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Abstract

In this paper, we study a sequential fractional g-integrodifference equation with
fractional g-integral and g-derivative boundary value conditions. Our problem
contains two different fractional orders and six different numbers of g in derivatives
and integrals. By using Banach’s contraction principle and Krasnoselskii's fixed point
theorem, some new existence and uniqueness results are obtained. An illustrative
example is also presented.
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1 Introduction
In the 20th century, the intensive works on g-difference equations have became inter-
esting subject of research work [1-3] in the areas of mathematics and applications such
as the applications to orthogonal polynomials and mathematical control theories. Basic
definitions and properties of g-difference calculus can be found in the book [4]. For the
fractional g-difference calculus originating with work by Al-Salam [5] and Agarwal [6],
we refer to the book of Annaby and Mansour [7]. Many intensive works on g-difference
equations and fractional g-difference equations have been conducted (see [8—23]). How-
ever, the study of the boundary value problem of nonlinear g-difference equations is in
deficiency. Examples of such scant works are as follows.

In 2015, Agarwal et al. [19] proposed the nonlinear g-integrodifference equation with
non-separated boundary condition given by

Dju(t) = f(t, u(0)) + Lg(t,u(®), tel,
u(0)=nu(T),  Dau(0) = nDyu(T),

(1.1)

where f,g € C(I, x R,R), I, = [0, TIN g™, ¢" := {q" | n € NJU {0}, T € ¢V, and 1y # 1. They
presented sufficient conditions for the existence and nonexistence results of problem (1.1).

In [15], Ahmad et al. investigated the existence of solutions for the Caputo fractional
q-difference integral equation with two different fractional orders and nonlocal boundary
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conditions

D (D) + M)x(t) = pf (t,x(0)) + klzg(t,x(t)), ¢ €[0,1),
12(0) = B1(t""Dyx(0)) =0 = 01x(m1), 1.2)
ax(1) = B2Dg(1) = o3x(n2),

where B,v,& € (0,1), f, g are given continuous functions, A, p, k are real constants and
o, Bio;€R,n; €(0,1),i=1,2.

Recently, Sitthiwirattham [20] discussed the existence results of solutions to a fractional
q-difference equation and a fractional g-integrodifference equation,

D2x(t) = f (£ x(2), Diyx(2)), (1.3)
Dyx(t) =f (6, x(2), V) x(t)), te[0,T], (1.4)

with nonlocal three-point fractional p-integral boundary conditions of the form

x(n) = p(x)
Iﬁg(T = fo NT — ps) B Vx(s) dps = 0

where p,q,w € (0,1), « € (1,2], v € (0,1], B,y > 0, and n € (0, T) are given constants, f €
C([0,T] x R x R,R), g € C([0, T],R*) are given functions, and p € C([0, T, R) — Risa
given functional. For ¢ € C([0, T] x [0, T1, [0, 00)), define W}, x(¢) := (I, ox)(£) = fo
ws) Y Vo(t,$)x(s) d,s.

To gain further insight in nonlinear g-integrodifference equations, in this paper, we de-
vote our attention to the study of the existence and uniqueness for a sequential g-integro-
difference boundary value problem involving two different fractional orders and six dif-

ferent numbers of g in derivatives and integrals of the form

Dyp(t)Dyy (k + Do)]x(t) = f (£, (), D [e5 x(2)], W,x(2)),
x(0) = x(T),
(Do[es'x(2)])s-0 = Do [es " x(T)],

o (T)x(T) =0,

(1.5)

T._ k7. . _Pn _aq -0 -n _m _
wheret € I, := {a Tl.keN}U{O,T}, y,0 € (0,1],p_p2,q_ Bo=2r=tw=31v=
LCM(p2,q2,02,2,w2,v2)
multiple; k < %; p,0 € CUIF,R*) and f € C(IF x R x R x R,R) are given functions; and
for ¢ € CUIT x I7,10,00)), define W,x(¢) := (Lpx)(t) = [, ¢(t,5)x(s) dys.

