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Abstract
We study the pinning control design for feedback stabilization of constrained Boolean
control networks (BCNs) via the semitensor product of matrices. Firstly, a constrained
algebraic representation is obtained for constrained BCNs with pinning control, and a
necessary and sufficient condition is established for the reachability of constrained
BCNs with pinning control. Secondly, a general procedure is proposed for the pinning
control design of state feedback stabilization of constrained BCNs. Thirdly, a necessary
and sufficient condition is presented for the output feedback stabilization of
constrained BCNs with pinning control. Finally, two illustrative examples are worked
out to demonstrate the effectiveness of the obtained new results.
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1 Introduction
In recent years, with the development of systems biology and medical science, there have
been a lot of computational models to simulate gene regulatory networks (GRNs) [, ].
In , Kauffman [] firstly proposed the concept of Boolean networks to model GRNs.
From then on, the study of Boolean networks has attracted attention of many scholars
[–]. In a Boolean network, genes are simulated as  and  for studying the activity of
genes. Since the dynamics of Boolean networks does not contain parameters, we can use
Boolean networks to model large-scale GRNs.

Recently, a semitensor product method [] has been proposed for the study of Boolean
networks. Using this novel method, we can convert a Boolean (control) network into a
linear (bilinear) form. Then, we can conveniently investigate Boolean networks with the
help of classical control theory. This framework is called the algebraic state space rep-
resentation (ASSR) of logical systems. Up to now, many scholars have applied the ASSR
framework to the analysis and control of Boolean networks and obtained lots of inter-
esting results [–]. Moreover, the semitensor product method has also been applied to
networked evolutionary games [, ] and feedback shift registers [].

As one of the most important issues in the study of GRNs, the stabilization of Boolean
control networks (BCNs) has been found to be widely applied in the design of therapeutic
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interventions and the explanation of some living phenomena []. The state feedback sta-
bilization of BCNs was studied in [, ], and a novel design procedure was established.
Later, the design of output feedback stabilizers of BCNs was investigated [–], and
some necessary and sufficient conditions were presented.

Note that the pinning control problem has been introduced to the study of Boolean net-
works in some recent works [, ]. With the pinning control, we can realize the control
objective by controlling a small number of nodes. Using the ASSR framework, the pin-
ning control design for the stabilization of Boolean networks was studied in [], and a
novel design procedure was established. Moreover, in GRNs, some states and inputs are
undesirable because they may lead to a dangerous situation such as the deterioration of a
disease, the metastasis of a cancer [, ], and so on. Hence, we need put some constraints
to the undesirable states and inputs in BCNs. It should be noticed that the pinning control
design for feedback stabilization of constrained BCNs is still a challenging problem, and
there are fewer results on this problem. In addition, the pinning stabilization control de-
sign procedure proposed in [] cannot be directly applied to the pinning control design
for feedback stabilization of constrained BCNs. This motivates us to study the pinning
control design for feedback stabilization of constrained BCNs.

In this paper, using the ASSR framework, we investigate the pinning control design for
feedback stabilization of constrained BCNs and present a number of new results. The
main contributions of this paper are as follows. On one hand, we convert the dynamics of
constrained BCNs with pinning control into a constrained algebraic form, which facilitates
the reachability analysis and control design of constrained BCNs with pinning control.
On the other hand, we present some necessary and sufficient conditions for the pinning
control design of feedback stabilizers of constrained BCNs, which can be easily verified
with the help of MATLAB.

The rest of this paper is organized as follows. In Section , we give some preliminaries on
the semitensor product of matrices. In Section , we investigate the pinning control design
for feedback stabilization of constrained BCNs and present the main results of this paper.
Two illustrative examples are worked out to verify the obtained new results in Section ,
which is followed by a brief conclusion in Section .

Notation R, N, and Z+ denote the sets of real numbers, natural numbers, and positive
integers, respectively; D := {, }, Dn := D × · · · ×D

︸ ︷︷ ︸

n

, �n := {δk
n |  ≤ k ≤ n}, where δk

n de-

notes the kth column of In, and for compactness, � := �. An n × t matrix M is called a
logical matrix if M = [δi

n δ
i
n · · · δit

n ]. We express M briefly as M = δn[i i · · · it]. Denote
the set of n × t logical matrices by Ln×t . An n × t matrix M = (Mi,j) is called a Boolean
matrix if Mi,j ∈D, i = , . . . , n, j = , . . . , t. Denote the set of n × t Boolean matrices by Bn×t .
Given a real matrix A ∈R

m×n, Coli(A) denotes the ith column of A, and Rowi(A) denotes
the ith row of A; ‘∗’ denotes the Khatri-Rao product of matrices.

