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1 Introduction
In this paper, we investigate the existence of solutions for the following higher-order cou-
pled fractional differential equation with infinite-point boundary value conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
+ u(t) = f (t, v(t), v′(t), . . . , v(n–)(t)),  < t < ,

Dβ

+ v(t) = g(t, u(t), u′(t), . . . , u(n–)(t)),  < t < ,

u′() = · · · = u(n–)() = , u() =
∑∞

i= aiu(ξi),

v′() = · · · = v(n–)() = , v() =
∑∞

i= biv(ηi),

(.)

where n –  < α,β < n, n ≥ ,  < ξ < ξ < · · · < ξi < ξi+ < · · · < ,  < η < η < · · · < ηi <
ηi+ < · · · < ,  < ai, bi < ; Dα

+ and Dβ

+ denote the Caputo fractional derivatives, f , g are
given continuous functions, and

∞∑

i=

ai = ,
∞∑

i=

bi = ,

which implies that BVP (.) is at resonance.
During the past decades, fractional differential equations have attracted considerable in-

terest because of their wide applications in various sciences, such as physics, mechanics,
chemistry, engineering, electromagnetic, control, etc. (see [–]). In recent years, bound-
ary value problems of fractional differential equations or systems of fractional differential
equations at resonance have been discussed in some papers, such as [–]. Most of the
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results on the existence of solutions for fractional boundary value problems at resonance
are concerned with finite points. For example, Wang et al. [] discussed the following cou-
pled system of fractional m-point boundary value problem at resonance:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dα
+ u(t) = f (t, v(t), Dβ–

+ v(t), Dβ–
+ v(t)),  < t < ,

Dβ

+ v(t) = g(t, u(t), Dα–
+ u(t), Dα–

+ u(t)),  < t < ,

I–α
+ u(t)|t= = , Dα–

+ u() =
∑m

i= aiDα–
+ u(ξi),

I–β

+ v(t)|t= = , Dβ–
+ v() =

∑m
i= ciDβ–

+ v(γi),

u() =
∑m

i= biu(ηi), v() =
∑m

i= div(δi),

where  < α,β ≤ ,  < ξ < · · · < ξm < ,  < η < · · · < ηm < ,  < γ < · · · < γm < ,  < δ <
· · · < δm < , ai, bi, ci, di ∈R, f , g : [, ] ×R

 →R, f , g satisfy the Carathéodory conditions,
Dα

+ , Iα
+ are standard Riemann-Liouville fractional operators.

In [], Liu et al. discussed the following boundary value problem for a coupled system
of fractional differential equations at resonance:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
+ u(t) = f (t, v(t), Dp

+ v(t)),  < t < ,

Dβ

+ v(t) = g(t, u(t), Dq
+ u(t)),  < t < ,

u() = , Dp
+ u() =

∑m–
i= aiD

p
+ u(ξi),

v() = , Dq
+ v() =

∑m–
i= biD

q
+ v(ηi),

where  < α,β ≤ ,  < p, q < , α –p–,β –q– ≥ , ai, bi ≥ ,  < ξi,ηi <  (i = , , . . . , m–
),

∑m–
i= aiξ

α–p–
i =

∑m–
i= biη

β–q–
i = ; Dα

+ , Dβ

+ are standard Riemann-Liouville fractional
derivatives.

Very recently, the infinite-point boundary value problems of fractional differential equa-
tions have been discussed by researchers, whose excellent results extend many previous
results; see [–].

In , Zhang [] considered the existence of positive solutions of the following non-
linear fractional differential equation with infinite-point boundary value conditions:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
+ u(t) + q(t)f (t, u(t)) = ,  < t < ,

u() = u′() = · · · = u(n–)() = ,

v(i)() =
∑∞

j= αju(ξj),

where α > , n –  < α ≤ n, aj ≥ ,  < ξ < ξ < · · · < ξj < · · · <  (j = , , . . .), � –
∑∞

j= αjξ
α–
j > , � = (α – )(α – ) · · · (α – i), i ∈ [, n – ] is a fixed integer, Dα

+ is the
standard Riemann-Liouville fractional derivative.