From our problem, we see that there are six different values of the g numbers consist-

Z—;, and o = are proper fractions with w < o, LCM is the least common

ing of g, p, 0, w-derivatives and v, r-integrals. This paper is organized as follows. We give
some basis definitions, some properties of the g-difference operator and lemma as ma-
terial used for this study in Section 2. To achieve proving the existence and uniqueness
of solution of the given problem (1.5), we employ Banach’s contraction mapping principle
and Krasnoselskii’s fixed point theorem in Section 3. Using our main results, we provide
an example in Section 4.
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2 Preliminaries
In the following, there are notations, definitions, and lemmas which are used in the main
results. Let g € (0,1) and define

1-¢ 1 i l—qk
[nly:= 14 =¢""+---+g+1 and [n]q!::gl_q, neR.

The g-analog of the exponential function is

&f\'x

I
2
| =

o

= Kl

The g-analog of the power function (z — b)™ with n € Ny := [0,1,2,...] is
n-1
@-0)":=1,  (@-b"=]](a-bq"), abeR.
k=0
More generally, if « € R, then

(a—-b)® := 1_[ qam a0.

Note that if b = 0 then a® = 4%. We also use the notation 0 = 0 for a > 0. The g-gamma
function is defined by

1-q)*V

q() W’

xeR\{0,-1,-2,...},

and satisfies I'y(x + 1) = [x],T";(x).
For any x,s > 0, the g-beta function is defined by

1
By(x,5) = / DL = g1) D d ¢
0

n+1 (@=1) ¢ p\(x-1) _ Fq(x)rq(s)
=(1- q)Zq (a") e

Definition 2.1 [6] For g € (0,1), the g-derivative of a real function f is defined by

(®) - f(q?)

2O =

and D,f(0) = }in(l) D,f(2).
For higher order g-derivatives of f, we define
Dif(t) = DDy 'f(£), meN and DYf(t) =f(t)

Next, if f is a function defined on the interval [0, T], g-integral is defined as

Lf(t) = / f(s)dqs—Zt(l Dq'f(tq").

n=0
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Note from the last term of the above definition that the infinite series is conver-
gent.

Definition 2.2 [6] For « > 0 and f defined on [0, 7], the fractional g-integral of the
Riemann-Liouville type is defined by

G0 = s | a0 de
_ x(l—ﬂl) i n(x_xm.l)(a—l)f(x n)
Fq(a) n=0q 1
U=q) o= e @Dy n
) xrq(a)q > a" (=) (aa")
n=0

and (Igf)(x) = f(x).

Definition 2.3 [8] For o > 0 and f defined on [0, T], the fractional g-derivative of the
Riemann-Liouville type of order « is defined by

(Dgf)(x) = (DZ’I;"“’ )&), «>0 and (Dgf) (x) =f(x)
where m is the smallest integer that is greater than or equal to «.

Lemma 2.1 [6] Let«, B > 0 and f be a function defined on [0, T|. Then the next formulas
hold:

) (I12f) ) = (I2*F) (),
(i) (DFIEf) () =f ().
Lemma 2.2 [8] Let o >0 and N be a positive integer. Then the following equality holds:

N-1 xo—N+k

(DY) @) = (D) IS ) —rq Ty CAL0)
k=0

Lemma 2.3 [17] Let o, 8 > 0 and 0 < p,q < 1. Then the following formulas hold:
! 1
|- a0 dye 8 ),

(ii) /[(n ps"‘”(s qt)ﬂldtds [,B]q B,(a, B +1).

To define the solution of the boundary value problem (1.5), we need the following
lemma, which deals with a linear variant of the boundary value problem (1.5) and gives
a representation of the solution.

