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Abstract
We present a new way of constructing a fractional-based convolution mask with an
application to image edge analysis. The mask was constructed based on the
Riemann-Liouville fractional derivative which is a special form of the Srivastava-Owa
operator. This operator is generally known to be robust in solving a range of
differential equations due to its inherent property of memory effect. However, its
application in constructing a convolution mask can be devastating if not carefully
constructed. In this paper, we show another effective way of constructing a
fractional-based convolution mask that is able to find edges in detail quite
significantly. The resulting mask can trap both local discontinuities in intensity and its
derivatives as well as locating Dirac edges. The experiments conducted on the mask
were done using some selected well known synthetic and Medical images with
realistic geometry. Using visual perception and performing both mean square error
and peak signal-to-noise ratios analysis, the method demonstrated significant
advantages over other known methods.

Keywords: convolution; fractional integral; fractional derivative; edge detection;
Riemann-Liouville

1 Introduction
Image edge analysis constitutes a set of mathematical methods which aim at identifying
points in a digital image at which the image brightness changes sharply (point of disconti-
nuities). The organization of these points into a set of curved line segments then becomes
the edge. With no doubt, detecting these points and subsequently constructing an edge
map is one of the most common and fundamental operations in image processing and
analysis since it is consistent with the human perception and serves as the first step in im-
age understanding and interpretation. They provide useful structural [, ] information,
which can be used for feature extraction, object identification and region segmentation.
This information, by common practice, is extracted by developing a convolution mask
mostly known as the gradient operator which is a relatively smaller two dimensional ar-
ray where each pixel value of the original image is modified according to the value of the
neighborhood around the pixel of interest (POI) []. However, there are other forms, such
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as the segmentation- and transform-based operators, which could also be used for edge
extraction. The definitions of particular operators in any of these three categories have
their own pros and cons. Although several studies [–] have been done to improve these
methods for edge detection, they still produce edges with some compromise in accuracy,
completeness, complexity, connectedness, and smoothness. A recent study [] by Guo and
Lai confirmed how gradient operators resist just low-level noise but tend to mistakenly de-
tect fake edges in the presence of excessive noise or artifacts. In an attempt to resolve some
of these issues other operators [–] mostly based on fractional calculus with improved
characteristics over the classical methods like Canny and Prewitt have been proposed.

In particular the fractional-based operators have been used in image quality enhance-
ment, image texture enhancement [], image denoising [], and image edge analysis.
Among such operators [], which are a generalization of the concept of an integer-order
derivative to real order and the n-fold integral operator, are the Caputo, Erdélyi-Kober,
Srivastava-Owa, and Weyl-Riesz operators [], the Riemann-Liouville operator, and the
Grünwald-Letnikov operators. Typically, the operators generate both high and low fre-
quencies with the high frequencies characterizing a large change in pixel intensity value
over a small distance including noise and edges. In contrast, the low frequency is char-
acterized by a small change in pixel intensity value where background and texture in the
image can be found []. This means that, in the presence of high-level noise, some of
these operators proposed, if not carefully constructed, will tend to mistakenly detect fake
edges.

In this paper, we present a new construction of fractional-based convolution mask for
image edge analysis with equivalent complexity (©(mn log(mn))) as the standard gradient
operators but with significant robustness to noise. We also show that it is able to detect
edges very well as a result of the memory (kernel) function embedded in the fractional
derivative. These interesting characteristic allows the operator to describe systems with
memory phenomena. The paper is organized as follows: we start by reviewing some edge
detection operators in Section . Section  discusses the generalized fractional calculus
operator adopted for this study and subsequently in Section  we show how the proposed
mask is constructed. In Section ., we compare results from the proposed mask with two
methods known to perform well. Finally, conclusions are drawn in Section .

2 Review of edge operators
In this section, some existing edge operators or detectors are reviewed. Edge detection is
an important field in image processing and an effective edge detector is expected to re-
duce a large amount of data, while keeping most of the important features contained in
an image. These operators are usually categorized as the gradient-based edge detectors
[–], segmentation-based edge operators [, ] and the transform-based edge oper-
ators [, ]. The first category of edge detectors are mostly based on either first-order
gradient operators or second-order operators, sometimes called Laplacians. According to
[], although higher orders are more accurate compared with first-order operators, it
is relatively sensitive to noise when extracting relatively more information. For example
gradient-based edge detection operators, such as the Roberts, Sobel, and Prewitts, Lapla-
cian of Gaussian (LoG) and their improvements [–] uses -D linear filters to process
vertical and horizontal edges separately in order to approximate the first-order derivative
of pixel values of an image. The work of [] also presents a classified and comparative
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study of edge detection operators. In the study, the Canny operator proved to be better
than LoG experimentally while LOG was better than Prewitt and Sobel in handling noisy
images. A -D gamma distribution in the work of [] demonstrated the efficiency of their
method but, however, suffered from the drawback of big time complexity as a result of the
constructed masks.

While the above operators are constructed using first- and second-order derivatives,
there are other classes of edge operators based on segmentation. These methods work
by partitioning the image domain into different subregions with the assumption that
each subregion is homogeneous with respect to some characteristics such as intensity
[, , ]. Among these operators are the Chan-Vase and Mumford-Shah methods,
which separate an image into two sub domains � and �. The sub domain � is de-
fined to lie inside the edge contour, C, while the other sub domain is outside C, such that
the image g can be approximated by continuous functions f and f in � and �, re-
spectively. In relation to the Mumford-Shah method, this is achieved by normally min-
imizing the functional with respect to functions f, f, and the contour C as in equa-
tion ():

E(f, f, C) =



∫
�

(g – f) +



∫
�

(g – f) + α

∫
�

| � f|

+ α

∫
�

| � f| + β · Length(C). ()

In the special case where f, f are constant with values c, c, respectively, this for-
mulation is simplified to the Chan-Vese segmentation method [] according to the
level set method []. In this case the right hand side of equation () becomes as fol-
lows:




∫
�

[
H(φ)(g – c) +

(
 – H(φ)

)
(g – c)] + β

∫
�

∣∣�H(φ)
∣∣. ()

We note that the functional in () represents the edge contour C or the zero-level set
of a Lipschitz function φ : � → R where positive values of φ represent regions in the
contour C while the negative values φ represent regions outside the contour. Choosing
the notation H(·) to be the Heaviside function defined as H(z) =  for positive z and 
otherwise, the minimizer φ of the functional in equation () gives the segmentation of
the domain and the edge contours where the edges are detected from the zero-level set
of φ.