In [], Ge et al. considered the existence of solutions of the following nonlinear frac-
tional differential equation with infinitely many points boundary value problems at reso-
nance:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
+ x(t) = f(t, x(t), Dβ–

+ x(t)),

Dβ

+ x(t) = f(t, x(t), Dα–
+ x(t)),

x() = , limt→∞ Dα–
+ x(t) =

∑+∞
i= γix(ηi),

x() = , limt→∞ Dβ–
+ x(t) =

∑+∞
i= σix(ξi),
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where  < α,β ≤ ,  < η < η < · · · < ηi < · · · ,  < ξ < ξ < · · · < ξi < · · · , limi→∞ ηi = ∞,
limi→∞ ξi = ∞, and

∑∞
i= |γi|ηα

i < ∞,
∑∞

i= |σi|ξβ

i < ∞. Here, f, f : [, +∞) × R × R → R

satisfy the Carathéodory conditions, Dα
+ , Dβ

+ are the standard Riemann-Liouville frac-
tional derivatives.

From the above work, we note that it is meaningful and interesting to study the exis-
tence of solutions for fractional boundary value problems with infinite-point boundary
conditions. Although fractional boundary value problems at resonance have been studied
by some authors, to the best of our knowledge, fractional differential equations subject to
infinite points at resonance have not been studied till now. Motivated by the work above,
we considered the existence of solutions for BVP (.).

The rest of this paper is organized as follows. In Section , we give some necessary nota-
tions, definitions, and lemmas. In Section , we study the existence of solutions of (.) by
the coincidence degree theory due to Mawhin []. Finally, an example is given to illustrate
our results in Section .

2 Preliminaries
We present the necessary definitions and lemmas from fractional calculus theory that will
be used to prove our main theorems.

Definition . ([]) The Riemann-Liouville fractional integral of order α >  of a function
f : (,∞) →R is given by

Iα
+ f (t) =



(α)

∫ t


(t – s)α–f (s) ds,

provided that the right-hand side is pointwise defined on (,∞).

Definition . ([]) The Caputo fractional derivative of order α >  of a continuous func-
tion f : (,∞) →R is given by

Dα
+ f (t) =



(n – α)

∫ t



f (n)(s)
(t – s)α–n+ ds,

where n –  < α ≤ n, provided that the right-hand side is pointwise defined on (,∞).

Lemma . ([]) Let n –  < α ≤ n, u ∈ C(, ) ∩ L(, ), then

Iα
+ Dα

+ u(t) = u(t) + c + ct + · · · + cn–tn–,

where ci ∈R, i = , , . . . , n – .

Lemma . ([]) If β > , α + β > , then the equation

Iα
+ Iβ

+ f (x) = Iα+β

+ f (x),

is satisfied for a continuous function f .
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First of all, we briefly recall some definitions on the coincidence degree theory. For more
details, see [].

Let Y , Z be real Banach spaces, L : dom L ⊂ Y → Z be a Fredholm map of index zero
and P : Y → Y , Q : Z → Z be continuous projectors such that

Ker L = Im P, Im L = Ker Q, Y = Ker L ⊕ Ker P, Z = Im L ⊕ Im Q.

It follows that

L|dom L∩Ker P : dom L ∩ Ker P → Im L

is invertible. We denote the inverse of this map by KP .
If � is an open bounded subset of Y , the map N will be called L-compact on � if QN(�)

is bounded and KP,QN = KP(I – Q)N : � → Y is compact.

Theorem . Let L be a Fredholm operator of index zero and N be L-compact on �. Sup-
pose that the following conditions are satisfied:

() Lx �= λNx for each (x,λ) ∈ [(dom L \ Ker L) ∩ ∂�] × (, );
() Nx /∈ Im L for each x ∈ Ker L ∩ ∂�;
() deg(JQN |Ker L,� ∩ Ker L, ) �= , where Q : Z → Z is a continuous projection as above

with Im L = Ker Q and J : Im Q → Ker L is any isomorphism.
Then the equation Lx = Nx has at least one solution in dom L ∩ �.

3 Main results
In this paper, we will always suppose the following condition holds:

(H)
∑∞

i= aiξ
α
i �= ,

∑∞
i= biη

β

i �= .
Denote by E the Banach space E = C[, ] with the norm ‖u‖∞ = max≤t≤ |u(t)|. We

denote a Banach space X = {u(t)|u(i)(t) ∈ E, i = , , . . . , n – } with the norm ‖u‖X =
max{‖u‖∞,‖u′‖∞, . . . ,‖u(n–)‖∞}. Let Y = X × X be endowed with the norm ‖(u, v)‖Y =
max{‖u‖X ,‖v‖X}, and Z = E × E is a Banach space with the norm defined by ‖(x, y)‖Z =
max{‖x‖∞,‖y‖∞}.