2 Preliminaries
First of all, we give some fundamental preliminaries on the semitensor product of matrices.
For details, we refer to [].

Definition  ([]) The semitensor product of two matrices A ∈R
m×n and B ∈R

p×q is

A � B = (A ⊗ I α
n

)(B ⊗ I α
p

), ()
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where α = lcm(n, p) represents the least common multiple of n and p, and ⊗ is the Kro-
necker product.

Obviously, when n = p, the semitensor product of A and B becomes the conventional
matrix product. Thus, we can simply call it ‘product’ and omit the symbol ‘�’ if no confu-
sion arises.

Proposition  ([]) Let X ∈R
t× be a column vector, and A ∈R

m×n. Then

X � A = (It ⊗ A) � X. ()

Proposition  ([]) Let X ∈R
m× and Y ∈R

n× be two column vectors. Then

Y � X = W[m,n] � X � Y , ()

where W[m,n] ∈Lmn×mn is the so-called swap matrix defined as

W[m,n] = δmn
[

 m +  · · · (n – )m + 
 m +  · · · (n – )m + 

· · ·
m m + m · · · (n – )m + m

]

.

Proposition  ([]) Define the matrix, Mr,k , called the k-valued power-reducing matrix,
as

Mr,k =

⎡

⎢

⎢

⎢

⎢

⎣

δ
k k · · · k

k δ
k · · · k

...
k k · · · δk

k

⎤

⎥

⎥

⎥

⎥

⎦

, ()

where k ∈R
k is the zero vector.

Denoting  ∼ δ
 and  ∼ δ

 , we have � ∼ D, where ‘∼’ denotes two different forms of
the same object. In most places of this paper, we use δ

 and δ
 to express logical variables

and call them the vector form of logical variables. The following lemma is fundamental
for the matrix expression of logical functions.

Lemma  ([]) Let f (x, x, . . . , xs) : Ds �→ D be a logical function. Then, there exists a
unique matrix Mf ∈L×s , called the structural matrix of f , such that

f (x, x, . . . , xs) = Mf � x � · · ·� xs := Mf �
s
i= xi, xi ∈ �. ()

For example, the structural matrices for negation (¬), conjunction (∧), disjunction (∨),
conditional (→), biconditional (↔), and exclusive Or (∨̄) are Mn = δ[ ], Mc = δ[   ],
Md = δ[   ], Mi = δ[   ], Me = δ[   ] and Mp = δ[   ], respectively.

Based on Lemma , we can convert a BCN into an algebraic representation. For details,
refer to [].
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3 Main results
In this section, we give the main results of this paper. Firstly, we convert the dynamics
of a constrained Boolean network with pinning control into its equivalent constrained
algebraic form, based on which we obtain a necessary and sufficient condition for the
reachability of constrained BCNs with pinning control. Secondly, we present the pinning
control design procedure for the feedback stabilization of constrained BCNs.

3.1 Constrained algebraic form
A Boolean network with n network nodes and r pinning controls can be described as

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

x(t + ) = f(x(t), . . . , xn(t), u(t)),
...

xr(t + ) = fr(x(t), . . . , xn(t), ur(t)),

xr+(t + ) = fr+(x(t), . . . , xn(t)),
...

xn(t + ) = fn(x(t), . . . , xn(t)),

yi(t) = hi(x(t), . . . , xn(t)), i = , . . . , p,

()

where nodes i, . . . , ir are selected to be pinning controlled, and  ≤ r < n. Without loss
of generality, we assume that is = s, s = , . . . , r. xi(t) ∈ D, i = , . . . , n, ui(t) ∈ D, i = , . . . , r,
and yi(t) ∈ D, i = , . . . , p, are the states, the control inputs, and the outputs of system (),
respectively, and fi : Dn+ �→ D, i = , . . . , r, fi : Dn �→ D, i = r + , . . . , n, and hi : Dn �→ D,
i = , . . . , p, are logical functions.