Aside from the segmentation-based edge detection, we as well have the transform-based
edge detectors. Current research in this area is the wavelet approach with box spline tight
framelets in the eighth direction (B) as proposed by []. These operators have predefined
properties such as compactness and smoothness, which makes it possible to approximate
various edges and features better [, , ]. Nonetheless, from their study, it was con-
cluded that the operator was efficient in tracking edges more accurately but is eight and
five times more computationally expensive than that of the wavelet- and shearlet-based
methods, respectively. However, it is comparable to that of the Chan-Vese method [].

Among other edge operators used we have: the morphological gradient [], the high-
order and variable-order total variation [], and the Mumford-Shah Green function []
and fractal geometry-based methods [].
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3 Generalized fractional calculus operator
Fractional calculus generalizes the concept of classical calculus by taking into account
non-integer orders. These classes of operators become useful when handling natural prob-
lems with memory effect since by definition these operators already possess the memory
kernel [–] As edges need to be close and complete, based on the edge points, it is
common to make use of these operators in constructing the edge map.

In this section, we provide the definitions with some preliminary concept of fractional
calculus which will be the bases for the construction of a fractional mask.

Definition . (Gamma function) The gamma function, notably represented by �, is de-
fined as the integral:

�(z) =
∫ +∞


tz–e–t dt; z ∈N and t ∈ ], +∞[. ()

From equation (), the following properties are deduced.

⎧⎪⎨
⎪⎩

�() = ,
�(z) = �(z+)

z ,
�(z) = (z – )!.

()

However, for any k ∈ Z– we have equation ():

lim
z→k

�(z) = ∞. ()

Definition . (Beta function) The beta integral is defined as in equation (), given that
Re(u) >  and Re(v) >  where (u, v) ∈N,

B(u, v) =
∫ 


tu–( – t)v– dt. ()

Equation () gives the relationship between the gamma and the beta integral,

B(u, v) =
�(u)�(v)
�(u + v)

, Re(u) > , Re(v) > . ()

From Definition . and Definition ., we define the fractional derivative and integral
operator as follows in Definition . and Definition ., respectively.

Definition . The fractional derivative of order α is defined, for a function f (z), by

Dα
z f (z) =


�( – α)

d
dz

∫ z



f (ξ )
(z – ξ )α

dξ ;  ≤ α < , ()

where the function f (z) is analytic in a simply connected region of the complex z-plane C

containing the origin and the multiplicity of (z – ξ )–α is removed by requiring log(z – ξ ) to
be real when (z – ξ ) > .
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Definition . The fractional integral of order α is defined, for a function f (z), by

Iα
z f (z) =


�(α)

∫ z


f (ξ )(z – ξ )α– dξ ; α > , ()

where the function f (z) is analytic in a simply connected region of the complex z-plane C

containing the origin and the multiplicity of (z – ξ )α– is removed by requiring log(z – ξ )
to be real when (z – ξ ) > .

In [], the formulation for the generalized fractional integral was derived by considering
the natural n ∈N = , , . . . and the real μ in the n-fold integral of the form

Iα,μ
z f (z) =

∫ z


ξ

μ
 dξ

∫ ξ


ξ

μ
 dξ · · ·

∫ ξn–


ξμ

n f (ξn) dξn. ()

Employing the Cauchy formula for the iterated integral yields equation (),

∫ z


ξ

μ
 dξ

∫ ξ


ξμf (ξ ) dξ =

∫ z


ξμf (ξ ) dξ

∫ z

ξ

ξ
μ
 dξ

=


(μ + )

∫ z



(
zμ+ – ξμ+)ξμf (ξ ) dξ . ()

Repeating the equation () for n –  times, equation () is begotten,

∫ z


ξ

μ
 dξ

∫ ξ


ξ

μ
 dξ · · ·

∫ ξn–


ξμ

n f (ξn) dξn

=
(μ + )–α

(n – )!

∫ z



(
zμ+ – ξμ+)n–

ξμf (ξ ) dξ , ()

which gives rise to the fractional integral operator expressed by equation ():

Iα,μ
z f (z) =

(μ + )–α

�(α)

∫ z



(
zμ+ – ξμ+)α–

ξμf (ξ ) dξ , ()

where α and μ �= – are real numbers and the function f (z) is analytic in a simply con-
nected region of the complex z-plane C containing the origin and the multiplicity of
(zμ+ – ξμ+)–α is removed by requiring log(zμ+ – ξμ+) to be real when (zμ+ – ξμ+) > .
When μ = , we arrive at the standard Riemann-Liouville fractional integral, which is used
to define the Riemann-Liouville fractional derivatives.

Corresponding to the generalized fractional integral in equation (), we define the gen-
eralized differential operator of order α by

Dα,μ
z f (z) =

(μ + )α

�( – α)
d
dz

∫ z



ξμf (ξ )
(zμ+ – ξμ+)α

dξ ,  ≤ α < , ()

where the function f (z) is analytic in a simply connected region of the complex z-plane
C containing the origin and the multiplicity of (zμ+ – ξμ+)–α is removed by requiring
log(zμ+ – ξμ+) to be real when (zμ+ – ξμ+) > .
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Theorem . For any f ∈ C([a, b]), the fractional integral operator satisfies equation ()
known as the semi-group property,

Iα
a Iβ

a f (x) = Iα+β
a f (x) ()

for α > , β > 

Proof By definition we have equation ():

Iα
a Iβ

a f (x) =


�(α)�(β)

∫ x

a

dt
(x – t)–α

∫ t

a

f (u)
(t – u)–β

du, ()

and since f (x) ∈C([a, b]) we can by Fubini’s theorem interchange the order of integration
and by setting t = u + s(x – u) we obtain equation (),

Iα
a Iβ

a f (x) =
B(α,β)

�(α)�(β)

∫ x

a

f (u)
(x – u)–α–β

du = Iα+β
a f (x). ()

�

3.1 Previous methods for constructing fractional mask
In , Zhang et al. [] proposed the construction of fractional differential masks based
on the Riemann-Liouville definition using the following Grunwald-Letnikov definition:

f (α)(t) =
m∑

k=

f (k)(a)(t – a)k–α

�(k – α + )

+


�(m – α + )

∫ t

a
(t – τ )m–αf (m+)(τ ) dτ . ()

Without loss of generality, the lower limit of the integral a was set to  with the dura-
tion of s(x) divided into N equal shares on the interval [, x]. The integral part was then
rewritten to its approximate summation form and by using the difference equation, the
final expression was simplified to obtain the mask.

