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Abstract
In this paper, we study a predator-prey-mutualist system with digestion delay. First,
we calculate the threshold value of delay and prove that the positive equilibrium is
locally asymptotically stable when the delay is less than the threshold value and the
system undergoes a Hopf bifurcation at the positive equilibrium when the delay is
equal to the threshold value. Second, by applying the normal form method and
center manifold theorem, we investigate the properties of Hopf bifurcation, such as
the direction and stability. Finally, some numerical simulations are carried out to verify
the main theoretical conclusions.
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1 Introduction
Mutualism is one of the most important relationships in the real world. For example, ants
deter herbivores from feeding on plants [] and deter predators from feeding on aphids
[, ]. Some the predator-prey-mutualist models have been studied by several scholars
[–]. For instance, Xiang et al. [] consider a mutualistic model with saturating terms
and effects of toxic substances, investigate the permanence of the system, and study the
local or global stability of the positive equilibrium. Wu [] studies the positive periodic
solutions for a mutualistic model with saturating term and the effects of toxic substance
by using Mawhin’s continuation theorem of coincidence degree theory []. Huo et al. []
propose a nonautonomous mutualistic system with stage structure and prove the global
asymptotical stability of a periodic solution. Rai and Krawcewicz [] describe the symmet-
ric predator-prey-mutualist model

⎧
⎪⎪⎨

⎪⎪⎩

x′(t) = rx(t)( – x(t)
L+ly(t) ),

y′(t) = αy(t)( – y(t)
k ) – βy(t)z(t)

+mx(t) ,
z′(t) = –sz(t) + cβy(t)z(t)

+mx(t) ,

(.)

where x(t), y(t), and z(t) denote the populations of mutualist, prey, and predator at any
time t, respectively. They apply the equivariant degree method to study the Hopf bifurca-
tion of the system.

However, it is generally believed that the delay in the interaction between populations
is inevitable, and sometimes the delay can break the stability of the positive equilibrium;
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therefore, it is more reasonable to add a time delay in a mutualist system. In this paper, we
study the following delayed predator-prey-mutualist model:

⎧
⎪⎪⎨

⎪⎪⎩

x′(t) = rx(t)( – x(t)
L+ly(t) ),

y′(t) = αy(t)( – y(t)
k ) – βy(t)z(t)

+mx(t) ,
z′(t) = –sz(t) + cβy(t–τ )z(t–τ )

+mx(t–τ ) ,

(.)

where γ and α are the specific growth rates of the mutualist population x(t) and the prey
population y(t), and L stands for the carrying capacity of the mutualist population. The
constant k is the carrying capacity of the environment for y(t), and the predator z(t) has
been taken to be of Lotka-Volterra type. The effect of mutualist is to decrease the preda-
tion on prey, the feature which is obtained by taking the parameter m to be positive. The
parameter c is called the conversion ratio, and l and m are the mutualism parameters. All
the parameters appearing in (.) are positive.

The paper is organized as follows: In the next section, we obtain the threshold value τ

and verify that when  ≤ τ < τ, the positive equilibrium is locally asymptotically stable,
whereas if τ = τ, then the system undergoes a Hopf bifurcation at the positive equilib-
rium. In Section , we discuss the direction and stability of the Hopf bifurcation by using
the normal form theory and center manifold theorem. In Section , we give an interest-
ing numerical analysis to illustrate the main results. In the last section, we make a brief
summary.

2 Local stability of positive equilibrium and existence of Hopf bifurcation
In this section, we analyze the local asymptotic stability of the positive equilibrium and the
existence of the Hopf bifurcation occurring at the positive equilibrium. It is easy to verify
that system (.) has a unique positive equilibrium E∗(x∗, y∗, z∗) when the condition

(H) cβk > s[ + m(L + lk)]
is satisfied, where

x∗ =
cβL + ls
cβ – sml

, y∗ =
s( + mL)
cβ – sml

, z∗ =
αc[cβk – s( + m(L + lk))]( + mL)

k(cβ – sml) .

