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Abstract
In this paper, by using p-adic Volkenborn integral, and generating functions, we give
some properties of the Bernstein basis functions, the Apostol-Daehee numbers and
polynomials, Apostol-Bernoulli polynomials, some special numbers including the
Stirling numbers, the Euler numbers, the Daehee numbers, and the Changhee
numbers. By using an integral equation and functional equations of the generating
functions and their partial differential equations (PDEs), we give a recurrence relation
for the Apostol-Daehee polynomials. We also give some identities, relations, and
integral representations for these numbers and polynomials. By using these relations,
we compute these numbers and polynomials. We make further remarks and
observations for special polynomials and numbers, which are used to study
elementary word problems in engineering and in medicine.
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1 Introduction
The special numbers and polynomials have been used in various applications in such di-
verse areas as mathematics, probability and statistics, mathematical physics, and engineer-
ing. For example, due to the relative freedom of some basic operations including addition,
subtraction, multiplication, polynomials can be seen almost ubiquitously in engineering.
They are curves that represent properties or behavior of many engineering objects or de-
vices. For example, polynomials are used in elementary word problems to complicated
problems in the sciences, approximate or curve fit experimental data, calculate beam de-
flection under loading, represent some properties of gases, and perform computer aided
geometric design in engineering. Polynomials are used as solutions of differential equa-
tions. Polynomials represent characteristics of linear dynamic system and we also know
that a ratio of two polynomials represents a transfer function of a linear dynamic system.
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With the help of polynomials, one defines basis functions used in finite element compu-
tation and constructs parametric curves.

In order to give some results including identities, relations, and formulas for special
numbers and polynomials, we use the p-adic Volkenborn integral and generating func-
tion methods. We need the following formulas, relations, generating functions, and nota-
tions for families of special numbers and polynomials. Throughout this paper, we use the
following notations:

Let C, R, Z, and N be the sets of complex numbers, real numbers, integers, and positive
integers, respectively, and N = N ∪ {} and Z

– = {–, –, –, . . .}. Also let Zp be the set
of p-adic integers. We assume that ln(z) denotes the principal branch of the multi-valued
function ln(z) with the imaginary part Im(ln(z)) constrained by –π < Im(ln(z)) ≤ π . Fur-
thermore, n =  if n = , and n =  if n ∈N. We have

(
x
v

)
=

x(x – ) · · · (x – v + )
v!

=
(x)v

v!
(x ∈ C; v ∈N)

(cf. [–], and the references cited therein).
There are many methods and techniques for investigating and constructing generating

functions for special polynomials and numbers. One of the most important techniques is
the p-adic Volkenborn integral on Zp. In [], Kim constructed the p-adic q-Volkenborn
integration. By using this integral, we derive some identities, and relations for the special
polynomials. We now briefly give some definitions and properties of this integral.

Let f ∈ UD(Zp), the set of uniformly differentiable functions on Zp. The p-adic q-
Volkenborn integration of f on Zp is defined by Kim [] as follows:

∫
Zp

f (x) dμq(x) = lim
N→∞


[pN ]q

pN –∑
x=

f (x)qx, (.)

where

[x] =

{
–qx

–q , q �= ;
x, q = 

and μq(x) denotes the q-distribution on Zp, which is given by

μq
(
x + pN

Zp
)

=
qx

[pN ]q
,

where q ∈Cp with | – q|p <  (cf. []).
If q →  in (.), then we have the bosonic p-adic integral (p-adic Volkenborn integral),

which is given by (cf. [, ])

∫
Zp

f (x) dμ(x) = lim
N→∞


pN

pN –∑
x=

f (x), (.)

where

μ
(
x + pN

Zp
)

=


pN .
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By using this integral, the Bernoulli polynomials are given by

Bn(x) =
∫
Zp

(x + y)n dμ(y) (.)

(cf. [, , , , ], and the references cited therein).
The Bernoulli polynomials Bn(x) are also defined by means of the following generating

function:

FB(t, x) =
t

et – 
etx =

∞∑
n=

Bn(x)
tn

n!

with Bn() = Bn, which denotes the Bernoulli numbers (of the first kind) (cf. [, , –,
, , , ], and the references cited therein).

If q → – in (.), then we have the fermionic p-adic integral on Zp given by (cf. []):

∫
Zp

f (x) dμ–(x) = lim
N→∞

pN –∑
x=

(–)xf (x), (.)

where p �=  and

μ–
(
x + pN

Zp
)

= (–)x

(cf. []). By using (.), we have the Witt formula for the Euler numbers En as follows:

En(x) =
∫
Zp

(x + y)n dμ–(y) (.)

