Liang et al. Advances in Difference Equations (2017) 2017:11 ® Advances in Difference Equations

DOI 10.1186/513662-016-1058-1

a SpringerOpen Journal

RESEARCH Open Access

CrossMark

Existence of mild solutions for fractional
nonlocal evolution equations with delay in
partially ordered Banach spaces

Yue Liang'", He Yang? and Kun Gou?®

“Correspondence:
liangyuegsau@163.com
'College of Science, Gansu
Agricultural University, Lanzhou,
730070, PR. China

Full list of author information is
available at the end of the article

@ Springer

Abstract

This paper deals with the existence of mild solutions for the abstract fractional
nonlocal evolution equations with noncompact semigroup in partially ordered
Banach spaces. Under some mixed conditions, a group of sufficient conditions for the
existence of abstract fractional nonlocal evolution equations are obtained by using a
Krasnoselskii type fixed point theorem. The results we obtained are a generalization
and continuation of the recent results on this issue. At the end, an example is given to
illustrate the applicability of abstract result.
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1 Introduction
Let (E,<,| - ||) be a partially ordered Banach space. We consider the existence of mild
solutions for the fractional nonlocal evolution equation

DIx(t) + Ax(t) = f(t, %) + h(t,x;), te]:=[0,b],

(1.1)
xo(t) = @(t) + g(x), tel-r0],

where D{ is the Caputo fractional derivative of order g € (0,1), 5> 0 and r > 0 are con-
stants, —A : D(A) C E — E generates a positive Cp-semigroup 7'(¢) (¢ > 0) of uniformly
bounded linear operator in E, f, & and g are given functions, ¢ : [-r,0] — E is continuous,
x; is defined by x,(t) =x(¢t + v) forall T € [-r,0] and £ € /.

Itis well known that the differential equations with different type of boundary conditions
have an extensive physical background and realistic applications, and the theory has been
considerably developed in recent years [1-12]. Recently, in [1, 2, 7], the authors studied the
existence of solutions for the initial value problem of the first order ordinary differential

equation
& () =f(6x() +g(t,x(t)), t€lto,bto+al,  x(to) =x €R, (1.2)

where £y > 0, a > 0 are two constants. In [1], the existence theorems of the problem (1.2)
are proved by using a hybrid Schaefer type fixed point theorem under strong Lipschitz and
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compactness type conditions. In [2, 7], under weaker partial continuity and partial com-
pactness type conditions, some existence theorems are obtained by using a Krasnoselskii
type fixed point theorem. These results are all for first order ordinary differential equa-
tions without delay, but as far as we know the existence of solutions for nonlinear frac-
tional evolution equations with the nonlocal initial condition and delay in partially or-
dered Banach spaces has not been considered. This is the main motivation of the present
paper. In this paper, we will prove the existence of mild solutions for the problem (1.1) in
partially ordered Banach spaces by using the Krasnoselskii type fixed point theorem under
some weaker partial continuity and partial compactness type conditions. The results we
obtained are a generalization and continuation of the recent results on this issue. At the
end, we give an example of the fractional parabolic equation to illustrate the applicability

of abstract result.

2 Preliminaries
Let (X, <, | - ||) be a partially ordered normed linear space. Two elements x, y in X are said
to be comparable if either x <y or y < x. A function ¥ : X — X is said to be upper semi-
continuous (u.s.c.) if the set {x € X : ¥ (x) N B # @} is closed for any closed subset B in X.
Definitions 1-8 have been introduced in [2, 3, 7] and are frequently used in the subsequent
part of the article.

Definition 1 A partially ordered normed linear space X is said to be regular if either
(i) if a nondecreasing sequence {x,}°2, C X converges to x*, then x,, <x* forallm € N,
or

(ii) if a nonincreasing sequence {x,}2, C X converges to x*, then x,, > x* for all » € N.

Definition 2 The order relation < and the norm || - || on partially ordered normed linear
space (X, <, || - ||) are compatible if for any monotone nondecreasing or monotone nonin-
creasing sequence {x,} C X, the convergence of any subsequence {x,, } of {x,} to x* implies
that the whole sequence {x,} converges to x*.