Define the linear operator L : dom L → E by setting

dom L =

{

u ∈ X
∣
∣
∣u′() = · · · = u(n–)() = , u() =

∞∑

i=

aiu(ξi)

}

and

Lu = Dα
+ u, u ∈ dom L.

Define the linear operator L from dom L → E by setting

dom L =

{

v ∈ X
∣
∣
∣v′() = · · · = v(n–)() = , v() =

∞∑

i=

biv(ηi)

}

and

Lv = Dβ

+ v, v ∈ dom L.
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Define the operator L : dom L → Z with

dom L =
{

(u, v) ∈ Y |u ∈ dom L, v ∈ dom L
}

and

L(u, v) = (Lu, Lv).

Let N : Y → Z be the Nemytski operator

N(u, v) = (Nv, Nu),

where N : X → E is defined by

Nv(t) = f
(
t, v(t), v′(t), v′′(t), . . . , v(n–)(t)

)
,

and N : X → E is defined by

Nu(t) = g
(
t, u(t), u′(t), u′′(t), . . . , u(n–)(t)

)
.

Then BVP (.) can be written as L(u, v) = N(u, v).

Lemma . L is defined as above, then

Ker L =
{

(u, v) ∈ X|(u, v) = (c, d), c, d ∈R
}

, (.)

Im L =

{

(x, y) ∈ Y
∣
∣
∣Iα

+ x() –
∞∑

i=

aiIα
+ x(ξi) = , Iβ

+ y() –
∞∑

i=

biIβ

+ y(ηi) = 

}

. (.)

Proof By Lemma ., the equation Dα
+ u(t) =  has the solution

u(t) = c + ct + · · · + cn–tn–.

Combining with u(i)() = , i = , , . . . , n – , one has ci = , i = , , . . . , n – . Then u(t) = c.
Similarly, for v ∈ Ker L, we have v(t) = d. Thus, we obtain (.).

Next we prove (.) holds. Let (x, y) ∈ Im L, so there exists (u, v) ∈ dom L such that x(t) =
Dα

+ u(t), y(t) = Dβ

+ v(t). By Lemma ., we have

u(t) = Iα
+ x(t) +

n–∑

i=

citi, v(t) = Iβ

+ y(t) +
n–∑

i=

diti, ci, di ∈R, i = , , . . . , n – .

In view of u(i)() = v(i)() = , i = , , . . . , n – , we get ci = di = , i = , , . . . , n – . Hence,
we have

u(t) = Iα
+ x(t) + c, v(t) = Iβ

+ y(t) + d.
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According to u() =
∑∞

i= aiu(ξi) and v() =
∑∞

i= biv(ηi), we have

Iα
+ x() + c =

∞∑

i=

aiu(ξi) =
∞∑

i=

ai
(
Iα

+ x(ξi) + c
)

=
∞∑

i=

aiIα
+ x(ξi) + c,

Iβ

+ y() + d =
∞∑

i=

biv(ξi) =
∞∑

i=

bi
(
Iβ

+ y(ηi) + c
)

=
∞∑

i=

biIβ

+ y(ηi) + d,

that is,

Iα
+ x() =

∞∑

i=

aiIα
+ x(ξi), Iβ

+ y() =
∞∑

i=

biIβ

+ y(ηi).

On the other hand, suppose (x, y) satisfies the above equations. Let u(t) = Iα
+ x(t) and v(t) =

Iβ

+ y(t), we can prove (u(t), v(t)) ∈ dom L and L(u(t), v(t)) = (x, y). Then (.) holds. �

Lemma . The mapping L : dom L ⊂ Y → Z is a Fredholm operator of index zero.

Proof The linear continuous projector operator P(u, v) = (Pu, Pv) can be defined as

Pu = u(), Pv = v().

Obviously, P
 = P and P

 = P.
It is clear that

Ker P =
{

(u, v)|u() = , v() = 
}

.