(cf. [, , , ], and the references cited therein).
The Euler polynomials En(x) are also defined by means of the following generating func-

tion:

FE(t, x) =


et + 
etx =

∞∑
n=

En(x)
tn

n!

with En() = En, which denotes the Euler numbers (of the first kind) (cf. [, , –, ,
, , ], and the references cited therein).

The λ-Bernoulli numbers and polynomials have been studied in different sets. For in-
stance on the set of complex numbers, we assume that λ ∈C and on set of p-adic numbers
or p-adic integrals, we assume that λ ∈ Zp.

The Apostol-Bernoulli polynomials Bn(x;λ) are defined by means of the following gen-
erating function:

FA(t, x;λ) =
t

λet – 
etx =

∞∑
n=

Bn(x;λ)
tn

n!
.

For x = , we have the Apostol-Bernoulli numbers

Bn(λ) = Bn(;λ),
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and

Bn = Bn(; )

which denotes the Bernoulli numbers (of the first kind) (cf. [, , –, , , , ],
and the references cited therein).

The λ-Stirling numbers of the second kind are defined by means of the following gener-
ating function:

FLS(t, v;λ) =
(λet – )v

v!
=

∞∑
n=

S(n, v;λ)
tn

n!
(.)

(cf. []; see also [, , , , ], and the references cited therein).
In [], the Stirling number of the second kind S(n, k) are defined in combinatorics: the

Stirling numbers of the second kind are the number of ways to partition a set of n objects
into k groups. These numbers are defined by means of the following generating function:

FS(t, v) =
(et – )v

v!
=

∞∑
n=

S(n, v)
tn

n!
(.)

(cf. [–], and the references cited therein). By using the above generating function, these
numbers are computed by the following explicit formula:

S(n, v) =

v!

v∑
j=

(
v
j

)
(–)j(v – j)n. (.)

Setting λ =  in (.), we have

S(n, v; ) = S(n, v)

(cf. [–], and the references cited therein).
The Stirling numbers of the first kind s(n, v) are defined by means of the following gen-

erating function:

Fs(t, k) =
(log( + t))k

k!
=

∞∑
n=

s(n, k)
tn

n!
(.)

(cf. [, , , , , ], and the references cited therein).
The Bernstein basis functions Bn

k (x) are defined as follows:

Bn
k (x) =

(
n
k

)
xk( – x)n–k (

x ∈ [, ]; n, k ∈N
)
, (.)

where k = , , . . . , n and
(

n
k

)
=

n!
k!(n – k)!

(cf. [, , , , ]), and the references cited therein.
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The Bernstein basis functions can also be defined by means of the following generating
functions:

fB,k(x, t) =
tkxke(–x)t

k!
=

∞∑
n=

Bn
k (x)

tn

n!
, (.)

where k = , , . . . , n and t ∈ C and x ∈ [, ] (cf. [, , , ]) and see also the references
cited in each of these earlier works.

The Bernoulli polynomials of the second kind bn(x) are defined by means of the follow-
ing generating function:

Fb(t, x) =
t

log( + t)
( + t)x =

∞∑
n=

bn(x)
tn

n!
(.)

(cf. [], pp.-, and the references cited therein).
The Bernoulli numbers of the second kind bn() are defined by means of the following

generating function:

Fb(t) =
t

log( + t)
=

∞∑
n=

bn()
tn

n!
.

The numbers bn() are known as the Cauchy numbers [, ].
The Daehee polynomials are defined by means of the following generating function:

FD(t, x) =
log( + t)

t
( + t)x =

∞∑
n=

Dn(x)
tn

n!
, (.)

with

Dn = Dn()

denotes the so-called Daehee numbers (cf. [, , , , , , , ], and the references
cited therein).

The Changhee polynomials are defined by means of the following generating function:

FC(t, x) =
( + t)x

 + t

∞∑
n=

Chn(x)
tn

n!
, (.)

with

Chn = Chn()

denotes the so-called Changhee numbers (cf. [, , ], and the references cited therein).

Theorem 

∫
Zp

(
x
j

)
dμ(x) =

(–)j

j + 
. (.)
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Proof of Theorem  was given by Schikhof [].

Theorem 

∫
Zp

(
x
j

)
dμ–(x) =

(–)j

j .