Lemma 2.4 Let p = —, q= Z—l, o=2 r=1 and B = m be proper fractions,
«>0.ForheCUt, R) and 0,0 € C(IL,R"), the solution for the problem

Dy[p(O)D} (i + D,)|x(t) = h(2), telf, (2.1)
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x(0) =x(T),
(Dol x(t)]) =0 = DolesTx(T)],
Ifo(T)x(T) =0,

is of the form

KS S Z y -1)
<tx(t) = p

- 02(/’1)[

where the functionals O;(h), i = 1,2, 3 are defined by

1
T L ()TH0) [ o (s)(T = r5)0-D d,s

/ f / / o erKST);(;)(Z P ) dudyy s,

(T - ps)r=D

0y(h) = eo_ps)(yl / [ dydys,

p(V)fo

(y-1)
s = p<y)w 1(/ / [ e s

KTfo o dp““/ / (T - p) D uds)
q P ’

T (T-ps)lr-1)
Jo o) dyps

and the constants

1
fo WT —rs)B-Dd,s

/ / ? o (s)es (T —rs) "D (z — py) )
eKTp(y)

dpyd,zd,s,

B_f o(s)(T - rs)91 rS/ f ($)es*(T - 1)V dyzd,s.

Proof We first g-integrate (2.1) to obtain

1 t
D? (i, + D,)x(t) = —(/ h(s)d,s + C )
? p)\Jo T
Then, taking the p-integral of order y for (2.9), we have
(1 + Dy)x(2) =

dyudy,s

(t —ps)rV
Cr
)’)f p(s) s+ Co

————h(uw)dudy,zd,s — O1(h)

exs y -1)
/ f (s pz S dyzd,s - A:| + Og(h)[e’g‘ + B],

Page 5 of 16

(2.2)

(2.3)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)
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which can alternatively be written as

D, (' x(2)) = (kes' + €' Dy)x(t)

(t- ps)Vl)h ()
p(y)/ / T e

Ciest [t (t—ps)¥D
Ly(v)Jo o)

dys + Crel’. (2.11)

Taking the o-integration of (2.11), we have

(s =p2)" Vh(u) ) D h(u)

eslx(t) = dyud,zd,s
p(Z) v
t
/ f S pz) pzd S+ C2/ e’ dos + Cs. (2.12)
)’) 0
Letting £ = 0, T in (2.11) and (2.12), and employing the first and second conditions of (2.2),
we get
el;T foT fos (T*psl()V—l)h(u) dqudps
C=- - (T—ps)(V‘l) , (2.13)
fO p(s) d
o5 (s pz)
C, = (u) dgudy,zd,s
fo € dys
"Tf f _‘” h(u)duds (T Zyl
0 ; o / / s p dpzdgs). (2.14)
p(s)

Next, taking the r-integral of order @ for o (£)x(¢) where t € I}, we have

) L[S [ ee (- rs) OV - py) Y
frotte) = Fp(y)rr(e)/o /o /0 ./0 &0 (y)

x h(u) dgudyyd,zd,s

Cl /t /s /z O(S)eKz(t _ rS)(G—l)(Z _py)(y—l)
+ — e dyydyzd,s
I, ()T,0) es'p() »

C
2 /[ VesE(t — )0V d Yy doz dys

)& - rs)®- (2.15)

T (9)

By substituting C;, C; into (2.10) and employing the third condition of (2.2), we find that

T _ps)(¥-1)
1 {engo b = I:()s) h(u) dqyu dys

T()T,(0) [y o ()T - rs) P dys S T g

s 12 6(s)es*(T - rs) P~V (z — py) v
x . h(u)d,yd,zd,s
/0 /0 ./o eTp(y) 24
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1 T /s /z (S _pz)(y—l)
-— ey’ —————h(u)dyudyzd,s
fT € d,s (./0 o Jo 0(2) e

"Tfo fo _ps h(u)d udys KS(T pz)7D S i
(T—ps)(y v o(z) v o
Jo

T
x/ fo(s)eﬁZ(T—rs)(ﬁ’l)dpydozd,s

y KZT (B-1) y-1)
/ / / / = :;;p(y(z 2 h(u)dqudpydgzdrs}. (2.16)

Substituting C;, C,, and Cs into (2.12), we obtain (2.3).
On the other hand, we shall show that (2.3) is the solution of problem (2.1)-(2.2). First

of all, taking the o-derivative for (2.3), we obtain

t et [t (e po)TDh(u)
o(etx(0) = S0 Lo WY ud
Dy(e;'(0) rp(y)/o /o o) Calds

&' Oa(h) [* (t—ps)¥ 7V
() Jo o(s)

dys + Os(h)kes’, (2.17)

which can alternatively be written as

(t = ps)"Vh(u)
p(y)/ / p(s) ity

_Oz(h)/ (t - ps)rY
Ip(y) o(s)