In  Yang et al. [] also proposed the construction of fractional differential gradient
operator. In their work, a fractional differential finite impulse filter transfer function of the
form as in equation () was used,

Dv(z) =
(

 – z–

T

)v

. ()

By rewriting this equation as Dv(z) = 
Tv ( – z–)v, the binomial series expansion was ap-

plied to obtain

Dv(z) =


Tv

(
 – vz– +

∞∑
i=

v(v – ) · · · (v – i + )
i!

(
–z–)–i

)
. ()

Now, expanding the summation term to the number of terms equivalent to the mask size,
the fractional gradient was obtained.
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Chen and Fei [] in  used the generalized Grunwald-Letnikov definition written
in the form as in equation (),

f (α)(t) =
dαf
dtα

= lim
h→


hα

[ t–a
h ]∑

r=

(–)r
(

α

r

)
f (t – rh). ()

In their approach, the summation term was expanded in a number of terms equivalent to
the size of the mask required. Finally, a single lumped mask was created and implemented
using the Roberts edge detection algorithm.

In , Jalab and Ibrahim [] wrote a paper titled ‘Texture enhancement for medical im-
ages based on fractional differential masks’. In the work, the Riemann-Liouville definition
was rewritten in the form of Srivastava-Owa’s definition as:

Dα,μ
z f (z) =

(μ + )α

�( – α + m)

(
d
dz

)m+

×
∫ z


ξμf (ξ )

(
zμ+ – ξμ+)m–α dξ . ()

From this definition, the integral component was written in terms of a summation as

Dα,μ
z f (z) =

(μ + )α

�( – α + m)

n∑
j=

(
d
dz

)m+

× jμf (j)
(
zμ+ – jμ+)m–α . ()

Out of this expression, the function f (z) was created and differentiated m +  times with
respect to z. The result was then expanded by setting n to be the size of the required mask.
This same approach by these authors in  was used in an article, ‘Fractional masks
based on generalized fractional differential operator for image denoising’. However, from
that work, the function f (z) was assumed to be a polynomial zv, which resulted in

Dα,μ
z zv =

(μ + )α–�( v
μ+ + )

�( v
μ+ +  – α)

z(–α)(μ+)+v–. ()

In this second approach, the degree of the polynomial defined the size of the mask.
In , Gao et al. wrote a paper on ‘Edge detection based on the Newton interpolation’s

fractional differentiation’ and made use of a generalized Grunwald-Letnikov definition as
in equation (). In their approach, the summation term was expanded to a number of
terms equivalent to the size of the mask required. Here, it was believed that these discrete
points were not precise enough and needed to be improved using the Newton interpola-
tion method.

We note that although the Riemann-Liouville definition theoretically provides an ex-
act value for the purpose of calculus it is practically difficult when used to evaluate an
integral or a derivative. Theoretically, the Riemann-Liouville definition is equivalent to
the Grunwald-Letnikov definition but one question always arises as to what number of
terms should be computed and summed for the Grunwald-Letnikov definition of frac-
tional derivative to be as accurate as that of the Riemann-Liouville definition. In an at-
tempt to answer this question Loverro et al. [] used up to  terms to obtain an error
of e-%. This in a way implies that a mask size of × is required for that accuracy to
be achieved. Unfortunately, the bigger the mask size, the more computationally expensive
it becomes and hence this theoretical equivalence is mostly not achievable in practice.
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Interestingly, the masks are extracted without evaluating the entire derivative and there-
fore, when carefully constructed, it can produce more desired masks results.

4 Construction of the proposed mask
Taking the Riemann-Liouville fractional integral in equation () at μ =  and considering
an order of  – α on it, we have equation ():

I–α
z f (z) =


�( – α)

∫ z


f (ξ )(z – ξ )–α dξ ; α > . ()

Putting equation () at μ =  in the form as in equation (), one observes that it contains
a portion of equation () making it possible to write equation () as equation (),

Dα
z f (z) =

d
dz


�( – α)

∫ z



f (ξ )
(z – ξ )α

dξ ;  ≤ α <  ()

=
d
dz

I–α
z f (z). ()

Definition . Let f (t) and g(t) be two functions. The convolution of f and g , denoted by
f ∗ g , is the function on t ≥  given by

f ∗ g(t) =
∫ t

x=
f (x)g(t – x) dx. ()

Theorem . Let α be a constant, and let f and g be two functions, then

∫ t

x=

[
αf (x)

]
g(t – x) dx =

∫ t

x=
f (x)

[
αg(t – x)

]
dx = α

∫ t

x=
f (x)g(t – x) dx, ()

which can be written as

[αf ] ∗ g = f ∗ [αg] = α[f ∗ g]. ()

If D is a differential operator and the functions f and g are analytic, then by the derivative
property of a convolution we have equation (),

D
(
α[f ∗ g]

)
(t) = αDf (t) ∗ g(t). ()

By invoking Definition ., equation () can be written as equation (),

I–α
z f (z) =

∫ z


f (ξ )

(z – ξ )–α

�( – α)
dξ ; α > ,

= f (z) ∗ g(z)

= g(z) ∗ f (z) =
z–α

�( – α)
∗ f (z). ()

Substituting the last expression of equation () into equation () and applying Theo-
rem ., we arrive at

Dα
z f (z) =

d
dz

(
z–α

�( – α)
∗ f (z)

)
=

d
dz

(
z–α

�( – α)