It follows from (u, v) = (u, v) – P(u, v) + P(u, v) that Y = Ker P + Ker L. For (u, u) ∈ Ker L ∩
Ker P, then u = c, v = d, c, d ∈ R. Furthermore, by the definition of Ker P, we have
c = d = . Thus, we get

Y = Ker L ⊕ Ker P.

The linear operator Q(x, y) = (Qx, Qy) can be defined as

Qx(t) =

( + α)

 –
∑∞

i= aiξ
α
i

[

Iα
+ x() –

∞∑

i=

aiIα
+ x(ξi)

]

,

Qy(t) =

( + β)

 –
∑∞

i= biη
β

i

[

Iβ

+ y() –
∞∑

i=

biIβ

+ y(ηi)

]

.

Obviously, Q(x, y) = (Qx(t), Qy(t)) ∼= R
.

For x(t) ∈ E, we have

Q
(
Qx(t)

)
= Qx(t) · 
( + α)

 –
∑∞

i= aiξ
α
i

[
(
Iα

+ 
)|t= –

∞∑

i=

ai
(
Iα

+ 
)|t=ξi

]

= Qx(t).
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Similarly, Q
 = Q, that is to say, the operator Q is idempotent. It follows from (x, y) =

(x, y) – Q(x, y) + Q(x, y) that Z = Im L + Im Q. Moreover, by Ker Q = Im L and Q
 = Q, we

get Im L ∩ Im Q = {(, )}. Hence,

Z = Im L ⊕ Im Q.

Now, Ind L = dim Ker L – codim Im L = , and so L is a Fredholm mapping of index zero.
�

For every (u, v) ∈ Y ,

∥
∥P(u, v)

∥
∥

Y = max
{‖Pu‖X ;‖Pv‖X

}
= max

{∣
∣u()

∣
∣;

∣
∣v()

∣
∣
}

. (.)

Furthermore, the operator KP : Im L → dom L ∩ Ker P can be defined by

KP(x, y) =
(
Iα

+ x, Iβ

+ y
)
. (.)

For (x, y) ∈ Im L, we have

LKP(x, y) = L
(
Iα

+ x, Iβ

+ y
)

=
(
Dα

+ Iα
+ x, Dβ

+ Iβ

+ y
)

= (x, y).

On the other hand, for (u, v) ∈ dom L ∩ Ker P, according to Lemma ., we have

Iα
+ Lu(t) = Iα

+ Dα
+ u(t) = u(t) + c + ct + · · · + cn–tn–,

Iβ

+ Lv(t) = Iβ

+ Dβ

+ v(t) = v(t) + d + dt + · · · + dn–tn–.

By the definitions of dom L and Ker P, one has u(i)() = v(i)(), i = , , . . . , n – , which im-
plies that ci = di, i = , , . . . , n – . Thus, we obtain

KpL(x, y) =
(
Iα

+ Dα
+ x, Iβ

+ Dβ

+ y
)

= (x, y). (.)

Combining (.) and (.), we get KP = (Ldom L∩Ker P)–.
For simplicity of notation, we set a = 


(α–n+) , b = 

(β–n+) .

For (x, y) ∈ Im L, we have

∥
∥KP(x, y)

∥
∥

Y =
∥
∥
(
Iα

+ x, Iβ

+ y
)∥
∥

Y = max
{∥
∥Iα

+ x
∥
∥

X ;
∥
∥Iβ

+ y
∥
∥

X

}

≤ max

{



(α – n + )
‖x‖∞;



(β – n + )

‖y‖∞
}

= max
{

a‖x‖∞; b‖y‖∞
}

. (.)

Again for (u, v) ∈ �, (u, v) ∈ dom(L) \ Ker(L), then (I – P)(u, v) ∈ dom L ∩ Ker P and
LP(u, v) = (, ), thus from (.), we have

∥
∥(I – P)(u, v)

∥
∥

Y =
∥
∥KPL(I – P)(u, v)

∥
∥

Y =
∥
∥KP(Lu, Lv)

∥
∥

Y

≤ max
{

a‖Nv‖∞; b‖Nu‖∞
}

. (.)

With a similar proof to [], we have the following lemma.
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Lemma . KP(I – Q)N : Y → Y is completely continuous.