In order to convert system () into an algebraic form, we define x(t) = �
n
i=xi(t) ∈

�n , x(t) = �
r
i=xi(t) ∈ �r , x(t) = �

n
i=r+xi(t) ∈ �n–r , u(t) = �

r
i=ui(t) ∈ �r , and y(t) =

�
p
i=yi(t) ∈ �p . Assume that the structural matrix of fi and hi are Fi, i = , . . . , n, and Hi,

i = , . . . , p, respectively. Using Lemma , system () can be expressed as

x(t + ) = Fx(t)u(t)Fx(t)u(t) · · ·Frx(t)ur(t)

= F(In+ ⊗ F)x(t)u(t)x(t)u(t)Fx(t)u(t) · · ·Frx(t)ur(t)

= F(In+ ⊗ F)W[n ,n+]Mr,n x(t)u(t)u(t)

� Fx(t)u(t) · · ·Frx(t)ur(t)

= F

r
∏

i=

[

(In+i– ⊗ Fi)W[n ,n+i–]Mr,n
]

x(t)u(t)

:= Lx(t)u(t), ()

x(t + ) = Fr+x(t)Fr+x(t) · · ·Fnx(t)

= Fr+ ∗ Fr+ ∗ · · · ∗ Fnx(t)

:= Lx(t), ()
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and

y(t) = Hx(t)Hx(t) · · ·Hpx(t)

= H ∗ H ∗ · · · ∗ Hpx(t)

:= Hx(t), ()

where

L = F

r
∏

i=

[

(In+i– ⊗ Fi)W[n ,n+i–]Mr,n
] ∈Lr×n+r ,

Mr,n = diag
{

δ
n , δ

n , . . . , δn
n

} ∈Ln×n ,

L = Fr+ ∗ Fr+ ∗ · · · ∗ Fn ∈Ln–r×n ,

and

H = H ∗ H ∗ · · · ∗ Hp ∈Lp×n .

Summarizing, we obtain the following algebraic form of system ():

⎧

⎨

⎩

x(t + ) = Qu(t)x(t),

y(t) = Hx(t),
()

where Q = L(In+r ⊗ L)W[n ,n+r]Mr,n W[r ,n] ∈Ln×n+r .
Now, we consider system () with state and input constraints. For any t ∈ N, we assume

that x(t) ∈ Sx ⊆ n and u(t) ∈ Su ⊆ r . Let |Sx| = n ≤ n and |Su| = r ≤ r , where |Sx|
denotes the cardinality of the set Sx. Then, Sx and Su can be expressed as

Sx =
{

δ
ik
n : k = , . . . , n;  ≤ i < · · · < in ≤ n}, ()

Su =
{

δ
jk
r : k = , . . . , r;  ≤ j < · · · < jr ≤ r}. ()

Denote the trajectory of system () with a pinning control sequence {(u(t), u(t), . . . ,
ur(t)) : t ∈ N} ⊆ Su and an initial state x ∈ Sx by x(t; x, (u(t), u(t), . . . , ur(t))).

In the following, we convert system () with state and input constraints into an equiv-
alent constrained algebraic form.

Define the following set of matrices:

J (p,q)
i := [q×q · · · q×q Iq

︸︷︷︸

ith

q×q · · · q×q

︸ ︷︷ ︸

p

], ()

where J (p,q)
i ∈R

q×pq, i = , , . . . , p, q×q denotes the q × q zero matrix, and Iq ∈Lq×q is the
q × q identity matrix.
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Proposition  ([]) . Given a matrix A ∈ R
pq×r , split A as

A =

⎡

⎢

⎢

⎣

A
...

Ap

⎤

⎥

⎥

⎦

, ()

where Ai ∈R
q×r . Then,

J (p,q)
i A = Ai. ()

. Given a matrix B ∈R
r×pq, split B as

B = [B · · · Bp], ()

where Bi ∈ R
r×q. Then,

B
(

J (p,q)
i

)T = Bi. ()

Based on Proposition , set

�x =

⎡

⎢

⎢

⎣

J (n ,)
i

...
J (n ,)
in

⎤

⎥

⎥

⎦

, ()

�u =

⎡

⎢

⎢

⎣

J (r ,)
j

...
J (r ,)
jr

⎤

⎥

⎥

⎦

. ()

Denote δ
n = n× and δ

r = r×. Then, we convert the state x(t) ∈ �n and input u(t) ∈
�r of the constrained system into the following form:

x̂(t) = �xx(t) ∈̂Sx, ()