)
∗ f (z). ()
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Definition . For any doublet (n, p) ∈ N × Q – (–, –) and for z ∈ R
+, a derivative of

order n of the function f such that:

f (z) = az–p =

⎧⎪⎨
⎪⎩

a if z =  and p = ,
 if z =  and p �= ,
ae–p ln(z) if z >  and p �= ,

()

is defined by

dn(ax–p)
dzn = a

dnz–p

dzn

= (–)n a�(p + n)
�(p)

z–(p+n) for p ≥ . ()

In order to make the generation of the mask clearer, we let g(z) = d
dz ( z–α

�(–α) ) from equa-
tion () and write it in the form shown in equation (),

g(z) =


�( – α)
d
dz

z–α ,  ≤ α < . ()

By direct comparison of equation () with the expression in Definition ., we have a =


�(–α) , n = , and p = α, hence, by evaluation we have

g(z) = –
�(α + )

�(α)�( – α)
z–(α+),  ≤ α < . ()

Now, by literally applying these approaches to the generalized differential operator in
equation (), we obtain the following:

Dα,μ
z f (z) �

(μ + )α

�( – α)
d
dz

(
z–α(μ+) ∗ p(z)

)

�
(μ + )α

�( – α)
d
dz

z–α(μ+) ∗ p(z), ()

where p(z) = zμf (z).
At this point it will be necessary to strip off the term zμ in p(z) to get equation (),

Dα,μ
z f (z) �

(μ + )α

�( – α)
d
dz

(
z–α(μ+) × zμ

) ∗ f (z)

�
(μ + )α

�( – α)
d
dz

z–α(μ+)+μ ∗ f (z). ()

Since α and μ are both constant parameters, it suffices that equation () is still applicable
to equation (), which results in equation ():

gμ(z) �
(μ + )α

�( – α)

[
–

�(α(μ + ) – μ + )
�(α(μ + ) – μ)

]
z–(α(μ+)–μ+). ()
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Definition . Given that f (z) is analytic with z ∈ R and α ∈ Q, then the higher-ordered
generalized fractional derivative operator is defined as

Dα,μ
z f (z) =

(μ + )α

�( – α + m)

(
d
dz

)m+ ∫ z



ξμf (ξ )
ξm(zμ+ – ξμ+)α–m dξ , m = �α�. ()

To develop the generalized gradient edge detection mask out of equation () by follow-
ing the previous steps, we let

pα,μ
m =

(μ + )α

�( – α + m)
.

By concentrating on the integral part of equation () and expressing it in terms of the rest
we arrive at equation () and equation (),

∫ z



ξμf (ξ )
ξm(zμ+ – ξμ+)α–m dξ =

∫ z


ξμ–mf (ξ )

[(
zμ+ – ξμ+)–(α–m)]dξ

= zμ–m(
zμ+)–(α–m) ∗ f (z), ()

Dα,μ
z f (z) = pα,μ

m ·
(

d
dz

)m+[
zμ–m(

zμ+)–(α–m) ∗ f (z)
]

= pα,μ
m ·

(
d
dz

)m+

z–[(μ+)(α–m)+m–μ] ∗ f (z)

= pα,μ
m ·

(
d
dz

)m+

z–[α(μ+)–μ(m+)] ∗ f (z). ()

Picking out the mask component in equation () and substituting it into Definition .
we finally arrive at equation (),

gm
μ (z) = pα,μ

m ·
(

d
dz

)m+

z–[α(μ+)–μ(m+)]

= pα,μ
m ·

(
(–)m+ �[α(μ + ) + (m + )( – μ)]

�[α(μ + ) – μ(m + )]
z–(α(μ+)+(m+)(–μ))

)

=
(μ + )α

�( – α + m)

(
(–)m+ �[α(μ + ) + (m + )( – μ)]

�[α(μ + ) – μ(m + )]
z–(α(μ+)+(m+)(–μ))

)
. ()

4.1 Edge mask representation
Since the Riemann-Liouville fractional derivative mask is the desired operator of interest
for our image edge analysis, equation () is considered. However, this equation cannot
be directly applied to an image in its one-dimensional form and needs to be transformed
into two dimensions. This is achieved by letting

z → √
x + y. ()

Substituting this expression into equation (), we obtain equation () and equation
(), which are the gradient operators in the direction of x and y, respectively, in two-
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Table 1 Proposed x-directional fractional mask
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Table 2 Proposed y-directional fractional mask
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dimensional (D) form,

	x(x, y) =


�( – α)
d

dx
(
x + y)–α/,  ≤ α < 

= –
α · x

�( – α)
(
x + y)–α/–, ()

	y(x, y) =


�( – α)
d
dy

(
x + y)–α/,  ≤ α < 

= –
α · y

�( – α)
(
x + y)–α/–. ()

Since equation () and equation () will be applied to a digital image which is in the
discrete form, we have to rewrite them in a more presentable way as in equation () and
equation () in order to construct the mask in Tables  and ,

	x(xi, yi) = –
α · xi

�( – α)
(
x

i + y
i
)–α/–, ()

	y(xi, yi) = –
α · yi

�( – α)
(
x

i + y
i
)–α/–, ()

where –m ≤ i ≤ m and –n ≤ j ≤ n with (m + )× (n + ) being the mask (grid) size for all
m, n ≥  and α a constant parameter. To avoid making the filter error too large and also to
make a fair comparison with other masks, we construct a  ×  fractional gradient mask.

4.2 Performance metric of proposed mask
In order to justify the performance of the proposed mask, we use the following standard
measures as detailed in the subsections below.

.. Mean squared error
To measure the associated error based on quality, the mean squared error (MSE) between
two M × N images, IA and IB, is given by

MSE =


MN

M∑
i=

N∑
j=

(
IA(i, j) – IB(i, j)

). ()
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.. Peak signal-to-noise ratio
The peak signal-to-noise ratio (PSNR) is basically the proportion of the power of the maxi-
mum possible intensity value in an image based on sample per bits to its mean square error
expressed in logarithmic decibel scale. The greater the PSNR value, the better the image
quality and noise suppression. The PSNR is calculated as follows:

PSNR =  × log

(‖I‖∞

MSE

)
. ()

.. Structural similarity index
The structural similarity index measure (SSIM) is a method for measuring the similarity
between two images []. The SSIM index is a full reference metric for measuring image
quality using an initial noise-free-image as reference. The following formulation of SSIM
index was used in this study:

SSIM(A, B) =
(μAμB + C)(σAB + C)

(μ
A + μ

B + C)(σ 
A + σ 

B + C)
, ()

where μA and μB are the estimated mean intensity along the A, B directions and σA and
σB are the standard deviations, respectively. σAB was estimated as

σAB =

(


N – 

N∑
i=

(Ai – μA)(Bi – μB)

)
, ()

where C = (KL) and C = (KL) are constants with K, K �  being relatively small and
constant and L being the dynamic range of the pixel values (normally ). The resultant
SSIM index is a decimal value between – and  and has a value of  in the case of two
identical sets of images.