Theorem . Assume (H) and the following conditions hold:
(H) There exist nonnegative functions ϕi(t),ψi(t) ∈ E, i = , , . . . , n, such that, for all

t ∈ [, ], (u, u, . . . , un), (v, v, . . . , vn) ∈R
n, one has

∣
∣f (t, u, u, . . . , un)

∣
∣ ≤ ϕ(t) + ϕ(t)|u| + ϕ(t)|u| + · · · + ϕn(t)|un|,

∣
∣g(t, v, v, . . . , vn)

∣
∣ ≤ ψ(t) + ψ(t)|v| + ψ(t)|v| + · · · + ψn(t)|vn|.

(H) There exists A >  such that, for (u, u′, . . . , u(n–)), (v, v′, . . . , v(n–)), if |u| > A or
|v| > A, ∀t ∈ [, ], one has

u ·
[

Iα
+ f

(
t, v, v′, . . . , v(n–))|t= –

∞∑

i=

aiIα
+ f

(
t, v, v′, . . . , v(n–))|t=ξi

]

> ,

v ·
[

Iβ

+ g
(
t, u, u′, . . . , u(n–))|t= –

∞∑

i=

biIβ

+ g
(
t, u, u′, . . . , u(n–))|t=ηi

]

> ,

or

u ·
[

Iα
+ f

(
t, v, v′, . . . , v(n–))|t= –

∞∑

i=

aiIα
+ f

(
t, v, v′, . . . , v(n–))|t=ξi

]

< ,

v ·
[

Iβ

+ g
(
t, u, u′, . . . , u(n–))|t= –

∞∑

i=

biIβ

+ g
(
t, u, u′, . . . , u(n–))|t=ηi

]

< .

Then BVP (.) has at least a solution in Y provided that

max

{

a
n∑

i=

‖ϕi‖∞, a
n∑

i=

‖ϕi‖∞ + b
n∑

i=

‖ψi‖∞, b
n∑

i=

‖ψi‖∞

}

< . (.)

Proof Let

� =
{

(u, v) ∈ dom L \ Ker L : L(u, v) = λN(u, v),λ ∈ (, )
}

.

For L(u, v) = λN(u, v) ∈ Im L = Ker Q, by the definition of Ker Q, hence

Iα
+ f

(
t, v, v′, . . . , v(n–))|t= –

∞∑

i=

aiIα
+ f

(
t, v, v′, . . . , v(n–))|t=ξi = ,

Iβ

+ g
(
t, u, u′, . . . , u(n–))|t= –

∞∑

i=

biIβ

+ g
(
t, u, u′, . . . , u(n–))|t=ηi = .

From (H), there exist t, t ∈ (, ) such that |u(t)| ≤ A and |v(t)| ≤ A. According to
Lu = λNv, u ∈ dom L \ Ker L, that is, Dα

+ u = λNv, we have

u(t) =
λ


(α)

∫ t


(t – s)α–f

(
s, v(s), v′(s), . . . , v(n–)(s)

)
ds + c.
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Substituting t = t into the above equation, we get

u(t) =
λ


(α)

∫ t


(t – s)α–f

(
s, v(s), v′(s), . . . , v(n–)(s)

)
ds + c.

Furthermore, we get

u(t) – u(t) =
λ


(α)

∫ t


(t – s)α–f

(
s, v(s), v′(s), . . . , v(n–)(s)

)
ds

–
λ


(α)

∫ t


(t – s)α–f

(
s, v(s), v′(s), . . . , v(n–)(s)

)
ds.

Together with |u(t)| ≤ A, we have

∣
∣u()

∣
∣ ≤ ∣

∣u(t)
∣
∣ +

∣
∣
∣
∣

λ


(α)

∫ t


(t – s)α–f

(
s, v(s), v′(s), . . . , v(n–)(s)

)
ds

∣
∣
∣
∣

≤ A +



(α)

∫ t


(t – s)α–∣∣f

(
s, v(s), v′(s), . . . , v(n–)(s)

)∣
∣ds

≤ A +



(α)

∫ t


(t – s)α–

(

ϕ(t) +
n∑

i=

ϕi(t)
∣
∣v(i–)∣∣

)

ds

≤ A +



(α)

(
∥
∥ϕ(t)

∥
∥∞ +

n∑

i=

∥
∥ϕi(t)

∥
∥∞

∥
∥v(i–)∥∥∞

)