Let x(t) = x(t) – x∗, y(t) = y(t) – y∗, z(t) = z(t) – z∗. Dropping the bars for convenience and
expanding the nonlinear part by Taylor expansion, we rewrite system (.) in the following
form:

⎧
⎪⎨

⎪⎩

x′(t) = ax(t) + ay(t) + f,
y′(t) = ax(t) + ay(t) + az(t) + f,
z′(t) = az(t) + bx(t – τ ) + by(t – τ ) + bz(t – τ ) + f,

(.)

where

a = –r, a = rl, a =
αmas
cβbk

,

a = –
αs( + mL)

bk
, a = –

s
c

, a = –s,

b = –
αmas
βbk

, b =
αca
bk

, b = s,
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and

f = ax(t) + ay(t) + ax(t)y(t) + ax(t)y(t) + ax(t)y(t) + ay(t) + · · · ,

f = ax(t) + ay(t) + ax(t)y(t) + ax(t)z(t) + ay(t)z(t) + ax(t)

+ ax(t)y(t) + ax(t)z(t) + ax(t)y(t)z(t) + · · · ,

f = ax(t – τ ) + ax(t – τ )y(t – τ ) + ax(t – τ )z(t – τ ) + ay(t – τ )z(t – τ )

+ ax(t – τ ) + ax(t – τ )y(t – τ ) + ax(t – τ )z(t – τ )

+ ax(t – τ )y(t – τ )z(t – τ ) + · · · ,

with

a = –
rb

cβL + ls
, a = –

rlb
cβL + ls

, a =
rlb

cβL + ls
,

a =
rlb

(cβL + ls) , a = –
rlb

cβL + ls
, a =

rlb

(cβL + ls) ,

a = –
αmas

cβk( + mL)
, a = –

α

k
, a =

αma
cβk( + mL)

,

a =
msb

cβ( + mL)
, a = –

b
c( + mL)

, a =
αmasb

cβk( + mL)
,

a = –
αmab

cβk( + mL) , a = –
msb

cβ( + mL)
, a =

mb

cβ( + mL) ,

a =
αmas

cβk( + mL)
, a = –

αma
βk( + mL)

, a = –
msb

cβ( + mL)
,

a =
b

 + mL
, a = –

αmasb
cβk( + mL)

, a =
αmab

cβk( + mL) ,

a =
msb

cβ( + mL)
, a = –

mb

cβ( + mL) .

a = cβk – s
[
 + m(L + lk)

]
, b = cβ – sml =

a + s( + mL)
k

.

The linearized system of (.) is

⎧
⎪⎨

⎪⎩

x′(t) = ax(t) + ay(t),
y′(t) = ax(t) + ay(t) + az(t),
z′(t) = az(t) + bx(t – τ ) + by(t – τ ) + bz(t – τ ).

(.)

The characteristic equation of (.) at E∗ is of the form

λ + Aλ
 + Aλ + A +

[
Bλ

 + Bλ + B
]
e–λτ = . (.)

It is easy to check that

A = aaa – aaa, A = aa + aa + aa – aa,

A = –(a + a + a), B = aab + aab – aab – aab,
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B = ab + ab – ab, B = –b.

When τ = , we have the following theory according to the Routh-Hurwitz criterion.

Theorem . When τ = , if (H) holds and s > r, then the positive equilibrium E∗ is locally
asymptotically stable.

Proof When τ = , Eq. (.) becomes

λ + mλ
 + mλ + m = , (.)

where

m = A + B =
αrsa(cβ – sml)

cβbk
,

m = A + B =
αs[cβa + cβr( + mL)]

cβbk
,

m = A + B = r +
αs( + mL)

bk
.

From (H) we get that mi >  (i = , , ). Denote

� = m, � = mm – m, � = (mm – m)m.

Then we obtain �i >  (i = , , ) by directly computing. By the well-known Routh-
Hurwitz criterion we get that positive equilibrium E∗ is locally asymptotically stable for
τ = . �

We further investigate the existence of purely imaginary roots to (.) with τ > .
Suppose that iω (ω > ) is the solution of (.). Then we have

–iω – Aω
 + iAω + A +

[
–Bω

 + iBω + B
]
(cosωτ – i sinωτ ) = . (.)

Separating the real and imaginary parts, we derive that

{
ω – Aω = Bω cosωτ + (Bω

 – B) sinωτ ,
Aω

 – A = Bω sinωτ + (Bω
 – B) cosωτ .

(.)

Squaring and adding the two equations of (.), we have that

ω + eω
 + eω

 + e = , (.)

where

e = A
 – B

, e = A
 – AA + BB – B

 , e = A
 – A – B

.

Let ν = ω. Then (.) becomes

ν + eν
 + eν + e = . (.)
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Hence, by calculating we see that if
(H) a > s( + mL),

then e >  and e < , that is, (.) has a unique positive solution ω. The corresponding
critical value of time delay is

τj =


ω
arccos

(B – BA)ω
 + (BA + BA – BA)ω

 – BA

Bω

 + (B

 – BB)ω
 + B


+

jπ
ω

, (.)

where j = , , , . . . .
Now, we discuss the sign of Re{ dλ

dτ
}|τ=τ .