û(t) = �uu(t) ∈̂Su, ()

wherêSx = {δ
n , δ

n , . . . , δn
n } ∪ {δ

n} and̂Su = {δ
r , δ

r , . . . , δr
r } ∪ {δ

r}.
For system (), let Q = [Q, . . . , Qr ], Ql ∈Ln×n , l ∈ {, . . . , r}. Set

̂Q = [̂Q · · · ̂Qr ] �
[(

J (r ,n)
j

)T · · · (

J (r ,n)
jr

)T] ∈ Bn×nr , ()

̂H = H�T
x ∈Lp×n , ()

where

̂Ql = �xQl�
T
x ∈ Bn×n , l ∈ {

, . . . , r}. ()
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Remark  Since Q is a logical matrix, we can easily conclude that each column of ̂Q has
at most one element ‘’.

Based on the above transformation, we convert system () into the following form:
⎧

⎨

⎩

x̂(t + ) = ̂Qû(t)̂x(t),

ŷ(t) = ̂Hx̂(t).
()

Proposition  The state trajectories of system () with Sx and Su are equivalent to that
of system () witĥSx and̂Su.

Proof On one hand, ∀t ∈ N, ∀u(t) = δ
js
r ∈ Su, and ∀x(t) = δ

iα
n ∈ Sx, if x(t + ) = Qu(t)x(t) ∈

Sx, say, x(t + ) = δ
iβ
n , β ∈ {, . . . , n}, a simple calculation shows that

x̂(t + ) = ̂Qû(t)̂x(t) = δβ
n ∈̂Sx \ {

δ
n

}

,

where x̂(t) = δα
n ∈̂Sx and û(t) = δs

r ∈̂Su. If x(t + ) = Qu(t)x(t) = δi
n /∈ Sx, then x̂(t + ) =

̂Qû(t)̂x(t) = δ
n . Hence, in both cases, x̂(t + ) = �xx(t + ).

On the other hand, ∀t ∈N, ∀̂u(t) = δs
r ∈̂Su \ {δ

r}, and ∀̂x(t) = δα
n ∈̂Sx \ {δ

n}, if x̂(t + ) =
̂Qû(t)̂x(t) ∈̂Sx \ {δ

n}, say, x̂(t + ) = δ
β
n , β ∈ {, . . . , n}, we can obtain that

x(t + ) = Qu(t)x(t) = δ
iβ
n ∈ Sx.

If x̂(t + ) = ̂Qû(t)̂x(t) = δ
n , then

x(t + ) = Qu(t)x(t) /∈ Sx.

Hence, we have x̂(t + ) = �xx(t + ).
Therefore, the state trajectories of system () with Sx and Su are equivalent to that of

system () witĥSx and̂Su. �

Remark  We call () the constrained algebraic form of the original system. Based on
Proposition , we can convert the feedback stabilization of the original system to that of
system ().

3.2 Reachability analysis
In this subsection, we study the reachability of system (), which is crucial to pinning
control design for the feedback stabilization.

We give the definition of the reachability for system () as follows.

Definition  For system (), given two states x̂, x̂d ∈ ̂Sx \ {δ
n} and a integer k > ,

x̂d is said to be reachable from x̂ at time k if there is a pinning control sequence
(̂u(t), û(t), . . . , ûr(t)) with û(t) = �

r
i=ûi(t) ∈ ̂Su \ {δ

r}, t ∈ {, , . . . , k – }, such that
x̂(k; x̂, (̂u(t), û(t), . . . , ûr(t))) = x̂d .

For system (), consider two given states x̂ = δα
n ∈̂Sx \ {δ

n}, x̂d = δ
β
n ∈̂Sx \ {δ

n} and
a given integer k > . Let P(k; x̂, x̂d) denote the number of different paths such that x̂d is
reachable from x̂ at time k.
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Lemma  Consider system () with two given states x̂ = δα
n ∈̂Sx \ {δ

n}, x̂d = δ
β
n ∈̂Sx \

{δ
n} and a given integer k > . Then,

P(k; x̂, x̂d) =
(

x̂T
d
)

(Q)k (̂x), ()

where Q =
∑r

i=
̂Qi, and ̂Qi is defined in ().