5 Result and analysis of proposed mask
5.1 Data source
The dataset used for this study was acquired from the Live for Image & Video Engineering
(LIVE) database [] and OsiriX imaging software, which is an advanced open-source
PACS workstation DICOM viewer. The test sample as shown in Figure  was selected to
check the scalability of the algorithm to standard imaging issues with the methods existing
in the literature.

During image acquisition, the resulting image is affected with various artifact regarded
as noise. However, these noises are not expected to be visible to all algorithms during edge
detection since it influences the final output of the edge map. Figure  gives a sample of
some images distorted with Gaussian white noise of standard deviation .

5.2 Numerical experiments
This section consists of three sets of experimental results. In Section .., we compared
the proposed fractional edge detector with some selected edge detectors: Canny [], and
Tiansi [], using the mean square error and the peak signal-to-noise ratio. In Section ..,
we also tested the performance of the proposed method in detecting edges of an images
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Figure 1 Original sample images for testing comparison.

Figure 2 Sample noisy image at standard deviation = 15.

under various noise conditions using the structure similarity index measure, and in Sec-
tion .. we focused on object segmentation of some selected Medical image. The choice
of these methods is based on earlier studies like [, , , ].

.. Experimental result : performance test
In this section, we demonstrate the general performance of our proposed mask using dif-
ferent fractional orders of the differential operator. Here, the peak signal-to-noise ratio
(PSNR) and the mean square error (MSE) of the edge information are extracted during
the implementation of the fractional mask and Canny. These algorithms are applied to
the images  tagged as Linear, Non-linear, and Medical image-. It is interesting to note
that these algorithms behave differently with varying mask size. In this work, a mask of
size  × ,  × ,  × , and  ×  is tested on each image for a fair comparison. It is ex-
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Table 3 Proposed method with Canny using a 3 × 3 mask size

Method Linear image Non-linear image Medical image

MSE PSNR MSE PSNR MSE PSNR

CANNY 0.2571 5.8995 0.3012 5.2111 0.3178 4.9782
PRO α = 0.1 0.2476 6.0633 0.2945 5.3086 0.2888 5.3935
PRO α = 0.2 0.2479 6.0564 0.2943 5.3118 0.2892 5.3877
PRO α = 0.3 0.2471 6.0718 0.2945 5.3087 0.2907 5.3650
PRO α = 0.4 0.2476 6.0632 0.2947 5.3059 0.2911 5.3597
PRO α = 0.5 0.2465 6.0817 0.2953 5.2973 0.2916 5.3516
PRO α = 0.6 0.2476 6.0623 0.2957 5.2915 0.2922 5.3432
PRO α = 0.7 0.2480 6.0558 0.2960 5.2864 0.2940 5.3165
PRO α = 0.8 0.2475 6.0637 0.2960 5.2874 0.2942 5.3132
PRO α = 0.9 0.2478 6.0588 0.2962 5.2845 0.2957 5.2919

Table 4 Proposed method with Canny using a 7 × 7 mask size

Method Linear image Non-linear image Medical image

MSE PSNR MSE PSNR MSE PSNR

CANNY 0.1296 8.8727 0.1025 9.8911 0.1462 8.3508
PRO α = 0.1 0.0308 15.1136 0.0509 12.9351 0.0761 11.1853
PRO α = 0.2 0.0324 14.8995 0.0512 12.9059 0.0826 10.8284
PRO α = 0.3 0.0349 14.5731 0.0525 12.8024 0.0857 10.6699
PRO α = 0.4 0.0386 14.1369 0.0540 12.6788 0.0878 10.5664
PRO α = 0.5 0.0412 13.8542 0.0559 12.5255 0.0906 10.4278
PRO α = 0.6 0.0441 13.5601 0.0581 12.3555 0.0929 10.3218
PRO α = 0.7 0.0459 13.3825 0.0604 12.1876 0.0966 10.1494
PRO α = 0.8 0.0529 12.7643 0.0635 11.9705 0.0999 10.0030
PRO α = 0.9 0.0571 12.4334 0.0647 11.8881 0.1039 9.8346

pected that the higher the value of the PSNR, the better the edge information extracted.
In contrast, the lower the MSE value, the closer the edge information extracted is, to the
true and actual edge map.

Observation on a  ×  mask
From Table , we observed that our mask on a whole, performed better as compared to
the Canny algorithm at all image types. In particular, at fractional order of α = . for the
proposed mask gave the best measure of quality on the Linear image, α = . on the Non-
linear image and α = . on the Medical image. Although the other α values were not
considered due to comparatively lower performances, we note that they were all above
the Canny performance values, which confirms the significant strength a fractional mask
possesses over classical methods.