Differentiating the two sides of (.) with respect to τ , it follows that

(
dλ

dτ

)–

=
(λ + Aλ + A)eλτ + (Bλ + B)

Bλ + Bλ + Bλ
–

τ

λ
.

If τ = τ, that is, λ = iω, we obtain

[
dλ

dτ

]–∣∣
∣
∣
λ=iω

=
(–ω

 + iAω + A)eiωτ + (iBω + B)
–iBω


 – Bω


 + iBω

–
τ

iω
.

Therefore,

Re

{
dλ

dτ

}–∣∣
∣
∣
λ=iω

=
PO + PQ

Q
 + Q


,

where

P =
(
ω

 – A
)

cosωτ + Aω sinωτ – Bω

τ + Bτ – B,

P = Aω cosωτ +
(
A – ω


)

sinωτ + Bω – Bωτ,

Q = Bω

, Q = –Bω


 + Bω,

and thus

sign

[

Re

{
dλ

dτ

}–∣∣
∣
∣
τ=τ

]

= sign(PO + PQ).

Obviously, if PO + PQ �= , then [Re{ dλ
dτ

}–|τ=τ ] �= . Thus, by the Hopf bifurcation
theorem for functional differential equation [], we get the following result.

Theorem . If τ >  and PO + PQ �= , then the positive equilibrium E∗ is asymptoti-
cally stable for  < τ < τ, and it becomes unstable for τ staying in some right neighborhood
of τ, with a Hopf bifurcation occurring when τ = τ.

3 The stability and direction of the Hopf bifurcation
In this section, we present formulae for determining the direction of the Hopf bifurcation
and stability of bifurcation periodic solutions of system (.) when τ = τ by employing
the normal form method and center manifold theorem introduced by Hassard et al. [].
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Let u(t) = x(τ t), u(t) = y(τ t), u(t) = z(τ t), τ = τ + μ, μ ∈ R. Then system (.) is trans-
formed into the system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u′
(t) = (τ + μ)[au(t) + au(t) + au(t) + f(t)],

u′
(t) = (τ + μ)[au(t) + au(t) + au(t) + f(t)],

u′
(t) = (τ + μ)[au(t) + bu(t – )

+ bu(t – ) + bu(t – ) + f(t)],

(.)

where

f = au
 (t) + au

(t) + au(t)u(t) + au
 (t)u(t) + au(t)u

(t)

+ au
(t) + · · · ,

f = au
 (t) + au

(t) + au(t)u(t) + au(t)u(t) + au(t)u(t)

+ au
 (t) + au

 (t)u(t) + au
 (t)u(t) + au(t)u(t)u(t) + · · · ,

f = au
 (t – τ ) + au(t – τ )u(t – τ ) + au(t – τ )u(t – τ )

+ au(t – τ )u(t – τ ) + au
 (t – τ ) + au

 (t – τ )u(t – τ )

+ au
 (t – τ )u(t – τ ) + au(t – τ )u(t – τ )u(t – τ ) + · · · .

Denote

Ck[–, ] =
{
ϕ | ϕ : [–, ] → R,

each component of ϕ has a kth-order continuous derivative
}

.

Let φ(θ ) = (φ(θ ),φ(θ ),φ(θ ))T ∈ C[–, ] be the initial data of system (.). Define the
operators

Lμφ = (τ + μ)
[
A′φ() + B′φ(–)

]
,

f (μ,φ) = (τ + μ)(f, f, f),

with

φ(θ ) =
(
φ(θ ),φ(θ ),φ(θ )

) ∈ C
(
[–, ], R],

A′ =

⎛

⎜
⎝

a a 
a a a

  a

⎞

⎟
⎠ , B′ =

⎛

⎜
⎝

  
  

b b b

⎞

⎟
⎠ ,

and Lμ : C[–, ] → R, f : R × C[–, ] → R. Then (.) can be rewritten as

u′
t = Lμut + f (μ, ut).

By the Riesz representation theorem there exists a function η(θ ,μ) of bounded variation
for θ ∈ [–, ] such that

Lμφ =
∫ 

–
dη(θ ,μ)φ(θ ) for φ ∈ C[–, ].
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In fact, we can choose

η(θ ,μ) = (τ + μ)

⎛

⎜
⎝

a a 
a a a

  a

⎞

⎟
⎠ δ(θ ) – (τ + μ)

⎛

⎜
⎝

  
  

b b b

⎞

⎟
⎠ δ(θ + ),

where δ(θ ) is the Dirac function.
For φ ∈ C[–, ], define

(Aμφ)(θ ) =

{ dφ(θ )
dθ

, θ ∈ [–, ),
∫ 

– dη(θ ,μ)φ(θ ), θ = ,
(.)

and

(Rμφ)(θ ) =

{
, θ ∈ [–, ),
f (μ, θ ), θ = .