Proof We prove this lemma by induction.
Firstly, letting k = , assume that û = δ

ρ
r , û = δ

ρ
r , . . . , ûs = δ

ρs
r ∈̂Su \ {δ

r} are different
control sequences such that x̂d is reachable from x̂ at one step. Let ûs+ = δ

ρs+
r , ûs+ =

δ
ρs+
r , . . . , ûr = δ

ρr
r ∈̂Su \ {δ

r} be different control sequences such that x̂ cannot reach
x̂d in one step. Hence, it is easy to see that (̂Qρl )β ,α = , ∀l ∈ {, . . . , s}, and (̂Qρl )β ,α = ,
∀l ∈ {s + , . . . , r}, which implies that (

∑r
i=

̂Qi)β ,α = s. Since (̂xT
d )(Q)(̂x) = (

∑r
i=

̂Qi)β ,α , we
have

P(; x̂, x̂d) = s =
(

x̂T
d
)

(Q)(̂x).

Thus, () holds for k = .
Suppose that () holds for an integer k ≥ . Then, we consider the case of k + . It is

easy to see that

x̂T
d (Q)k+̂x =

(

δβ
n

)T (Q)k+δα
n =

(

QkQ
)

(β ,α)

=
n

∑

p=

(

δβ
n

)T(

Qk)(
δp

n

)(

δp
n

)T (Q)δα
n

=
n

∑

p=

P
(

k; δp
n , x̂d

)

P
(

; x̂, δp
n

)

= P(k + ; x̂, x̂d), ()

which shows that () holds for k + .
By induction, () holds for any integer k > . This completes the proof. �

Based on Lemma , we give the following result on the reachability of system ().

Theorem  For system (), x̂d = δ
β
n ∈̂Sx \ {δ

n} is reachable from x̂ = δα
n ∈̂Sx \ {δ

n} at
time k if and only if

(

Qk)

β ,α > .

Proof By Lemma  we get P(k; x̂, x̂d) = (δβ
n )T (Q)k(δα

n ) = (Qk)β ,α . Therefore, P(k; x̂, x̂d) de-
notes the number of different paths from x̂ to x̂d at time k. If (Qk)β ,α > , then there are
(Qk)β ,α different paths from x̂ to x̂d . Thus, x̂d can be reached from x̂ at time k. Con-
versely, if x̂d is reachable from x̂ at time k, then we can find at least one pinning control
sequence (̂u(t), û(t), . . . , ûr(t)) with û(t) = �

r
i=ûi(t) ∈̂Su \ {δ

r}, t ∈ {, , . . . , k – }, such
that x̂(k; x̂, (̂u(t), û(t), . . . , ûr(t))) = x̂d , which implies that (Qk)β ,α = P(k; x̂, x̂d) > . �



Yang et al. Advances in Difference Equations  (2016) 2016:182 Page 9 of 16

Remark  From the proof of Theorem  we easily see that

P(k; x̂, x̂d) =
(

δβ
n

)T (Q)k(δα
n

)

=
(

Qk)

β ,α .

All of them denote the number of different paths such that x̂d is reachable from x̂ at
time k.

3.3 Feedback stabilization pinning control design
In this part, we study the pinning control design for the feedback stabilization of con-
strained BCNs. By Proposition  we consider the feedback stabilization of system ()
based on the reachability analysis.

Firstly, we give the definition of stabilization for system () with Sx and Su.

Definition  System () with Sx and Su is said to be stabilizable to a given equi-
librium xe ∈ Sx if there exists a pinning control sequence {(u(t), u(t), . . . , ur(t)) : t ∈
N} ⊂ Su under which the trajectory initialized at any x ∈ Sx converges to xe and
x(t; x, (u(t), u(t), . . . , ur(t))) ∈ Sx, ∀t ∈N.