Observation on a  ×  mask
With the  ×  mask, the proposed method again at all orders of α performed better than
the Canny approach. However, α = . stood out as the most efficient at various image
levels. The results in Table  indicates that the fractional mask has a linear relationship
with the α values, and the higher the fractional order, the higher the MSE value and the
lower the PSNR value at all instances of the images used. Although generally the choice
of an appropriate order or α value for the mask may be difficult to decide on, this rela-
tion allows us to choose α = . over the rest and in fact this choice appears to be quite
consistent for the subsequent masks.
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Table 5 Proposed method and Tiansi with Canny using a 5 × 5 mask size

Method Linear image Non-linear image Medical image

MSE PSNR MSE PSNR MSE PSNR

CANNY 0.2266 6.4483 0.2670 5.7342 0.2393 6.2102
PRO α = 0.1 0.1580 8.0138 0.1607 7.9402 0.1538 8.1298
PRO α = 0.2 0.1594 7.9754 0.1659 7.8009 0.1594 7.9746
PRO α = 0.3 0.1651 7.8232 0.1730 7.6206 0.1669 7.7753
PRO α = 0.4 0.1718 7.6488 0.1784 7.4856 0.1732 7.6155
PRO α = 0.5 0.1759 7.5465 0.1858 7.3088 0.1786 7.4805
PRO α = 0.6 0.1806 7.4329 0.1945 7.1100 0.1419 8.4810
PRO α = 0.7 0.1849 7.3301 0.2003 6.9842 0.1462 8.3519
PRO α = 0.8 0.1889 7.2382 0.1591 7.9826 0.1502 8.2345
PRO α = 0.9 0.1930 7.1440 0.1655 7.8130 0.1573 8.0340
TIA α = 0.1 0.1702 7.6899 0.1765 7.5337 0.1686 7.7307
TIA α = 0.2 0.1764 7.5344 0.1825 7.3883 0.1762 7.5388
TIA α = 0.3 0.1835 7.3626 0.1901 7.2093 0.1842 7.3468
TIA α = 0.4 0.1896 7.2214 0.1981 7.0312 0.1484 8.2843
TIA α = 0.5 0.1957 7.0833 0.2081 6.8166 0.1542 8.1201
TIA α = 0.6 0.2035 6.9149 0.2171 6.6326 0.1640 7.8520
TIA α = 0.7 0.2140 6.6951 0.1865 7.2938 0.1785 7.4829
TIA α = 0.8 0.1681 7.7450 0.2008 6.9718 0.1922 7.1620
TIA α = 0.9 0.1830 7.3749 0.2159 6.6569 0.2077 6.8246

Table 6 Proposed method with Canny using a 9 × 9 mask size

Method Linear image Non-linear image Medical image

MSE PSNR MSE PSNR MSE PSNR

CANNY 0.0810 10.9149 0.0762 11.1777 0.1148 9.4000
PRO α = 0.1 0.0142 18.4743 0.0347 14.5988 0.0532 12.7443
PRO α = 0.2 0.0140 18.5449 0.0360 14.4375 0.0543 12.6515
PRO α = 0.3 0.0143 18.4441 0.0368 14.3451 0.0558 12.5306
PRO α = 0.4 0.0146 18.3638 0.0381 14.1945 0.0568 12.4597
PRO α = 0.5 0.0146 18.3684 0.0400 13.9797 0.0588 12.3071
PRO α = 0.6 0.0149 18.2827 0.0417 13.7940 0.0605 12.1796
PRO α = 0.7 0.0193 17.1344 0.0436 13.6057 0.0702 11.5370
PRO α = 0.8 0.0210 16.7856 0.0448 13.4854 0.0724 11.4034
PRO α = 0.9 0.0227 16.4349 0.0462 13.3500 0.0754 11.2258

Observation on a  ×  mask
At this section, three algorithms were considered; Canny, Tiansi, and our proposed
method. The Tiansi and the proposed method are fractional-based, while Canny is or-
dinary or classically based. The Tiansi [] algorithm in this work was used to validate
whether the proposed method is indeed efficient or not and also to confirm that the use of
fractional calculus in modern signal and image processing is in general efficient. A mask
size of  was used for this analysis, since Tiansi’s experiments were done using only mask
size of . From Table , we have three different α values depending on the image choice. It
is clear that α = . is a good choice for the Linear image, α = . for a Non-linear image,
and α = . for a Medical image using the proposed method. Although the Tiansi mask did
not do as well as the proposed method, we confirm that it performed better than Canny
at α = . for both Linear and Non-linear images and α = . for the Medical image.

Observation on a  ×  mask
One will expect that a mask size of  ×  will perform better or at least behave the same
as that of the  ×  mask. Unfortunately, this is not so as observed from Table  and
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many other experiments we conducted. It appears that the mask size varies with dif-
ferent fractional-order values in order to obtain the desired quality and efficient edge
maps. The Linear image had an appropriate edge estimation at α = ., while the Non-
linear and the Medical images were at α = . and they again were performing better than
Canny.

General remarks
From all the observations made on  × ,  × ,  × , and  ×  it was clear that in-
creasing the mask size irrespective of the image type or the derivative operator increases
the performance metric value. This is due to the choice of the standard deviation, σ in
the Gaussian filter which has a direct influence on the size of the mask. Using the same
σ value in the Gaussian filter on all three methods also meant that smoothing techniques
were the same and therefore should not affect the results. The only part which was varied
was the choice of the mask.

.. Experimental result : noise immunity
In practice, during image acquisition, one will often expect that the resulting image will
be contaminated with some uncontrolled features. These features, depending on what
you want, may be neglected and no further processing will be required. But obviously an
algorithm’s ability to handle these features will make it invariant and robust making its
implementation useful. Among some of these features are:

() Gauss: Gaussian white noise with constant mean and variance.
() S & P: salt & pepper noise.
() localvar: zero mean Gaussian white noise with an intensity dependent variance
() speckle: speckle or Multiplicative noise.
() Poisson: shot noise.
() motion: Motion Blur (blurry pixels).
() erosion: morphological erosion.
() dilation: morphological dilation.
() jpg compression blocking effect: compression artifact.

However, in this paper, only four (), (), (), () out of the above mentioned were consid-
ered, since they are the most often occurring contamination; they are likely to affect our
case. In the next subsections, we will discuss in detail the behaviors of the Canny and our
proposed methods with various mask sizes at varying noise types. Here, the performance
metric used is the structural similarity index [], which generally has the capability to
measure how much an image is distorted after being made to go through various noise
types. The higher the value of the similarity index, the higher the similarity of the recov-
ered image to the expected image.