(k +D,)x(t) =

dps + O3(h). (2.18)
Taking the p-derivative of order y for (2.18), we have
t
p(E)Dy (i + Do)x(t) = / h(s)dgs + Oy (h). (2.19)
0

Finally, taking the g-derivative for (2.19), we obtain (2.1). The proof is completed. a
3 Main results
In order to prove the main results, we need to transform the boundary value problem (1.5)
into a fixed point problem. We employ Lemma 2.4 by letting P(¢) = t), the Banach space

C=C(UI,R)={x:1 - R|xe C(I)} equipped with a topology of umform convergence

with respect to the norm

lxllc = llll + | Du[es‘2®)]],

where [|x|| = sup, ;7 lx(£)| and || Dy [es x(@)] || = Sup, ;1 |D,,[e4 x(2)]|. Define an operator F :
C— Cby

(Fx)(0) = F_(Kt) / / f e55(s - p2) " VP(2)

x f (u,%(u), Dy [ €5 (1) ], Wyx(1)) dgus dpz s
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1 t s
- 01— 00| s [ [ s-palr P dyedis- A
Tp(v) Jo Jo
t
+¢e,' 0%(f) [/0 €’ dys — B], (3.1)
— P _a - 9 -n _-m - - _
wherep="21,g=2,0=020r="1, w=J1,v="11, o = pe——"——— are proper frac

tions, w < 0; k < 7; and O} (f), i = 1,2,3, are defined by

1 T ps pz py
O* = «(z=T) T_ 6-1)
W T,(y) [y o6)N(T —rs)0Dd,s /0 /0 /0 fo o(s)eg” (T —rs)

x (2= py)" PO (120, Dy [esax(u) |, W (u)) dgudyy doz d,s, (3.2)
eKT T s
Oi ) v T - (V—l)P
>(f) foT(T — ps)r-DP(s) dps /0 /0 ( ps) (s)
X f (0(0), Dy [ ()| W100)) s, (33)
1

05() = T,()[esT — 1]

T ps pz
* {/0 /o /o e (s — p2)" DP()f (1, 5(us), Dy [ €5 2(u) ], Wyx(us) ) dgs dyz lys

e’ foT Jo €5(T = p2)YVP(2) dpz d,s
+
Jo (T = ps) Y =DP(s) dys

T s
X f / (T —ps)(V_I)P(s)f(u,x(u),Dw [eg”x(u)], \Ilvx(u)) dqu dps}, (3.4)
o Jo

with the constants A, B defined as (2.7)-(2.8), respectively.
Clearly problem (1.5) has solutions if and only if the operator F has fixed points.

Theorem 3.1 Assume o,P:1 — R*, f:II xRxR xR — Rand ¢:IF x IF — [0,00)
are continuous, let ¢g := SuP(t,s)e1§x1§{‘P(t’s)}' In addition, assume that f, o, and P satisfy
the following conditions:

(Hy) there exist positive constants Ly, Ly, and L3 such that

If (£,%, Dy (e5°x), W) — £ (£,9, D (€5'y), ¥yy)|

< Lilx —y| + Ly|Dy(€s"x) — Dy (€"y)| + Ls| Wy — Wy,
forallt eIl and x,y € R,

(Hy) O<m<o(t)<Mand0<n<P(t)<N,foralltell,
(Hz) A1+ ) <1,

where

A= max{Ll + o TL31L2}1

TY+IN
Q=———
YT+ 2y + 21,

[1+M[0],B,(0,y +3)] + [ T  M[6],B,0,y + 2)}

[y +1], " m(r+1],
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N2 e&TTY  Ne<TTv+ T 1 M
nF (Y +2) an()/+2)[[y+2]0 + [J/+1]oM m[9+1],]’ (3.5)
TYN[y +1]y T NetT
- Ty +2) |:[V+2]o++n[y+1]o]
Fply +2) [ly+2], [y+1l

Then the given boundary value problem (1.5) has a unique solution.