Definition 3 A mapping Q : X — X is nondecreasing if x < y implies Qx < Qy for all
%,y € X. Similarly, Q is nonincreasing if x < y implies Qx > Qy for all x,y € X.

Definition 4 A mapping Q: X — X is partially continuous at a point a € X if for every
€ > 0 there exists a § > 0 such that ||Qx — Qa|| < € whenever x is comparable to a and
llx — all < é.1f Q is partially continuous at every point of X, then it is partially continuous
on X.

Definition 5 A mapping Q : X — X is partially bounded if Q(C) is bounded for every
chain C in X. Q is bounded if Q(X) is a bounded subset of X.

Remark 1 If Q is bounded in X, then it is partially bounded in X. However, the reverse
description does not hold.

Definition 6 A mapping Q: X — X is partially compact if Q(C) is relatively compact on
X for all totally ordered sets or chains C of X.
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Definition 7 A mapping ¥ : R* — R* is called a ©-function if it is an upper semi-
continuous and monotonic nondecreasing function satisfying y(0) = 0.

Remark 2 Examples of ©-functions are y/(r) = kr for k > 0, ¥(r) = 1> and ¥ (r) = tan~lr
etc. If ¢, are two D-functions, then (i) ¢ + ¥, (ii) A¢,A > 0, and (iii) ¢ o ¥ are all D-

functions.

Definition 8 A mapping Q: X — X is called a partially nonlinear ®-contraction if there
exists a ©-function ¥ such that

| Q@) - QU < v (llx-1)
for all comparable elements x,y € X with ¥ (r) <r for r > 0.

Our result is based on the following Krasnoselskii type fixed point theorem, which can
be found in [3].

Lemmal Let (X, <,| ) bea regular partially ordered complete normed linear space such
that the order relation < and the norm || - || in X are compatible. Let A,B : X — X be two
nondecreasing operators such that:

(a) A is partially bounded and it is a partially nonlinear D-contraction,

(b) B is partially continuous and partially compact, and

(c) there exists an element xo € X such that xy < Axg + Bxy.
Then the operator equation x = Ax + Bx has a solution x* € X and the sequence {x,} defined
by %441 = Ax, + Bxy, n=0,1,2,..., converges monotonically to x*.

At the end of this section, we recall the definitions of fractional calculus. See [5, 12] for
more details.

Definition 9 The fractional integral of order « > 0 with the lower limit zero for a function
f is defined by

o _L ! _ ol
If(t)-F(a)/(;(t )" f(s)ds, t>0,

where I' is the gamma function.
The Caputo fractional derivative of order n — 1 < @ < n with the lower limit zero for a
function f € C"[0, 00) can be written as

o _ 1 ! _ yr—a-1g(n)
th(t)—ir(n_a)'/‘o(t s) f(s)ds, t>0,meN.

Remark 3 By Definition 9, the Caputo derivative of a constant is equal to zero.

3 Existence theorem

Let E be a partially ordered Banach space with the partial order < and the norm | - ||,
whose positive cone K is defined by K = {x € E : x > 0}. It is well known that if cone K is
normal, then the order relation < and the norm | - || in E are compatible. Throughout this
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paper, we assume that —A : D(A) C E — E generates a positive Cy-semigroup 7'(¢) (¢ > 0)
of uniformly bounded linear operator in E. Namely, there exists a constant M > 0 such that
IT(t)|| <M forallt> 0.A Cp-semigroup T'(¢) (¢ > 0) is said to be positive if the inequality
T(t)x > 0 holds for all x > 0. Let K > 0 be a constant. Then —(A + KI) generates a positive
Co-semigroup S(¢) = e X*T(¢) (¢ > 0) in E. For more properties of operator semigroup and
positive Cy-semigroup, please see [4, 8].

Denote by C([-r, 5], E) the Banach space of all continuous E-valued functions on the
interval [-r, b] with the norm |%||(-5 = maX;e[—rp) |#(¢)|| for any x € C([-r, b], E). Define

a positive cone K¢ by
K¢ ={x e C([-r,b],E) :x(t) € K, t € [-1,b]}.