Noise immunity with  ×  mask
From Tables  and , it is clear that each image with a particular noise type having an
increase in the noise level leads to a decay in the performance value. In applying a  × 
mask to the Linear image, the proposed method experienced a sharp decay from noise
level  to . Nonetheless, the proposed method performed relatively better for the Non-
linear and Medical images under Motion Blur and Gaussian white noise. Generally for a
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Table 7 Noise immunity with 3 × 3 Canny mask at varying standard deviations (Noise SD)

Noise type Noise SD 20 25 30 35 40 45

Motion Linear image 0.7536 0.7094 0.6124 0.6013 0.5848 0.5910
Non-linear image 0.5785 0.4246 0.3709 0.3618 0.3529 0.3386
Medical image 0.6707 0.4566 0.3815 0.3785 0.3774 0.3681

Gauss Linear image 0.1081 0.0892 0.0777 0.0655 0.0563 0.0555
Non-linear image 0.0861 0.0650 0.0535 0.0431 0.0375 0.0331
Medical image 0.0426 0.0361 0.0235 0.0208 0.0155 0.0129

S & P Linear image 0.7103 0.5708 0.4780 0.4003 0.3392 0.2523
Non-linear image 0.6731 0.5846 0.4842 0.4230 0.3655 0.2897
Medical image 0.7241 0.6630 0.5875 0.4919 0.3687 0.3162

Speckle Linear image 0.2618 0.2416 0.2266 0.2132 0.2021 0.1947
Non-linear image 0.2303 0.1966 0.1641 0.1513 0.1338 0.1147
Medical image 0.5528 0.5280 0.4972 0.4614 0.4571 0.4373

Table 8 Noise immunity with a 3 × 3 proposed mask at α = 0.5 and varying standard
deviations (Noise SD)

Noise type Noise SD 20 25 30 35 40 45

Motion Linear image 0.7788 0.7137 0.6056 0.5839 0.5704 0.5569
Non-linear image 0.6364 0.4761 0.4056 0.3939 0.3847 0.3647
Medical image 0.7040 0.5028 0.4251 0.4174 0.4127 0.4025

Gauss Linear image 0.1249 0.1007 0.0893 0.0785 0.0686 0.0604
Non-linear image 0.1033 0.0793 0.0665 0.0559 0.0480 0.0430
Medical 0.0593 0.0451 0.0336 0.0274 0.0199 0.0178

S & P Linear image 0.6006 0.5064 0.4258 0.3549 0.3100 0.2409
Non-linear image 0.6909 0.5616 0.4560 0.3974 0.3267 0.2580
Medical image 0.7545 0.6764 0.5963 0.4477 0.3870 0.2940

Speckle Linear image 0.2526 0.2276 0.2298 0.2117 0.2060 0.1967
Non-linear image 0.2887 0.2305 0.2005 0.1915 0.1629 0.1436
Medical image 0.6337 0.5858 0.5691 0.5267 0.5125 0.4960

mask size of , the Canny method exhibited an alternating performance with the proposed
method.

Noise immunity with  ×  mask
Observation of the noise immunity in Tables  and  reveals that the proposed method at
all times performed better than the Canny technique, except for the Medical image when
salt & pepper noise was applied to the image.

Noise immunity with  ×  mask
The structural similarity index as shown in Tables  and  using a mask size of  × 
indicates that our proposed method once again performs better for all images at all noise
types with varying noise level except for salt & pepper noise, which lagged behind that of
Canny. Instead an alternating performance was noticed. Due to this alternating character-
istic of Canny and our proposed method on Medical images under such noise, one cannot
conclude that the proposed method is efficient compared to Canny and vise versa. Never-
theless, by swapping to the  ×  mask during, we can satisfactorily say that the proposed
method in general performs better than the Canny method. In situations where a  × 
mask is exclusively required, then % of both methods works better depending on the
noise type and the image category. Finally, we compared all the three methods in the next
section using a  ×  mask size for a more conclusive remark.
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Table 9 Noise immunity with a 7 × 7 Canny mask at varying standard deviations (Noise SD)

Noise type Noise SD 20 25 30 35 40 45

Motion Linear image 0.9770 0.9352 0.9112 0.8528 0.7886 0.7685
Non-linear image 0.8399 0.7029 0.5816 0.5188 0.4836 0.4618
Medical image 0.8096 0.6450 0.5414 0.5034 0.4873 0.4756

Gauss Linear image 0.3329 0.2984 0.1984 0.2002 0.1816 0.1355
Non-linear image 0.2168 0.1610 0.1409 0.1130 0.0946 0.0866
Medical image 0.3416 0.2301 0.1167 0.1014 0.0668 0.0595

S & P Linear image 0.7577 0.6590 0.5930 0.5193 0.4242 0.3738
Non-linear image 0.7300 0.6223 0.5186 0.4388 0.3857 0.3127
Medical image 0.6902 0.5847 0.5017 0.3985 0.3274 0.2593

Speckle Linear image 0.5638 0.4109 0.4196 0.3537 0.3592 0.3213
Non-linear image 0.6205 0.4995 0.4910 0.4148 0.3456 0.3378
Medical image 0.7696 0.7213 0.7005 0.6748 0.6673 0.6574

Table 10 Noise immunity with a 7 × 7 proposed mask at α = 0.5 at varying standard
deviations (Noise SD)

Noise type Noise SD 20 25 30 35 40 45

Motion Linear image 0.9820 0.9540 0.9259 0.8792 0.8204 0.7992
Non-linear image 0.8665 0.7562 0.6426 0.5662 0.5219 0.4961
Medical image 0.8466 0.7085 0.5900 0.5357 0.5082 0.4939

Gauss Linear image 0.6136 0.3837 0.3749 0.2832 0.2750 0.2799
Non-linear image 0.5000 0.3616 0.2218 0.1723 0.1367 0.1275
Medical image 0.5370 0.3380 0.3544 0.1866 0.1445 0.1009

S & P Linear image 0.8089 0.7549 0.6689 0.6732 0.5958 0.4860
Non-linear image 0.8150 0.7181 0.6169 0.5534 0.4522 0.4559
Medical image 0.6529 0.5854 0.4799 0.3947 0.3259 0.2649

Speckle Linear image 0.7800 0.6257 0.6336 0.4921 0.4228 0.4460
Non-linear image 0.7456 0.7243 0.6520 0.5742 0.5087 0.4310
Medical image 0.7720 0.7466 0.7289 0.7109 0.6961 0.6829

Table 11 Noise immunity with a 9 × 9 Canny mask at varying standard deviations (Noise SD)