(.)

Then system (.) is equivalent to

u′
t = Aμut + Rμut , (.)

where ut = u(t + θ ), θ ∈ [–, ].
For ϕ ∈ C[, ], define

(
A∗ψ

)
(s) =

{
– dψ(s)

ds , s ∈ (, ],
∫ 

– dηT (s, )ψ(–s), s = ,
(.)

and the bilinear inner product

〈
ψ(s),φ(θ )

〉
= ψ()φ() –

∫ 

–

∫ θ

ξ=
ψ(ξ – θ ) dη(θ )φ(ξ ) dξ , (.)

where ψ(θ ) ∈ C[–, ], η(θ ) = η(θ , ), and A and A∗ are adjoint operators. By discussion
in Section  and the transformation t = tτ we know that ±iωτ are the eigenvalues of A.
Hence, ∓iωτ are the eigenvalues of A∗. Next, we compute the eigenvector q of A be-
longing to the eigenvalue iωτ and the eigenvector q∗ of A∗ belonging to the eigenvalue
–iωτ.

Suppose q(θ ) = (, q, q)T eiωτθ . Then q() = (, q, q)T and q(–) = q()e–iωτ . From
(.) we have

τ

⎛

⎜
⎝

a a 
a a a

be–iωτ be–iωτ a + be–iωτ

⎞

⎟
⎠q() = iωτ

⎛

⎜
⎝


q

q

⎞

⎟
⎠ .

Thus,

q =
iω – a

a
, q =

(iω – a)(iω – a) – aa

aa
.
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Similarly, we can calculate the eigenvector q∗(s) = D(, q∗
 , q∗

)eiωτs of A∗ belonging to
the eigenvalue –iωτ, where

q∗
 =

–a(a + beiωτ + iω)
(iω + a)(a + beiωτ + iω) – abeiωτ

,

q∗
 =

aa

(iω + a)(a + beiωτ + iω) – abeiωτ
.

In order to determine the value of D, we normalize q and q∗ by the condition
〈q∗(s), q(θ )〉 = . From (.) we have

〈
q∗(s), q(θ )

〉
= D

(
, q∗

 , q∗

)
(, q, q)T

–
∫ 

–

∫ θ

ξ=
D

(
, q∗

 , q∗

)
e–iωτ(ξ–θ ) dη(θ )(, q, q)T eiωτξ dξ

= D
[

 + qq∗
 + qq∗

 –
∫ 

–

(
, q∗

 , q∗

)
θeiωτθ dη(θ )(, q, q)T

]

= D
[
 + qq∗

 + qq∗
 + τq∗

(b + bq + bq)e–iωτ
]
.

Therefore, let

D =


 + qq∗
 + qq∗

 + τq∗
(b + bq + bq)e–iωτ

.

In the remainder of this section, following the algorithms given in [] and using a sim-
ilar computation process as in [], we get the coefficients that will be used to determine
several important qualities:

{
g = τD(k + kq∗

 + kq∗
), g = τD(k + kq∗

 + kq∗
),

g = τD(k + kq∗
 + kq∗

), g = τD(k + kq∗
 + kq∗

),
(.)

where

k = a + aq
 + aq, k = a + aq

 + aq + aq + aqq,

k = (a + aq + aq + aqq)e–iωτ , k = a + aqq + aRe{q},
k = a + aqq + aRe{q} + aRe{q} + aRe{qq},
k = a + aRe{q} + aRe{q} + aRe{qq}, k = a + aq

 + aq,

k = a + aq
 + aq + aq + aqq,

k = (a + aq + aq + aqq)eiωτ ,

k = a
[
W() + W()

]
+ a

[
qW() + qW()

]
+ a

[
( + q)W()

+ ( + q)W()
]

+ a(q + q) + a
(
q

 + qq
)

+ aq
 q,

k = a
[
W() + W()

]
+ a

[
qW() + qW()

]
+ a

[
W()

+ W() + qW() + qW()
]

+ a
[
W() + W() + qW()

+ qW()
]

+ a
[
qW() + qW() + qW() + qW()

]
+ a
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+ a(q + q) + a(q + q) + a(qq + qq + qq),

k = a
[
W(–)eiωτ + W(–)e–iωτ

]
+ a

[
( + q)W(–)e–iωτ

+ ( + q)W(–)eiωτ
]

+ a
[
( + q)W(–)e–iωτ

+ ( + q)W(–)eiωτ
]

+ a
[
(q + q)W(–)e–iωτ

+ (q + q)W(–)eiωτ
]

+ ae–iωτ + a(q + q)e–iωτ

+ a(q + q)e–iωτ + a(qq + qq + qq)e–iωτ ,

and

W(θ ) =
ig

ωτ
q(θ ) +

ig
ωτ

q(θ ) + Eeiωτθ , (.)