Then C([-r,b],E) is a partially ordered Banach space with the order relation < induced
by K¢. K¢ is normal if K is normal. Similarly, (C([-r, 0], E), <, ||%|l(-r0) is also a partially
ordered Banach space.
In the rest of this paper, we consider the following assumptions:
(H1) [le-Ke@-4) T(£10) - T(¢16)|| — 0 as t, — ty — O for every 6 € (0, +00).
(H2) The function f(¢,x) : ] x C([-r,0],E) — E is continuous in x for all ¢ € J and
satisfies the following conditions:
(i) There exista constant 0 <o < %;ql) and a D-function  satisfying ¥ (r) <7
for r > 0 such that

0 < [f(t,x) + Kx(t)] - [f(t,5) + Ky(t)| <oy (x - )

for all £ € J and x,y € C([-r, b], E) with x > y, where K > 0 is a constant.
(il) f(¢ %) + Kx(t) is bounded for all t € /.
(H3) The function k(t,x) : J x C([-r,0],E) — E is continuous, bounded and
nondecreasing in x for all £ € J.
(H4) The function g: C([-r,b], E) — E is continuous, bounded and nondecreasing.
(H5) There exists a function v € C([-r, b], E) such that DTv(t) + Av(¢) <f(t,ve) + h(t,ve)
for t € J and vy(¢) < o(t) + g(v) for t € [-r,0].
By assumptions (H2)(ii), (H3), and (H4), there exist positive constants Kj, K; and K3
such that

wheref(t, x¢) =f (¢, %) + Kx(¢).
Let X = C([-r, b], E). Define an operator A : X — X by

te[-r0],

0,
[ot =8y V(t - s)f (s,x)ds, te], (32)

(Ax)(t) = {
where

V() = / q@nq(H)S(th) do, 0<g<l,
0
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where S(t) = e X T(¢) for all £ > 0 and

1 41 _1
na(0) = =071 p,(677),
q
1 & r 1
pu0) = = S 1yt Y Gy 6 e 0,000
T n!

n=1

Lemma 2 Let the assumption (H2) hold. Then the operator A is nondecreasing, partially
bounded, and it is a partially nonlinear D-contraction in X.

Proof Since T(¢t) (t > 0) is a positive Cp-semigroup, it follows that {V(£)};>o are positive
operators. By the assumption (H2), it is easy to see that A is nondecreasing in X. By (3.1),
for any x € X, we have

t n MbK;
l(Ax) @) < /(; (-1 V(£ - s)f(s,x)] ds < Fq+ 11)

for all ¢ € . Taking the maximum over ¢ € [-r, b] on both sides, we obtain

MbiK;
I'g+1)

lAX[ [-rp) <

Therefore, A is bounded in X, which further implies that A is partially bounded in X.
We next prove that A is a partially nonlinear D-contraction. For any comparable ele-

ments %,y € X, by the assumption (H2), we have

A~

|(Ax)@) - (A O] < /0 (t =) | V(= 9)[f(sx) —f(s,90)] | ds

Mo /’t
<— | &9 (lIxs —ysll) ds
I'(q) Jo (s = 1)
< V(%= ylrs)
for all ¢ € . Taking the maximum over ¢ € [-r, b] on both sides, we obtain
1A% = Ayl =) < ¥ (I = Yll=rp)) (3.3)

for all comparable elements x,y € X. This implies that A is a partially nonlinear D-
contraction in X. This completes the proof. O

Define an operator B: X — X by

B0 - { o(t) + g(x), te[-r,0], 6a)

U(t)(¢(0) + g(x)) + fot(t — )TV (t = s)h(s,x5)ds, te],

where V(¢) is defined before and
uo= [ n@s@s)ds, o<q<1
0

where S(-), n4(-), p4(-) are defined before.
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Lemma 3 Let assumptions (H1), (H3), and (H4) hold. Then the operator B is nondecreas-

ing, partially continuous and partially compact in X.

Proof Since T'(t) (t > 0) is a positive Cy-semigroup, it follows that {U(£)};>0 and {V(£)};>0
are positive operators. Since the functions / and g are nondecreasing, it is easy to see that
B is nondecreasing in X.

