , then from the last equality of (.) and Lemmas ., . in [], we have

lim
t→∞


t

∫ t


I(s) ds =

β�

μ
– (μ + γ + ε + σ


 )

β(μ+γ +ε)
μ

=
μ(μ + γ + ε + σ


 )

μ + γ + ε
(R̃ – ) a.s. (.)

Together with (.), this yields

lim
t→∞


t

∫ t


S(s) ds =

�

μ
–

(μ + γ + ε + σ

 )

β
(R̃ – ) =

�

μR̃
a.s.

Moreover, from the third equation of system (.), we obtain

R(t) – R()
t

=
γ

t

∫ t


I(s) ds –

μ

t

∫ t


R(s) ds +

σ

t

∫ t


R(s) dB(s),

which together with (.) and (.) implies

lim
t→∞


t

∫ t


R(s) ds =

γ (μ + γ + ε + σ

 )

β(μ + γ + ε)
(R̃ – ) a.s. �

Remark . Although there is no endemic equilibrium of system (.), Theorem . tells
us the solution of it tends to a point in time on average whose value is less than the value
of (S∗, I∗, R∗) [], and we consider it is stable in time on average.

Furthermore, from the results of Theorem . and Theorem ., we see that the value of
R̃ mainly determines the extinction and persistence of the disease. As deterministic epi-
demic models, R̃ can be called the basic reproduction of the stochastic epidemic system
(.).

3 Simulations
In this section, using the method mentioned in [], we give simulations to support our
results. The discretized equation is

⎧
⎪⎨

⎪⎩

Sk+ = Sk + (� – μSk – βSkIk)�t + σε,k
√

�tSk ,
Ik+ = Ik + [βSkIk – (μ + γ + ε)Ik]�t + σε,k

√
�tIk ,

Rk+ = Rk + (γ Ik – μRk)�t + σε,k
√

�tRk .

Let (S(), I(), R()) = (, , ), � = , β = , μ = , γ = , ε = , � = .. In this sit-
uation, R = 

 > , then the solution of the corresponding deterministic system will tend
to (S∗, I∗, R∗) = ( 

 , 
 , 

 ) and the disease will prevail (see the black real lines in Figures 
and ). Choosing different values of σ, σ, σ, we get two cases.

Case  Assume σ = ., σ = , σ = ., then μ > 
 (σ 

 ∨ σ 
 ∨ σ 

 ) and R̃ = 
 < . As

expected, the infected population I(t) will tend to  very quickly and the disease will die
out. The susceptible population S(t) will tend to �

μ
=  in time average (see the second

picture in Figure ).

Case  Let σ = ., σ = ., σ = . such that μ > 
 (σ 

 ∨ σ 
 ∨ σ 

 ) and R̃ = 
 > .

As Theorem . said, the disease will prevail and the solution is fluctuating around the
endemic equilibrium (S∗, I∗, R∗) of the corresponding deterministic system (see the upper
three pictures in Figure ). Furthermore, we show that the susceptible, infected and re-



Ji and Jiang Advances in Difference Equations  (2017) 2017:30 Page 6 of 8

Figure 1 Simulation of the path S(t), 1
t

∫ t
0 S(s) ds, I(t) and R(t) for the stochastic system (1.2) and the

corresponding deterministic system with R0 > 1 and R̃0 < 1.

Figure 2 Simulation of the path S(t), I(t), R(t), and 1
t

∫ t
0 S(s) ds, 1

t

∫ t
0 I(s) ds, 1

t

∫ t
0 R(s) ds for the stochastic

system (1.2) and the corresponding deterministic system with R0 > 1 and R̃0 > 1.

covered population will tend to a positive value in time on average, respectively, in detail,

lim
t→∞


t

∫ t


S(s) ds =




, lim
t→∞


t

∫ t


I(s) ds =




, lim
t→∞


t

∫ t


R(s) ds =




a.s.

The other three pictures in Figure  illustrate this.
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4 Discussions
In this paper, by qualitative analysis we have studied the global behavior of an SIR model
with stochastic perturbation. As the deterministic epidemic models, we give a basic re-
production number R̃ of system (.), which is also less than the value of the basic repro-
duction number in the corresponding deterministic system. From the discussion, we can
think white noise can make the value of the basic reproduction number lower, and so it is
beneficial for controlling the disease.

In fact, for a stochastic SIRS epidemic model,

⎧
⎪⎪⎨

⎪⎪⎩

dS(t) = [� – μS(t) – βS(t)I(t) + ρR(t)] dt + σS(t) dB(t),

dI(t) = [βS(t)I(t) – (μ + γ + ε)I(t)] dt + σI(t) dB(t),

dR(t) = [γ I(t) – μR(t) – ρR(t)] dt + σR(t) dB(t),

(.)

we can obtain the following properties through a similar analysis.
• If μ > 

 (σ 
 ∨ σ 

 ∨ σ 
 ) and R̃ < , then

lim
t→∞

log I(t)
t

=
(

μ + γ + ε +
σ 




)

(R̃ – ) <  a.s.

lim
t→∞


t

∫ t


S(r) dr =

�

μ
, lim

t→∞ I(t) = , lim
t→∞ R(t) =  a.s.

• If μ > 
 (σ 

 ∨ σ 
 ∨ σ 

 ) and R̃ > , then

lim
t→∞


t

∫ t


S(s) ds =

�

μR̃
a.s.,

lim
t→∞


t

∫ t


I(s) ds =

μ(μ + ρ)(μ + γ + ε + σ

 )

β[(μ + ρ)(μ + ε) + μγ ]
(R̃ – ) a.s.,

lim
t→∞


t

∫ t


R(s) ds =

μγ (μ + γ + ε + σ

 )

β[(μ + ρ)(μ + ε) + μγ ]
(R̃ – ) a.s.
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