Proof of Theorem  was given by Kim et al. [] and [].
Applying the bosonic p-adic integral, the Witt formula for the Daehee numbers and

polynomials are given by Kim et al. [] as follows, respectively:

Dn =
∫
Zp

(x)n dμ(x)

and

Dn(y) =
∫
Zp

(y + x)n dμ(x). (.)

Applying the fermionic p-adic integral, the Witt formula for the Changhee numbers and
polynomials are given by Kim et al. [] as follows, respectively:

Chn =
∫
Zp

(x)n dμ–(x)

and

Chn(y) =
∫
Zp

(y + x)n dμ–(x). (.)

Remark  Many applications of the fermionic and bosonic p-adic integral on Zp have
been given by T Kim and DS Kim first, Jang, Rim, Dolgy, Kwon, Seo, Lim and the others
gave various novel identities, relations and formulas in some special numbers and poly-
nomials (cf. [–, , , , , , ], and the references cited therein).

The λ-Bernoulli polynomials Bn(x;λ) are defined by means of the following generating
function:

FB(t, x;λ, k) =
(

logλ + t
λet – 

)k

etx =
∞∑

n=

B
(k)
n (x;λ)

tn

n!
(.)

(cf. []).
In [] and [], Simsek, by using the p-adic Volkenborn integral on Zp, defined the λ-

Apostol-Daehee numbers and polynomials, Dn(x;λ) by means of the following generating
functions:

G(t, x;λ) =
logλ + log( + λt)

λ( + λt) – 
( + λt)x =

∞∑
n=

Dn(x;λ)
tn

n!
. (.)
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Observe that substituting λ =  into (.), Dn(x; ) = Dn(x), the Daehee Polynomials (cf.
[, ]). By using (.), we also have the following formula:

Dn(x;λ) =
n∑

k=

(
n
k

)
(x)n–kDk(λ)

(cf. []; see also []).
A relation between the λ-Bernoulli polynomials Bn(x;λ), the Apostol-Daehee polyno-

mials Dn(x;λ) and the Stirling numbers of the second kind is given by the following theo-
rem.

Theorem 

Bm(x;λ) =
m∑

n=


λn S(m, n)Dn(x;λ). (.)

The proof of (.) was given by the first author in [].
Observe that G( ez–

λ
;λ) is a generating function for the λ-Bernoulli numbers (cf. []).

We also observe that G(ez – ; ) is a generating function for the Bernoulli numbers.
Substituting λ =  into (.), we obtain

G(t; ) =
log( + t)

t
.

Observe that G(t; ) is a generating function for the Daehee numbers (cf. [, ]).
We summarize our results as follows.
In Section , we give some identities, relations, and formulas including the Apostol-

Daehee numbers and polynomials of higher order, the Changhee numbers and polynomi-
als and the Stirling numbers, the λ-Bernoulli polynomials, the λ-Apostol-Daehee polyno-
mials and the Bernstein basis functions.

In Section , we give an integral representation for the Apostol-Daehee polynomials.
In Section , we introduce further remarks and observations on these numbers, poly-

nomials, and their applications.

2 Identities
By using the above generating functions, we get some identities and relation. In [] and
[], Simsek gave derivative formulas for the λ-Apostol-Daehee polynomials, Dn(x;λ).
Here we give another derivative formula for these polynomials. We also give a relation be-
tween the λ-Bernoulli polynomials, the λ-Apostol-Daehee polynomials and the Bernstein
polynomials.

Theorem  Let n ∈N, then we have

∂

∂x
Dn+(x;λ) =

n∑
j=

(–)jj!

(
n + 
j + 

)
λj+

Dn–j(x;λ).

Proof We can take the derivative of equation (.) with respect to x, we obtain the fol-
lowing partial differential equation:

∂

∂x
G(t, x;λ) = G(t, x;λ) log( + λt).
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By using the above partial differential equation with (.), we get

∞∑
n=

∂

∂x
Dn(x;λ)

tn

n!
=

∞∑
n=

(–)nλn+ tn+

n + 

∞∑
n=

Dn(x;λ)
tn

n!
.

Therefore

∞∑
n=

∂

∂x
Dn+(x;λ)

tn

(n + )!
=

∞∑
n=

( n∑
j=

(–)jλj+

j + 
Dn–j(x;λ)

(n – j)!

)
tn.

Comparing the coefficients of tn on both sides of the above equation, we arrive at the
desired result. �

Theorem  Let n ∈N. Starting with

D(x;λ) =
logλ

λ – 
,

we have

(λ – )
n + 

Dn+(x;λ) + λ
Dn(x;λ) =

logλ

n + 
λn+(x)n+ + λn+n!

n∑
k=

(–)k(x)n–k

(k + )(n – k)!
. (.)