Take a sequence {x,} in a chain C C X with x, — x* as n — +00. Since the functions f
and / are continuous in x for all £ € J, by the dominated convergence theorem, we have

lim (Bx,)(®) = UO)(¢(0) + lim_g(x,))

n—+00

t
+ | t=9)T'V(t-5) lim h(s,x,,)ds
0 n—+00

foranyt € [-r, b], where x,,; = (x,,)s. Therefore, we deduce that Bx, converges to Bx* point-
wise on [-7, b]. On the other hand, for any ¢, , € J with f; < £,, we have

“ (an)(tZ) - (an)(tl) ”

< |u()(p(0) + glxn)) — U(t)(9(0) + g(x)) |

+ /tl(tz - S)q_l[V(tg -5)=-V(t —s)]h(s,x,,,s) ds
0

+ /tl G $)T —(t - s)q‘l] V(ty — s)h(s,x,5) ds
0

t
+ / (b — )TV (ty - S)h(s,x,5) ds

5]

o0
< / nq(g)e—lﬁfﬁ ||e—1<9(tg—t1q)T(tge) _ T(thg) || de(”w”[_r’()] + I(g)
0

5]
+ qK2/ (t—5)T"
0

x / 0n(0) e X9 T((t, - 5)70) — e X T (¢, - 5)76) || 46 ds
0

M i

MK>(t, — 1)1
r'g+1)

+

-0

as tp — t; — 0 uniformly for all # € N. This implies that Bx,, — Bx* uniformly. Hence the
operator B is partially continuous in X.

We next prove that B is partially compact in X. We will prove that B(C) is uniformly
bounded and equi-continuous for any chain C C X. Using a similar method as above we
can prove that, for any t,£, € J with &1 < &, ||y(£2) — y(t1)]| — 0 as £, — {; — 0 uniformly
for all y € B(C). This implies that B(C) is equi-continuous for any chain C C X. For any
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y € B(C), by assumptions (H3) and (H4), if ¢ € [-r, 0], we have

Iy < llelro + Ks.

If t € ], we have

MDbIK:
ly@® ] < M(lglli-roy + K3) + Tj)'
Therefore,
MDbIK,

9lcre < M+ D)(ll@llro) + K3) +

I'g+1)’
which implies that B(C) is uniformly bounded in X. Therefore, B is partially compact in X.
This completes the proof. O

Theorem 1 Let (E,<,|| - ||) be a partially ordered Banach space, whose positive cone P
is normal, and let —A generate a positive Cy-semigroup T(t) (t > 0) in E. Assume that
the conditions (H1)-(H5) hold. Then the fractional nonlocal evolution equation (1.1) has a
solution x* € C([-r,b),E) and the sequence {x,} defined by xo = v, x,,1 = Ax,, + Bx,, n =
0,1,2,..., converges monotonically to x*.

Proof We consider an auxiliary fractional evolution equation

Dix(t) + (A + KDx(t) = f(t, ) + h(t,x,), te], 35)

x0(t) = () +g(x), te[-r0]
where f’ (&, x¢) = f(t,x,) + Kx(¢). Clearly, the mild solution of fractional nonlocal evolution
equation (1.1) is equivalent to the mild solution of fractional nonlocal evolution equation
(3.5). We will use Lemma 1 to prove that the fractional nonlocal evolution equation (3.5)
has a mild solutions in X. For this purpose, we define two operators A, B: X — X asin (3.2)
and (3.4). Then by Lemmas 2 and 3, we deduce that A is nondecreasing, partially bounded,
and it is a partially nonlinear D-contraction, and B is nondecreasing, partially continuous,
and partially compact. It remains to prove that v satisfies the inequality v < Av + Bv.

By assumption (H5), we have
{D?v(t) + (A + KD(t) <f(t,ve) + Wt ve),  te],
vo(t) < @(t) +g(v), te[-r0].