Proof As mentioned earlier, we need to transform the boundary value problem (1.5)
into a fixed point problem x = Fx, where F : C — C is defined by (3.1). We assume that
sup,;7 [f(£,0,0,0)| = K and choose a constant R satisfying the inequality

K(Q1 + Q)

For x € By, the following is to prove that FBr C Bg, where Bg = {x € C : ||x|| < R}. First we

consider
MN T s z ry
[0/ < sup 7 / / / / (T - r5)* D (z = py) D
teil | mTp(y) [o (T =rs)0Vd,sJo Jo Jo Jo
x (|f (u,x(u), Dy [ €5 (1) ], Wy () — f (1, 0,0,0)|
+ [f(u, 0,0,0)|)dqu dpyydozd,s
< sup MN((Ly + @oTL3)|x(w)| + L2| Dy [es*x(u)]| + K)
Y mlp(y) fOT(T —rs5)0Dd,s
T s z pry
X/ / / / (T = r5) 0D (z = py)rD dqudyydozd,s
o Jo Jo Jo
MNT, (0 + )T, (y +3)T7 2
A K 3.7
52’,5{( e + )<nrp<y+2)rr(e+y+3)[y+210 (37)
Ne“
|O (f)| < sup b / / (T - ps)” -1
tell nfo (T —ps)rVd,s
x (|f (w,x(u), Dy [ €5"x(1) ], W) — f (1, 0,0,0)|
+|f(1,0,0,0)|) dyudy,s
- NesT((Ly + 9o TL3)|x(w)| + Ly | Dy [es“x(u)]] + K)
< sup -
tell n [y (T —ps)¥Vd,s
T s
x/ /(T—ps)(y_l)dqudps
o Jo
NexT
A K)| —2—, 3.8
< (Alxllc + )(n[y+1]p) (3.8)
NeKT T s z
O5(f)| <su 70{/ / / (s — pz)?D
’ v | telg Tp()les™ =1 1Jo Jo Jo P
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X (V(M,X(M),DW [egux(u)]» \pvx(u)) —f(lxl, 0,0, 0)|
+ Lf(u, 0,0,0)|) dgud,zd,s

KTfo fo(T -p2)?Vd dpzd,s -1
T — )V~
nfO(T —ps)vVd,s //( 2

x (|f (u,x(u), Dy [ €5 (1) ], W) — f (11, 0,0,0)|

+ [f(u, 0,0, O)‘) dqu dps}

Ne/c T

W (L1 + 90 TLs) |x(at)| + La| Dy [ e x(a0) ]| + K)

< sup
tell

T ps pz NKT T s T_ (y—l)d do
X {/ / / (S—PZ)(V_I)dqudpzdos.,. % fo 7{0( pZ) pZ QoS
o n fo (T = ps)¥Vdys
T ps
x / / (T—pS)(V_l)dqudps}
0o Jo

< (Al +1<)[N6§TTV< LS >] (39)
= HRle nC(y +2)\[y +2l, [y +1, /] '

and

MN T ps prz (B-1) )
Al < E | [ [ = e-pmaydzds
mlp(y) [y (T =rs)fVd,.s Jo Jo Jo

MNTY*'T 2060 +1
Ssup{ Py +2)T(0 + )}’ (3.10)
tell mlp(y +2)I7(0 +y +2)
M «T T ps MTe «T
Bj<— / / (T =19V dyzdys < ——20 (3.11)
m [y (T —rs)®Vd,s Jo m(0 +1],

Consequently, we have

[(Fx)(®)| < sup{ N ((Ly + 9o TL3)|x(w)| + Lo| Dy [ e x(w)]| + K)
Fp(y)

teIT

/ f / (s - p2)" Vdud,zdys + e, |05 (f)| + |03 ()]