Proof By using (.) with the definition of the logarithmic function, we get

(λ – )
∞∑

n=


n + 

Dn+(x;λ)
tn

n!
+ λ

∞∑
n=

Dn(x;λ)
tn

n!

= logλ

∞∑
n=

(x)n

n + 
λn+tn

n!
+

∞∑
n=

(–)n λn+tn

n + 

∞∑
n=

(x)n
λntn

n!
.

By using the Cauchy product in the right side of the above equation, we get

(λ – )
∞∑

n=


n + 

Dn+(x;λ)
tn

n!
+ λ

∞∑
n=

Dn(x;λ)
tn

n!

= logλ

∞∑
n=

(x)n

n + 
λn+tn

n!
+

∞∑
n=

(
n!

n∑
k=

(–)kλn+(x)n–k

(k + )(n – k)!

)
tn

n!
.

After some elementary calculations and comparing the coefficients of tn

n! on both sides of
the above equation, we arrive at the desired result. �

Setting n =  into (.), we compute a few values of the polynomials Dn(x;λ) as follows:

D(x;λ) =
λ logλ

λ – 
x +

( – logλ)λ – λ

(λ – ) .

Theorem 

( – y)m
Bm

(
x +

y
 – y

;λ
)

=
m∑

j=

Bm
j (y)

m–j∑
n=


λn Dn(x;λ)S(m – j, n). (.)
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Proof Substituting

t =
ez(–y) – 

λ

into (.) and combining with (.), we get the following functional equation:

FB

(
( – y)z, x +

y
 – y

;λ, 
)

=
∞∑

m=

ym zm

m!

∞∑
n=


λn Dn(x;λ)

(ez(–y) – )n

n!
.

Combining the above equation with (.), we get

∞∑
m=

( – y)m
B

()
m

(
x +

y
 – y

;λ
)

zm

m!

=
∞∑

m=

ym zm

m!

∞∑
n=


λn Dn(x;λ)

∞∑
m=

S(m, n)( – y)m zm

m!
.

Since n > m, S(m, n) = , we have

∞∑
m=

( – y)m
B

()
m

(
x +

y
 – y

;λ
)

zm

m!

=
∞∑

m=

ym zm

m!

∞∑
m=

m∑
n=


λn Dn(x;λ)S(m, n)( – y)m zm

m!
.

Therefore

∞∑
m=

( – y)m
B

()
m

(
x +

y
 – y

;λ
)

zm

m!

=
∞∑

m=

m∑
j=

Bm
j (y)

m–j∑
n=


λn Dn(x;λ)S(m – j, n)

zm

m!
.

Comparing the coefficients of zm

m! on both sides of the above equation, we arrive at the
desired result. �

Combining (.) with (.), we get the following theorem.

Theorem 

( – y)m
Bm

(
x +

y
 – y

;λ
)

=
m∑

j=

Bm
j (y)Bm–j(x;λ). (.)

Theorem 

∫ 


( – y)m

Bm

(
x +

y
 – y

;λ
)

dy =


m + 

m∑
j=

Bm–j(x;λ).
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Proof Integrating both sides of equation (.) from  to  with respect to y, we obtain

∫ 


( – y)m

B
(k)
m

(
x +

y
 – y

;λ
)

dy =
m∑

j=

Bm–j(x;λ)
∫ 


Bm

j (y) dy.

Since

∫ 


Bm

j (y) dy =


m + 

(cf. []), we get

∫ 


( – y)m

B
(k)
m

(
x +

y
 – y

;λ
)

dy =


m + 

m∑
j=

Bm–j(x;λ).

Therefore, the proof of the theorem is completed. �

By using (.), we derive the following functional equation:

G(t, x + y;λ) = ( + λt)yG(t, x;λ).

By using the above functional equations, we have the following theorem.

Theorem 

Dn(x + y;λ) =
n∑

j=

(
n
j

)
(y)jDn–j(x;λ)λj. (.)

3 Integral representation for the Apostol-Daehee polynomials
In [], Simsek defined the Apostol-Daehee polynomials D

(k)
n (x;λ) of higher order k by

means of the following generating function:

FD(t, x;λ, k) =
(

logλ + log( + λt)
λt + λ – 

)k

( + λt)x =
∞∑

n=

D
(k)
n (x;λ)

tn

n!
. (.)

Setting x =  in (.) gives the Apostol-Daehee numbers D(k)
n (λ) of higher order k:

D
(k)
n (λ) = D

(k)
n (;λ).