·
∫ t


(t – s)α– ds

≤ A +



(α + )
∥
∥ϕ(t)

∥
∥∞ +



(α + )

n∑

i=

∥
∥ϕi(t)

∥
∥∞

∥
∥v(i–)∥∥∞

≤ A +



(α + )
∥
∥ϕ(t)

∥
∥∞ + ‖v‖X · 


(α + )

n∑

i=

∥
∥ϕi(t)

∥
∥∞

≤ A + a
∥
∥ϕ(t)

∥
∥∞ + ‖v‖X · a

n∑

i=

∥
∥ϕi(t)

∥
∥∞. (.)

By similar arguments, we obtain

∣
∣v()

∣
∣ ≤ A + b

∥
∥ψ(t)

∥
∥∞ + ‖u‖X · b

n∑

i=

∥
∥ψi(t)

∥
∥∞. (.)

For (u, v) ∈ �, by (.), we have

∥
∥(u, v)

∥
∥

Y =
∥
∥P(u, v) + (I – P)(u, v)

∥
∥

Y

≤ ∥
∥P(u, v)

∥
∥

Y +
∥
∥(I – P)(u, v)

∥
∥

Y

≤ max
{∣
∣u()

∣
∣ + a‖Nv‖∞,

∣
∣u()

∣
∣ + b‖Nu‖∞,

∣
∣v()

∣
∣ + a‖Nv‖∞,

∣
∣v()

∣
∣ + b‖Nu‖∞

}
.

The following proof is divided into four cases.
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Case . ‖(u, v)‖Y ≤ |u()| + a‖Nv‖∞. By (.) and (H), we have

∥
∥(u, v)

∥
∥

Y ≤ ∣
∣u()

∣
∣ + a‖Nv‖∞

≤ A + a‖ϕ‖∞ + ‖v‖X · a
n∑

i=

‖ϕi‖∞ + a
∥
∥f

(
t, v, . . . , v(N–))∥∥∞

≤ A + a‖ϕ‖∞ + ‖v‖X · a
n∑

i=

‖ϕi‖∞ + a

(

‖ϕ‖∞ + ‖v‖X ·
n∑

i=

‖ϕi‖∞

)

= A + a

(

‖ϕ‖∞ + ‖v‖X ·
n∑

i=

‖ϕi‖∞

)

. (.)

According to (.) and the definition of ‖(u, v)‖Y , we can derive

‖v‖X ≤ ∥
∥(u, v)

∥
∥

Y ≤ A + a

(

‖ϕ‖∞ + ‖v‖X ·
n∑

i=

‖ϕi‖∞

)

.

By (.), we have

‖v‖X ≤ A + a‖ϕ‖∞
 – a

∑n
i= ‖ϕi‖∞

:= M.

From (.), we see that � is bounded.
Case . ‖(u, v)‖Y ≤ |v()| + b‖Nu‖∞. Similar to the above argument, we can also prove

that � is bounded. Here, we omit it.
Case . ‖(u, v)‖Y ≤ |u()| + b‖Nu‖∞. From (.) and (H), we obtain

∥
∥(u, v)

∥
∥

Y ≤ ∣
∣u()

∣
∣ + b‖Nu‖∞

≤ A + a‖ϕ‖∞ + ‖v‖X · a
n∑

i=

‖ϕi‖∞ + b
∥
∥g

(
t, u, u′, . . . , u(n–))∥∥∞

≤ A + a‖ϕ‖∞ + ‖v‖X · a
n∑

i=

‖ϕi‖∞ + b

(

‖ψ‖∞ + ‖u‖X ·
n∑

i=

‖ψi‖∞

)

≤ A + a‖ϕ‖∞ + b‖ψ‖∞ +

[

a
n∑

i=

‖ϕi‖∞ + b
n∑

i=

‖ψi‖∞

]

· ∥∥(u, v)
∥
∥

Y .

By (.), we get

∥
∥(u, v)

∥
∥

Y ≤
[

 – a
n∑

i=

‖ϕi‖∞ – b
n∑

i=

‖ψi‖∞

]–
(
A + a‖ϕ‖∞ + b‖ψ‖∞

)
:= M,

that is, � is bounded.
Case . ‖(u, v)‖∞ ≤ |v()| + a‖Nv‖∞. We can prove that � is bounded too. The proof

is similar to the case . Here, we omit it.
According the above arguments, we have proved that � is bounded.
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Let

� =
{

(u, v) ∈ Ker L : N(u, v) ∈ Im L
}

.