Let D7v(t) + (A + KI)v(t) = G(¢) for all £ € J. Then
v(t) = U(t)vo(0) + /t(t — )TV (t-5)G(s)ds
0

<uf) ((p(O) +g(v)) + /ot(t —)T V(i -ys) [f(t, ve) + hi(t, vt)] ds

= Av(t) + Bv(t)
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forallt €. For t € [-7,0], vo(£) < ¢(t) + g(v) = (Bv)(¢) = (Av)(¢) + (Bv)(¢). This implies that
v < Av + Bv. Hence, all conditions of the Lemma 1 are satisfied. By Lemma 1, the fractional
nonlocal evolution equation (3.5) has a mild solution x* € C([-r, b], E), which is also a mild
solution of the fractional nonlocal evolution equation (1.1), and the sequence {x,} defined
by %o = v, %51 = Ax, + Bx,, n=0,1,2,..., converges monotonically to x*. This completes
the proof. O

Remark 4 If g = 0, A = 0 and without delay in equation (1.1), Theorem 1 still extends
the main result in [2], because the condition (H2) in this paper is much weaker than the
condition (A;) in [2] and the condition (H1) is not needed if A = 0 in equation (1.1). On
the other hand, in the case of A # 0, we do not use the assumptions of the compactness
and equi-continuity of the Cy-semigroup in this paper, just assume that the Cy-semigroup
T(¢) (t = 0) is positive and satisfies the condition (H1). Hence, our result also extends some
existing results of evolution equation.

Remark5 Inthis paper, the order relation in the partially ordered Banach space is induced
by positive cone. By the closed property of positive cone, we obtain the regularity (see
Definition 1) of the partially ordered Banach space. And by the normal property of positive
cone, we see that the order relation and the norm in the partially ordered Banach space
are compatible (see Definition 2). Hence, it is different from [1-3, 7].

4 Application
At the end of this paper, we give an example of the fractional parabolic equation to illus-
trate the applicability of the abstract result.

Let 2 C R” be a bounded domain with a sufficiently smooth boundary 9£2. Consider
the following nonlocal problem of the fractional parabolic equation:

Dix(t,y) — Ax(t,y)

=f(t,y,%:(T, ) + h(t,y,%(7,9), tel0,b],7€[-r0],y€eR,
Xlpe =0,
xo(1,9) = (1) +g¥)(»), Te[-r0lye 2,

(4.1)

where D! denotes the Caputo fractional derivative of order g € (0,1), A is the Laplace
operator, b > 0 and r > 0 are two constants. x,(t,y) is defined by x,(z,y) = (¢ + 7, y) for all
te€[0,b],t€[-r,0]and y € £2.

Let E = L2(£2,R). Define an operator A : D(A) C E — E by

D(A)={x € E: Ax € E, x|y =0}, Ax = —Ax.

Then, by [9], —A generates an analysis semigroup T'(¢) (£ > 0) in E and there exists M > 0
such that | T(¢)|| < M. By the maximum principle of the parabolic type equation, T'(¢)
(t > 0) is a positive Cy-semigroup in E. Hence we see that the condition (H1) holds.

Let f(t,y,%,(t,y)) = ilgt((i'g)ll — x(t,y), where o € (0, FA(Z;;D) is a constant and I'(-) is the

Gamma function. Then f is continuous, f (¢, y, :(z,y)) = = llfc[,((rr'yy))‘\ < FI{Z;) and

Off(t,y,w)—f(t,y,u)§a< [w=ul ) :O'I/f(|W—u|) =oy(w-u)

1+ |w—ul
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for all t € [0,b], y € £2 and w > u, where v(r) = -=. This implies that the condition (H2)

1+r
holds.
Let
1, ifx <o,
pr= 1 ifx <0,
h(t,y,xt(t,y)) =1 1+2x(7,y), ifO0<x<?2, gx)(y) = ) x50
5, ifx>2, Lex(ty)? ’

Then the conditions (H3) and (H4) hold with K, =5, K3 = 2.
Let A; be an eigenvalue of the Laplace operator —A under the Dirichlet boundary
condition x|y = 0 and e; € E the corresponding eigenvector. Assume that iie;(y) <

f(tryrel(y)) + h(t’y;el(y))’ t e [O:b]r J’ € 2 and el(y) S (/’(t) +g(31)()/)> te [—I’, O]) y € Q‘
Then the condition (H5) holds with v = ¢;(y) for all y € £2.
Let

x()() = x(8, ),
f(t)xt)(') =f(t¢ ')xt(f¢ ));
h(trxt)(') = h(tr ':xt(Tr )))

gx) =g()().

Then the fractional parabolic equation (4.1) can be rewritten into the abstract fractional
nonlocal evolution equation (1.1). Hence by Theorem 1, the nonlocal problem of the frac-
tional parabolic equation (4.1) has a solution.
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