Noise type Noise SD 20 25 30 35 40 45

Motion Linear image 0.9714 0.9355 0.9083 0.8639 0.7971 0.7770
Non-linear image 0.8716 0.7344 0.6140 0.5439 0.5036 0.4792
Medical image 0.8199 0.6667 0.5618 0.5152 0.4919 0.4815

Gauss Linear image 0.4364 0.2718 0.2716 0.2771 0.2089 0.1944
Non-linear image 0.3338 0.2347 0.1542 0.1469 0.1256 0.1021
Medical image 0.4525 0.2374 0.1634 0.1323 0.1140 0.0881

S & P Linear image 0.7592 0.6748 0.6125 0.5529 0.4473 0.4384
Non-linear image 0.7285 0.6679 0.5631 0.4614 0.4139 0.3344
Medical image 0.6997 0.5756 0.4879 0.4012 0.3158 0.2577

Speckle Linear image 0.6689 0.4865 0.5035 0.4113 0.4316 0.3536
Non-linear image 0.6958 0.5763 0.5672 0.4927 0.3948 0.3511
Medical image 0.7557 0.7328 0.7107 0.6896 0.6820 0.6588

Noise immunity with  ×  mask
In this section, all the three methods were compared in graphical form for clearer and
distinctive observation. These methods were made to undergo all the four selected noise
type at six different noise level for each test image. Each graph contains three subplots for
the Linear, Non-linear, and the Medical image. Each subplot also has three plots with the
continuous blue line for Canny, red short dashed discontinuous line for the Proposed and
the black continuous line with black asterisk markers for Tiansi. Figure  is a plot of SSIM
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Table 12 Noise immunity with 9 × 9 proposed mask at α = 0.5 at varying standard deviations
(Noise SD)

Noise type Noise SD 20 25 30 35 40 45

Motion Linear image 0.9818 0.9493 0.9270 0.8973 0.8447 0.8151
Non-linear image 0.9098 0.8058 0.7038 0.6222 0.5671 0.5380
Medical 0.8805 0.7732 0.6670 0.6031 0.5667 0.5427

Gauss Linear image 0.8422 0.6467 0.6009 0.4269 0.4777 0.3587
Non-linear image 0.6410 0.5999 0.4123 0.3266 0.2665 0.1951
Medical image 0.6285 0.5280 0.4705 0.3381 0.2510 0.2579

S & P Linear image 0.9254 0.8855 0.8496 0.7843 0.7707 0.7043
Non-linear image 0.8621 0.8072 0.7358 0.6759 0.5891 0.6016
Medical 0.6925 0.5735 0.4810 0.3943 0.4067 0.3767

Speckle Linear image 0.9186 0.8753 0.8085 0.6825 0.5964 0.6200
Non-linear image 0.8521 0.8050 0.7481 0.6977 0.6382 0.5735
Medical image 0.8218 0.7981 0.7731 0.7530 0.7426 0.7194

Figure 3 Effect of operators on Motion Blur noise.

Figure 4 Effect of operators on Gaussian noise.

with Motion Blur noise, Figure  is a plot of SSIM with Gaussian white noise, Figure  is a
plot of SSIM with salt & pepper noise, while the final block, Figure , is a plot of SSIM with
speckle noise. We note that Canny’s method consistently performed relatively better with
salt & pepper noise immunity. However, both the proposed method and the Tiansi method
generally handle the respective errors much better than that of Canny with the proposed
method slightly doing better than that of Tiansi. This was quite clear when performing the
segmentation procedure on the selected Medical images.
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Figure 5 Effect of operators on salt & pepper noise.

Figure 6 Effect of operators on speckle noise.

.. Experimental result : segmentation
One of the most important tasks in Medical image analysis is segmentation, which is the
process of partitioning an image into a set of distinct regions, which are different in some
important qualitative or quantitative way. It therefore becomes a critical intermediate step
in all high-level object recognition tasks, especially in computer assisted imagery. To test
the proposed method in this context, three standard medical test images were selected
and their results compared to that of Canny. The Single Seed Region Growing algorithm
was employed at this stage for the segmentation based on the output of the edge maps
generated by Canny and the proposed method. A mask size of  ×  was used for this
purpose.

Segmentation on Medical image-
From Figure , you will notice two colors, green and red. The green is meant for interior
boundaries, while the red is meant for exterior boundaries. The focus of this image is for
the segmentation to extract only one region of interest and that is the shape to the right.
Hence it is expected that only one boundary could seen on the image. An attempt with the
Canny method failed by extraction of three main boundaries with some isolated objects
as boundaries. The same was the case for our proposed method at α = ., ., and .,
however, from α = . to ., the desired region of interest was achieved.

Segmentation on Medical image-
With regard to the second image (see Figure ), we expected the methods to extract four
regions of interest. However, using Canny’s method, three out of four regions were ex-
tracted. On testing our proposed method on the same image, α = . and . extracted
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Figure 7 Segmentation using Medical image-1.

Figure 8 Segmentation using Medical image-2.

only two regions to the left, α = ., ., and . also extracted just two regions to the
right, α = ., ., and . increased the number of regions extracted to three. Eventually,
the implementation of α = . extracted all the four required regions of interest which
fulfilled the expected task.

Segmentation on Medical image-
In the last Medical image (see Figure ), the intended purpose was to test if the algorithm
can scale efficiently to locate both exterior and interior boundaries. As could be seen in
the output image of canny, it was able to extract all the required exterior but not the in-
terior boundaries. The same was observed with the proposed method using α = .. In
the second attempt with α = ., all the interior as well as the exterior boundaries were
captured. A perfect segmentation was also achieved for α = . to . as did α = ..
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Figure 9 Segmentation using Medical image-3.

6 Conclusion
We have presented another way of constructing a fractional-based convolution mask for
image edge analysis using the Riemann-Liouville fractional derivative formulation. Unlike
other constructions, we extracted the mask, maintaining enough memory without the
need for complicated optimization criteria. We performed both quantitative and quali-
tative comparative analysis with existing edge detectors and have demonstrated the ef-
fectiveness and efficiency of the proposed construction in detecting several edge types
including step, Dirac edges and hidden edges found in the images used to perform the ex-
periments. In addition, we have shown that the resulting mask is robust to noise. We also
performed object identification using the resulting mask and generated mostly significant
improvement over the methods studied.
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