In this paper, we study the following two kinds of feedback pinning controls:
. State feedback pinning control:

ui(t) = Kix(t), ()

where Ki ∈L×n , i = , . . . , r.
. Output feedback pinning control:

ui(t) = Giy(t), ()

where Gi ∈L×p , i = , . . . , r.
In the following, we consider the pinning control design for the state feedback stabiliza-

tion of system () with Sx and Su based on the constrained algebraic form.
For system (), let x̂e = �xxe = δα

n ∈̂Sx \ {δ
n}. For any integer k > , define

�k (̂xe) =
{

δβ
n ∈̂Sx \ {

δ
n

}

: there exists a control sequence

û(), û(), . . . , û(k – ) ∈̂Su \ {

δ
r

}

such that

x̂
(

k; δβ
n , û(), . . . , û(k – )

)

= δα
n and

x̂
(

l; δβ
n , û(), . . . , û(l – )

) ∈̂Sx \ {

δ
n

}

,∀l ∈ {, . . . , k}}. ()

Proposition  System () is stabilized to x̂e = δα
n by a state feedback control if and only

if there exists a positive integer σ ≤ n such that
. (Q)α,α > ,
. Rowα(Qσ ) > .

Proof (Sufficiency) We can see from Condition  and Theorem  that x̂e ∈ �(̂xe), which
implies that �k (̂xe) �= ∅, ∀k = , . . . ,σ .
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Denote

�◦
k (̂xe) = �k (̂xe) \ �k–(̂xe), ()

where �(̂xe) := ∅. Then, we obtain �◦
k

(̂xe)∩�◦
k

(̂xe) = ∅, ∀k, k ∈ {, . . . ,σ }, k �= k. More-
over, by Condition  and Theorem  we have

⋃σ
k= �◦

k (̂xe) =̂Sx \ {δ
n}. Thus, for any integer

i satisfying  ≤ i ≤ n, we can find the unique integer  ≤ ki ≤ σ such that δi
n ∈ �◦

ki
(̂xe).

For system (), set ̂Q = δn [μ,μ, . . . ,μnr ]. When ki = , we can find an integer  ≤
ωi ≤ r such that ̂Q � δ

ωi
r � δi

n = δ
μ(ωi–)n+i
n = x̂e. When  ≤ ki ≤ σ , we can find an integer

 ≤ ωi ≤ r such that ̂Q � δ
ωi
r � δi

n = δ
μ(ωi–)n+i
n ∈ �ki–(̂xe).

Let

̂K = δr [ω,ω, . . . ,ωn ] ∈Lr×n . ()

Then, for any initial state x̂ = δi
n ∈̂Sx \ {δ

n}, if ki = , then we obtain

x̂(; x̂, û) = ̂Qû̂x = ̂Q̂Kx̂x̂ = δ
μ(ωi–)n+i
n = x̂e;

if  ≤ ki ≤ σ , we have

x̂(; x̂, û) = ̂Qû̂x = ̂Q̂Kx̂x̂ = δ
μ(ωi–)n+i
n ∈ �ki–(̂xe).

Hence, x̂(ki; x̂, û) = x̂e, ∀ ≤ i ≤ n, and x̂(t; x̂, û) ∈̂Sx \ {δ
n}, ∀ ≤ t ≤ ki – . Since x̂e ∈

�(̂xe), we obtain

x̂(t; x̂, û) = x̂e, ∀t ≥ σ , ∀̂x ∈̂Sx \ {

δ
n

}

,

which implies that system () is stabilized to x̂e = δα
n by the state feedback control û(t) =

̂Kx̂(t).
(Necessity) The proof of this part is based on a straightforward calculation, and thus we

omit it here. �

Based on Propositions  and , we have the following result.

Theorem  System () with Sx and Su is stabilized to xe by a state feedback control if and
only if there exists a positive integer σ ≤ n such that (Q)α,α >  and Rowα(Qσ ) > .

From the proof of Proposition  we get the following procedure for the pinning control
design of state feedback stabilization of constrained BCNs.

Remark  The procedure contains the following steps:
. Calculate �k (̂xe) and �◦

k (̂xe), k = , . . . ,σ .
. For every integer  ≤ i ≤ n, find the unique integer  ≤ ki ≤ σ satisfying δi

n ∈ �◦
ki

(̂xe).
. Find an integer  ≤ ωi ≤ r such that if ki = , then δ

μ(ωi–)n+i
n = x̂e; if ki ≥ , then

δ
μ(ωi–)n+i
n ∈ �ki–(̂xe).
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. The state feedback pinning control can be designed as ui(t) = Kix(t), i = , . . . , r, with
K ∗ K ∗ · · · ∗ Kr = K , where K = δr [p, . . . , pn ], and

⎧

⎨

⎩

pt = jωρ if t = iρ ,ρ ∈ {, . . . , n},
pt ∈ {j, . . . , jr} otherwise.