By the same method as in [], we give a multiple bosonic p-adic integral for the Apostol-
Daehee polynomials of higher order D(k)

n (x;λ) in the following form:

∫
Zp

· · ·
∫
Zp︸ ︷︷ ︸

k-times

λx+···+xk ( + λt)x+···+xk +x dμ(x) · · · dμ(xk) =
∞∑

n=

D
(k)
n (x;λ)

tn

n!
, (.)
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where λ ∈ Zp. Setting λ =  in (.), we have

∫
Zp

· · ·
∫
Zp︸ ︷︷ ︸

k-times

( + t)x+···+xk +x dμ(x) · · · dμ(xk) =
∞∑

n=

D(k)
n (x)

tn

n!

(cf. []; see also [, ], and the references therein).
Substituting k =  into (.), we have

∫
Zp

λx ( + λt)x+x dμ(x) =
∞∑

n=

Dn(x;λ)
tn

n!
,

where λ ∈ Zp (cf. []).
By applying the bosonic p-adic integral with (.) to the polynomials Dn(x + y;λ), we

get

∫
Zp

Dn(x + y;λ) dμ(y) =
n∑

j=

(
n
j

)
DjDn–j(x;λ)λj, (.)

where λ ∈ Zp.
In [], p., equation (.), [], Kim et al. gave an explicit form for the Daehee

numbers as follows:

Dn =
n∑

l=

s(n, l)Bl.

Substituting this identity into (.), we get the following theorem.

Theorem  Let λ ∈ Zp. We have

∫
Zp

Dn(x + y;λ) dμ(y) =
n∑

j=

j∑
l=

(
n
j

)
λjs(j, l)BlDn–j(x;λ).

By applying the fermionic p-adic Volkenborn integral with (.) to the polynomials
Dn(x + y;λ), we get

∫
Zp

Dn(x + y;λ) dμ–(y) =
n∑

j=

(
n
j

)
ChjDn–j(x;λ)λj. (.)

In [], p., equation (.), [], Kim et al. gave explicit form for the Changhee num-
bers as follows:

Chn =
n∑

l=

s(n, l)El.

Substituting the above formula into (.), we get the following theorem.
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Theorem  Let λ ∈ Zp. We have

∫
Zp

Dn(x + y;λ) dμ–(y) =
n∑

j=

j∑
l=

(
n
j

)
λjs(j, l)ElDn–j(x;λ).

4 Further remark and observations on special polynomials
Polynomials appear in many branches of mathematics and science. For instance, polyno-
mials are used to form polynomial equations, which encode a wide range of problems,
from elementary world problems to complicated problems in the sciences, in settings
ranging from basic chemistry and physics to economics and social science, in calculus and
numerical analysis to approximate other functions (cf. [, ]). Therefore, many authors
have studied and investigated special polynomials and special numbers. There are various
applications of these polynomials and numbers in many branches of not only in mathe-
matics and mathematical physics, but also in computer and in engineering science with
real world problems including the combinatorial sums, combinatorial numbers such as
the Bernoulli numbers and polynomials, the Euler numbers and polynomials, the Stirling
numbers, the Changhee numbers and polynomials, the Daehee numbers and polynomials
and the others. Especially, the Bernstein polynomials are also used in many branches of
mathematics, particularly including statistics, probability, combinatorics, computer algo-
rithm, discrete mathematics and CAGD. The Bernstein basis functions are applied in real
world problems to construct the theory of the Bezier curves (cf. [, ], and the references
therein).

Such special polynomials and numbers including the above-mentioned ones have found
diverse applications in many research fields other than mathematics such as mathematical
physics, computer science, and engineering. That is, in engineering, polynomials are used
to model real phenomena. For instance, aerospace engineers use polynomials to model the
projections of jet rockets. Scientists use polynomials in many formulas including gravity,
temperature, and distance equations. In social science, economists need an understanding
of polynomials to forecast future market patterns (cf. [, ], and the references therein).
Polynomials are also used in analysis of ambulatory blood pressure measurements and
also biostatistics problems (cf. []).

It is well known that there are many application of the p-adic integral on Zp, one of the
best known applications is to construct generating functions for special numbers and poly-
nomials. The other applications are in p-adic analysis, in q-analysis, in quantum groups,
in spectra of the q-deformed oscillator and in science (cf. [, , ]).

How can one give applications in investigating engineering and medicine related prob-
lems by using the Apostol-Daehee numbers and polynomials, and the Changhee numbers
and polynomials with the p-integral on Zp?
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