) [r (V)/o fo s=pa)"™" dﬂdo“eé“lA'} * |0§<f)|[1+e;“|B|]}
P

Y2N(A K
< { (Mxlle + K) + e_K[’O*(f)‘
tell Fp(y + 2) [V + 2]0

. ty+1N et . et
+ |02(f)||:m +€UK |A|} + |O3(f)|[t+€ok |B|]}

TY+¥IN
= (Hlslle +K) <Fp(y +2)ly + 2],

N2 eTTY [ T MI[0],B,(6,y +2)]
+
nF Wy +2) Ly +1], mlr+1],

[1+MI0],B,(6,y +3)]
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NesTT7r+1 T 1 ) Me<T
+nrp<y+2>[[y+z1g+ [y+qu +m{9+l]r]>
= (Mxllc + K)Q (312)

and

|Dw[e”(Fx)](t)|

K'SS pzyl

te]T{ p(V)(l w)t

x f (u,%(u), Dy [ €55 (u1) ], V(1)) dyus dpz s

_ /Wt /s /ze’;s(s —pz)(]’_l)f(u,x(u),Dw[eg”x(u)], \Ilvx(u)) dgud,zd,s
| KWt| }

1 -w)t
{NeST((Ll + 0 TL3) x(1)] + Ly |Dyles x(u)]] + K)

N0
T,(y)(1 - wit W)t

+|05(f

<sup
te[aT

Lp(y)A-w)t

s z wt s z
/ (s —p2)* Vdud,zd,s - / / / (s -p2)" Vdud,zd,s

KTO e
00 [}’l
+ |O < Zo[n_ )}
N[)/ +2 tVN[y +1]w
< (Alxlc +I()m |02(f)|m

-1=0

( t)n—l
+103 (f)|< Z [:—1]u!>

< (A K TNy +1], T NeKT
< (Mixllc + )( T,(y +2) |:[y+2]o 71[7+1]]

N/c(egT)zT”[ T 1 :|>
+ +
ly+2l, [y+1,

Ty +2)
= (Mixlle + K) Q. (3.13)
Therefore, we obtain
(3.14)

IExllc < (Mxllc + K)(Q1 + Q2a) < (AR + K)(21 + Q) < R.

Hence, we can conclude that FB; C Bg.
Further, considering for any x,y € C and ¢ € 17, letting

IF 2] = f[y®]| = [ (& 5(8), Du[ €5 x(8) ]|, Wo(2)) - f (£, 5(8), D[ €5 y(8)], Wu(D)) |,
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we find that
|(Fx)(8) = (By)(0)|

Ssup{ o / [ [ ets-patp@lr{st0] 1) dyuyzds

tell

+[mF (y)ijV[(T_K;S)el rS/ ///(T rs)@D(z — py)@ D

Net(T0

x[f[x(t)] [ t)]|d udpydozd,s:H:nfO (T v ps/ /(T ps)

x [f[x(e)] - f[y(t)]|dqudpsj| [W f / ¢55(5 — p2) " D P(2) dyzdys — A}

T, 1) ”“ 1][/ f/(s P2V f[O] ~f[y®]| dgudpz dos

KT -1)
Jo fi =Pl Vs [T [ g ] s ) s

”fo (T - ps)¥
t
X |:/ e’;sdos—BiH
0
< Alx=ylcSa. (3.15)

Similarly, we have

D€ (Fx)](2) - D[ el (Fy)](®)] < A% = yllc Q. (3.16)
Consequently, we obtain

[Fx = Fyllc < Mlx = ylle (€2 + Qo). (3.17)

From (H3), we can conclude that F is a contraction. Therefore, our proof is completed by
using Banach’s contraction mapping principle. 0

The following theorems show the existence of at least one solution to the boundary value
problem (1.5) by employing the Krasnoselskii fixed point theorem.

Theorem 3.2 [24] Let E is a bounded closed convex and nonempty subset of a Banach
space X. If A, B are operators such that:
(i) Ax+ By € E whenever x,y € E,
(ii) A is compact and continuous,
(iii) B is a contraction mapping;
then there exists z € E such that z = Az + Bz.