()

Finally, we discuss the pinning control design for the output feedback stabilization of
constrained BCNs. To this end, we recall the definition of a nilpotent matrix.

Definition  A nilpotent matrix N is a square matrix such that Nk =  for some positive
integer k. The smallest such k is called the degree of N .

For system () with an output feedback control û(t) = ̂Ĝy(t), ̂G ∈Lr×p , we have

x̂(t + ) = ̂Qû(t)̂x(t) = ̂Q̂Ĝy(t)̂x(t) = ̂Q̂ĜHMr,n x̂(t), ()

where Mr,n = diag{δ
n , δ

n , . . . , δn
n }. Then, we have the following result on the output feed-

back stabilization of system ().

Theorem  System () is stabilizable to x̂e = δα
n by an output feedback control if and only

if there exist a logical matrix ̂G ∈Lr×p and an integer  ≤ τ ≤ n such that

̂Q̂ĜHMr,n =

⎡

⎢

⎣

A ζ A

ζ  ζ

A ζ A

⎤

⎥

⎦ ()

and

[

A A

A A

]

()

is a nilpotent matrix of degree τ , where A ∈ B(α–)×(α–), A ∈ B(α–)×(n–α), A ∈
B(n–α)×(α–), A ∈ B(n–α)×(n–α), ζ and ζ are some proper Boolean row vectors, and ζ

and ζ are zero column vectors.

Proof (Sufficiency) Since

[

A A

A A

]

()

is a nilpotent matrix of degree τ , we see that

[

A A

A A

]t

=  ()
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for any integer t ≥ τ , which, together with a simple calculation, shows that

(̂Q̂ĜHMr,n )t =

⎡

⎢

⎣

  · · · 
  · · · 
  · · · 

⎤

⎥

⎦ = δn [α,α, . . . ,α] ()

for any integer t ≥ τ .
Hence, we obtain from () that

x̂(t) = (̂Q̂ĜHMr,n )t̂x() = x̂e ()

for any x̂() ∈̂Sx \ {δ
n} and any integer t ≥ τ .

Therefore, system () is stabilizable to x̂e = δα
n by the output feedback control û(t) =

̂Ĝy(t).
(Necessity) Suppose that system () is stabilizable to x̂e = δα

n by an output feedback
control, say, û(t) = ̂Ĝy(t). Then, we can find the smallest integer  ≤ τ ≤ n such that ()
holds for any x̂() ∈̂Sx \ {δ

n} and any integer t ≥ τ . Hence, (̂Q̂ĜHMr,n )τ = δn [α,α, . . . ,α].
Split ̂Q̂ĜHMr,n ∈Ln×n into the following blocks:

̂Q̂ĜHMr,n =

⎡

⎢

⎣

A ζ A

ζ λ ζ

A ζ A

⎤

⎥

⎦ ,

where λ ∈ {, }, A ∈ B(α–)×(α–), A ∈ B(α–)×(n–α), A ∈ B(n–α)×(α–), A ∈ B(n–α)×(n–α),
ζ and ζ are some proper Boolean row vectors, and ζ and ζ are some proper Boolean
column vectors.

It is easy to see from ̂Q̂ĜHMr,n x̂e = x̂e that λ = , and ζ and ζ are zero column vectors.
In the following, we prove that

̂A :=

[

A A

A A

]

is a nilpotent matrix of degree τ .
We can easily see from (̂Q̂ĜHMr,n )τ = δn [α,α, . . . ,α] that ̂Aτ = , which shows that ̂A

is a nilpotent matrix. If its degree is less than τ , then there exists a positive integer τ ′ < τ

such that ̂Aτ ′ = , and thus

(̂Q̂ĜHMr,n )τ ′ = δn [α,α, . . . ,α],

which is a contradiction to the minimality of τ . This completes the proof. �

Remark  Based on Theorem  and Algorithm  presented in [], we can design an
output feedback gain matrix, say, ̂G = δr [w, w, . . . , wp ], under which system () is
stabilizable to x̂e = δα

n . Then, the output feedback pinning control can be designed as
ui(t) = Giy(t), i = , . . . , r, with G ∗ G ∗ · · · ∗ Gr = G, where G = δr [jw , . . . , jwp ].
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Remark  It should be pointed out that the pinning control design for the state feedback
stabilization of Boolean networks was studied in [], and a novel design procedure was
established. Compared with [], our main results have the following advantages: (i) we
established some necessary and sufficient conditions for the pinning control design of both
state feedback and output feedback stabilization problems, whereas [] only considered
the state feedback stabilization problem; (ii) our results are applicable to the pinning con-
trol design for the state feedback stabilization of constrained BCNs.