W(θ ) = –
ig

ωτ
q(θ ) +

ig
ωτ

q(θ ) + E. (.)

Moreover E and E satisfy the following equations, respectively:

⎛

⎜
⎝

iωτ – a –a 
–a iωτ – a –a

–be–iωτ –be–iωτ iωτ – (a + be–iωτ )

⎞

⎟
⎠E

= 

⎛

⎜
⎝

a + aq
 + aq

a + aq
 + aq + aq + aqq

(a + aq + aq + aqq)e–iωτ

⎞

⎟
⎠

–

⎛

⎜
⎝

a a 
a a a

b b a + b

⎞

⎟
⎠E

= 

⎛

⎜
⎝

a + aqq + aRe{q}
a + aqq + aRe{q} + aRe{q} + aRe{qq}

a + aRe{q} + aRe{q} + aRe{qq}

⎞

⎟
⎠ .

E and E can be calculated by solving the above systems. Thus, W(θ ) and W(θ )
are obtained from (.) and (.). Finally, we get g. The following parameters can be
computed:

c() =
i

ωτ

(

gg – |g| –
|g|



)

+
g


,

μ = –
Re{c()}
Re{λ′ (τ)} ,

β = Re
{

c()
}

,

T = –
Im{c()} + μIm{λ′ (τ)}

ωτ
.

(.)

Theorem . The values of (.) determine the qualities of bifurcating periodic solutions
in the center manifold at the critical value τ = τ; we have the following conclusions:
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(i) the sign of μ determines the directions of the Hopf bifurcation: if μ >  (μ < ),
then the Hopf bifurcation is supercritical (subcritical), and the bifurcation periodic
solutions exist for τ > τ (τ < τ);

(ii) the sign of β determines the stability of the bifurcation periodic solutions: the
bifurcation periodic solutions are stable (unstable) if β <  (β > ) ;

(iii) the sign of T determines the period of the bifurcation periodic solutions: the period
increases (decreases) if T >  (T < ).

4 Numerical simulations
We give some numerical simulations in this section in order to demonstrate the theoretical
results obtained in this paper. Let the initial value be (, , ), and parameter values
be: r = ., L = ., l = ., k = , α = ., β = ., m = ., s = ., c = ..

() When τ = , it is easy to show that system (.) has a unique positive equilibrium
E∗(., ., .). By calculation, the condition of Theorem . is satisfied, so that E∗ is
locally asymptotically stable (see Figure ).

() When τ > , according to Theorem ., system (.) undergoes a Hopf bifurcation at
the equilibrium E∗ when τ = τ. By directly computing we can obtain τ ≈ ., and the
positive equilibrium is E∗(., ., .). We choose τ = . < τ, and then E∗ is locally
asymptotically stable (see Figure ); On the contrary, we choose τ = . > τ, and then E∗

is unstable (see Figure ).
By Theorem . we know that, under the set of parameters, when τ = τ, a Hopf bifur-

cation occurs. Furthermore, we can obtain that μ > , β < , the bifurcating periodic

Figure 1 The positive equilibrium E∗ of system (1.2) is asymptotically stable when τ = 0.
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Figure 2 The positive equilibrium E∗ of system (1.2) is locally asymptotically stable when τ = 0.5 < τ0.

Figure 3 The positive equilibrium E∗ of system (1.2) is unstable, and there exists a bifurcating
periodic solutions when τ = 0.6 > τ0.
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solutions exist, and the corresponding periodic orbits are orbitally asymptotically stable
(see Figure ).

5 Conclusion
A predator-prey-mutualist model is studied in this paper. To be more realistic, it is very
necessary to introduce the digestion delay. We consider the asymptotic stability of the
positive equilibrium when τ = ; In addition, when τ > , the stability of the positive equi-
librium and the existence of Hopf bifurcation are studied; we also discuss the direction
and stability of Hopf bifurcation. Some numerical analysis is finally given.
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