Let (u, v) ∈ Ker L, so we have u = c, v = d. In view of N(u, v) = (Nv, Nu) ∈ Im L = Ker Q,
we have Q(Nv) = , Q(Nu) = , that is,

Iα
+ f (t, d, , . . . , )|t= –

∞∑

i=

aiIα
+ f (t, d, , . . . , )|t=ξi = ,

Iβ

+ g(t, c, , . . . , )|t= –
∞∑

i=

biIβ

+ g(t, c, , . . . , )|t=ηi = .

By (H), there exist constants t, t ∈ [, ] such that

∣
∣u(t)

∣
∣ = |c| ≤ A,

∣
∣v(t)

∣
∣ = |d| ≤ A.

Therefore, � is bounded.
Let

� =
{

(u, v) ∈ Ker L : λ(u, v) + ( – λ)QN(u, v) = (, ),λ ∈ [, ]
}

.

For (u, v) ∈ Ker L, we have u = c and v = d. By the definition of the set �, we have

λc + ( – λ)QN(d) = , λd + ( – λ)QN(c) = . (.)

If λ = , similar to the proof of the boundedness of �, we have |c| ≤ A and |d| ≤ A. If
λ = , we have c = d = . If λ ∈ (, ), we also have |c| ≤ A and |d| ≤ A. Otherwise, if
|c| > A or |d| > A, in view of the first part of (H), we obtain

λc
 + ( – λ)c · QN(d) > , λd

 + ( – λ)d · QN(c) > ,

which contradict (.). Thus, � is bounded.
If the second part of (H) holds, then we can prove the set

�′
 =

{
(u, v) ∈ Ker L : –λ(u, v) + ( – λ)QN(u, v) = (, ),λ ∈ [, ]

}

is bounded.
Finally, let � be a bounded open set of Y , such that

⋃
i= �i ⊂ �. By Lemma ., N is

L-compact on �. Then by the above arguments, we get:
() Lu �= λNu, for every (u, v) ∈ [(dom L \ KerL) ∩ ∂�] × (, ).
() N(u, v) /∈ Im L for every (u, v) ∈ Ker L ∩ ∂�.
() Let H((u, v),λ) = ±λI(u, v) + ( – λ)JQN(u, v), where I is the identical operator. Via

the homotopy property of degree, we obtain

deg(JQN |Ker L,� ∩ Ker L, ) = deg
(
H(·, ),� ∩ Ker L, 

)

= deg
(
H(·, ),� ∩ Ker L, 

)
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= deg(I,� ∩ Ker L, )

=  �= .

Applying Theorem ., we conclude that L(u, v) = N(u, v) has at least one solution in
dom L ∩ �. �

4 Example
Let us consider the following coupled system of fractional differential equations at reso-
nance:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D.
+ u(t) = f (t, v, v′, v′′),  < t < ,

D.
+ v(t) = g(t, u, u′, u′′),  < t < ,

u′() = u′′() =  = v′() = v′′(),

u() =
∑∞

i=

i u( 

i ), v() =
∑∞

i=

i v( 

i+ ),

(.)

where

f (t, x, x, x) =
t


+



e–|x| + sin x + cos x + ,

g(t, y, y, y) = t +
arctan y


+

sin(y + y)


+



.

Corresponding to BVP (.), we have α = ., β = ., n = , a = (
(α – n + ))– =
(
(.))– ≈ ., b = (
(β – n + ))– = (
(.))– ≈ ., ai = 

i , bi = 
i , ξi = 

i , ηi = 
i+ ,

i = , , . . . . We can get

∞∑

i=

aiξ
α
i =

∞∑

i=


i


(i). ≈ . �= ,

∞∑

i=

biη
β

i =
∞∑

i=


i


(i + ). ≈ . �= ,

which implies (H) holds. We choose ϕ(t) = t
 +, ψ(t) = t +, ϕi = ψi = , i = , , . Then

we can verify (H) and (.) hold. Take A = , then the condition (H) holds. Hence, from
Theorem ., BVP (.) has at least one solution.
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