Theorem 3.3 Assume that the condition (Hy)-(H3) of Theorem 3.1 are assumed. In addi-
tion we suppose that:

(Ha) [f(t,x, Dy [ex(2)], Wox)| < wu(t), for all (t,x, Dy [e<tx(£)], W,x) € IF x R x R x R, with
we CUILRY).
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Then the boundary value problem (1.5) has at least one solution on 1T if

Q+ Q2 <1, (3.18)
where Qq and Q, are given by (3.5).
Proof We set sup,;r [ ()] = | it]l, choose a constant

€= |ll(21 + 22), (3.19)

andlet B, ={x €C:|x|c < ¢}.
On the given ball By, we define the operators F; and F; as

[ [ o

x f (u,%(u), Dy [ €55 () ], W(w)) dyus dpz dos — €, OF (f), (3.20)

(F1x)(0) =

(Fax)(t) = €05 (f) [A

s
er’(s— pz)(y’l)P(z) dpz dos:|

t
+¢e,"05(f) [/ €’ dys — B:|. (3.21)
0

For any x,y € By, since

|.7:1x + ]:2y|

N —KL
< sup{ liliNe, f / / eS(s—p2)"Vd U dyzdys
tell Tp(y)

+[ml" (y)”Z”?;["Ner:)tel rS-/ ///(T rs)@-D

x (z - py)r D dsudyyd,z d,s]

Ne k(T-t) T ps
+[ | |Ne; [ [arp dqudps] (3:22)
”fo (T -ps)rVdps Jo Jo

X . . Ne «T
y |: f / e’;s(s _pz)(]/—l)P(z) dpz dOS + A:| ”Iu”+
Fp(V) 0 Jo r (y)[e !

T ps pz NKT T T_ (y-1) d da
x |:/ / / (s—p2)" Vdud,zd,s + e;" Jo Jo(T-p2) zdys
0 0 JO

n fOT(T —ps)Vd,s

T ps t
X / / (T - ps)r™Y dqu dps:| |:/ e dos — B] }
o Jo 0

< €2, (3.23)

and by the same argument as above, we have

|Dy[es! (Fix)](8) = D[ €5 (F2p) ()] < Il Q2. (3.24)
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Consequently, we obtain

I1Fix = Faylle < lpll(S21 + €22).

Page 14 of 16

(3.25)

We can conclude that Fix + F,y € By. By the condition (3.3), F; is a contraction mapping.

From the continuity of f and P, with the condition (H4), the operator F; is continuous and

uniformly bounded on B,. We next show that F; is compact. For £, £, € IOIT where t; <t

and x € By, we have

|f1x(t2) - -le(tl)|

K;]E[y”)m'/ // 55— )7 d s 2 dys

—Kt1
NIIMII/ // D)
- *(s—p2) dyudy,zd,s
ey g y

N”M”/ /f s—pz)7~ dudpzds

Nl 2

< — s dys =
Fp(y+1) t ’

1 1
Nlpllg™ -6

Ly + DIy +1o

(3.26)

We see that the right-hand side of the latter inequality tends to zero if t, — ¢;. Therefore,

J1 is relatively compact on B,. Hence, by the Arzela-Ascoli theorem, we can conclude that

J1 is compact on By.

We find that all assumptions of Theorem 3.2 are satisfied. Therefore, we can reach the

conclusion that the boundary value problem (1.5) has at least one solution on 7. Our

proof is completed.

4 Example

O

To illustrate our main result, we provide an example of the boundary value problem of

second-order g-difference equations with g-integral boundary conditions:

=

Dy [@m + e sin*(%4))D} (% +D1)lx(t)
g
w2 2at \x(t)\*'\Dl[elx(t)]|+|‘p§x(f)|
e 3 . i 7 5
- 100+ecosz(2%) 1+]x(2)|
x(0) = x(3),
13 T
D; [eix(t)]|t=o =D [ef x(T)],
~3) cos(2xs
o (3)x(3) F3 fO (1- 5) go0s(%5%)
4
wheret e %, = {3(%)” :n e N}U{0,3} and \Il4x
50

Applying Theorem 3.1, when ¢q = %, p= %, 0= 1, r=9,w=
227ty WOI+ID 1 [eF xONI+1W 4 x(0)]
4 z 5

—sin

(4.1)

x(s)d%s= 0

fo ts - x(s %s.
3

- _e 3
i) = 100+¢™ (%’

and g = sup{p(¢,s)} =

f(t,x,Dy[esx(2)],

o (f) = &5,

1+|x(8)]
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Since

lf(t: X, Dw[egtx(t)]’ \I’vx(t)) _f(t’y» Dw[egty(t)]y \Ijvy(t))|

- 1+9)
- 101

1 t t
lx—y| + 10—1|D% [ezx(t)] -Dy [eiy(t)]

so (H,) satisfies with A = max{L; + 9Ls, Ly} = 2.