4 Illustrative examples
In the section, we give two illustrative examples to show how to use the obtained results
to design pinning control for feedback stabilization of constrained BCNs.

Example  Consider the following Boolean model to simulate the λ phage, which is a virus
growing on a bacterium. The virus can only follow one of two different pathways: lysogeny
or lysis, after injecting chromosome into the bacterium cell. The molecular mechanism
responsible for the lysogeny/lysis decision is known as λ switch []. For example, two
genes, cI and cro, directly affect the decision. When cI is active (inactive) and cro is inac-
tive (active), the phage is in the lysogenic (lytic) state, and whether lysogenic state will be
established or not depends on five phage genes, cI, cro, cII, cIII, N, and the environmental
state. More details can be found in []. Its dynamic can be described in the form

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

cII(t + ) = (¬cI(t)) ∧ (N(t) ∨ cIII(t)) ∧ u(t),

cIII(t + ) = (¬cI(t)) ∧ N(t) ∧ u(t),

N(t + ) = (¬cI(t)) ∧ (¬cro(t)),

cI(t + ) = (¬cro(t)) ∧ (cI(t) ∨ cII(t)),

cro(t + ) = (¬cI(t)) ∧ (¬cII(t)),

()

where u(t) is a binary input that represents whether environmental condition is favorable
or not.

Letting x(t) = cII(t)cIII(t)N(t)cI(t)cro(t), we obtain the following algebraic form:

x(t + ) = Qu(t)x(t), ()

where

Q = δ[               
               
               
               ].

In this example, several environmental conditions including concentration of nutrition,
growth rate, temperature, and multiplicity of infection can influence the cII and cIII genes.
If the environmental conditions are favorable, then the cII and cIII genes are highly active,
and the cII gene product turns the cI gene on. The cI gene inhibits all other genes in-
cluding cro, and the lysogenic state is established. If the environmental conditions are not
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favorable, then the genes cII and cIII are not activated, the cro gene remains active, and
its product represses the cI gene. Thus, the lytic state is established.

Due to the limitation of the environmental conditions, we constrain the state in Sx =
{δ

, δ
 , δ

 , δ
}.

By Theorem  and Remark  we can design  state feedback pinning controls that
stabilize system () with Sx to the equilibrium δ

 (the lytic state), and one of them is

u(t) = δ[                               ]x(t).

Example  Consider the following BCN:

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

x(t + ) = x(t) ∨ u(t),

x(t + ) = (x(t) → x(t)) ∨ u(t),

x(t + ) = ¬x(t);

y(t) = x(t) ∨ x(t),

y(t) = (x(t) ∧ x(t)) ∨ (¬x(t) ∧ (x(t) ↔ x(t))).

()

Setting x(t) = �

i=xi(t), u(t) = �


i=ui(t), and y(t) = �


i=yi(t), we obtain the following al-

gebraic form:
⎧

⎨

⎩

x(t + ) = Qu(t)x(t),

y(t) = Hx(t),
()

where

Q = δ[                               ]

and

H = δ[       ].

We assume that Sx = {δ
, δ

 , δ
 , δ

 , δ
, δ

}, and Su = {δ
, δ

, δ
, δ

}. We aim to design an
output feedback pinning control such that system () with Sx and Su is stabilized to xe =
δ

 .
Based on Theorem  and Algorithm  presented in [], we can obtain eight output

feedback pinning control gain matrices; one of them is K = δ[   ], K = δ[   ].

5 Conclusion
In this paper, we have studied the pinning control design for feedback stabilization of con-
strained BCNs. We have obtained the constrained algebraic form for constrained BCNs
with pinning control via the semitensor product of matrices. We have given a necessary
and sufficient condition for the reachability of constrained BCNs. We have proposed a
procedure for the pinning control design of state feedback stabilization of constrained
BCNs. Moreover, we have presented a necessary and sufficient condition for the output
feedback stabilization of constrained BCNs with pinning control. The study of two illus-
trative examples has shown that the new results obtained in this paper are very effective.
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