Also, we have % <o(t) <eand % <Pk < ﬁ, then (H,) is satisfied with M =

1

m=:,N= ﬁ, and n = % Moreover, we can show that

e

©;=0.5544 and €, =0.0111.

‘We obtain

M + ) ~0.0599 < 1,

Page 15 0f 16

e,

which implies that (H3) holds. By Theorem 3.1, we can conclude that the above problem

(4.1) has a unique solution on I, .

6

Competing interests
The authors declare that there are no competing interests.

Authors’ contributions
The authors declare that they carried out all the work in this manuscript and read and approved the final manuscript.

Acknowledgements
This research was funded by King Mongkut’s University of Technology North Bangkok. Contract no. KMUTNB-GOV-58-52.

The authors would like to thank the anonymous referees for carefully reading the paper and for their comments, which

have improved the manuscript.

Received: 9 March 2016 Accepted: 25 May 2016 Published online: 07 June 2016

References

. Jackson, FH: g-Difference equations. Am. J. Math. 32, 305-314 (1970)

Carmichael, RD: The general theory of linear g-difference equations. Am. J. Math. 34, 147-168 (1912)

. Mason, TE: On properties of the solutions of linear g-difference equations with entire function coefficients. Am.

J.Math. 37,439-444 (1915)

. Kac, V, Cheung, P: Quantum Calculus. Springer, New York (2000)

. Al-Salam, WA: Some fractional g-integrals and g-derivatives. Proc. Edinb. Math. Soc. 15(2), 135-140 (1966/1967)

. Agarwal, RP: Certain fractional g-integrals and g-derivatives. Proc. Camb. Philos. Soc. 66, 365-370 (1969)

. Annaby, MH, Mansour, ZS: g-Fractional Calculus and Equations. Lecture Notes in Mathematics, vol. 2056. Springer,

Berlin (2012)

. Rajkovi¢, P Marinkovi¢, S, Stankovi¢, M: Fractional integrals and derivatives in g-calculus. Appl. Anal. Discrete Math.

1(1),311-323 (2007)

. El-Shahed, M, Hassan, HA: Positive solutions of g-difference equation. Proc. Am. Math. Soc. 138, 1733-1738 (2010)

Ahmad, B, Ntouyas, SK: Boundary value problems for g-difference inclusions. Abstr. Appl. Anal. 2011, Article ID
292860 (2011)

. Ahmad, B, Ntouyas, SK, Purnaras, IK: Existence results for nonlinear g-difference equations with nonlocal boundary

conditions. Commun. Appl. Nonlinear Anal. 19, 59-72 (2012)

Ahmad, B, Nieto, JJ: On nonlocal boundary value problems of nonlinear g-difference equations. Adv. Differ. Equ.
2012, 81 (2012)

Ahmad, B, Ntouyas, SK: Existence of solutions for nonlinear fractional g-difference inclusions with nonlocal Robin
(separated) conditions. Mediterr. J. Math. 10, 1333-1351 (2013)

Ahmad, B, Ntouyas, SK, Alsaedi, A, Al-Hutami, H: Nonlinear g-fractional differential equations with nonlocal and
sub-strip type boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2014, 26 (2014)

Ahmad, B, Nieto, JJ, Alsaedi, A, Al-Hutami, H: Existence of solutions for nonlinear fractional g-difference integral
equations with two fractional orders and nonlocal four-point boundary conditions. J. Franklin Inst. 351, 2890-2909
(2014)

Almeida, R, Martins, N: Existence results for fractional g-difference equations of order & €12, 3[ with three-point
boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 19, 1675-1685 (2014)



Patanarapeelert et al. Advances in Difference Equations (2016) 2016:148 Page 16 of 16

22.

23.

24.

Pongarm, N, Asawasamrit, S, Tariboon, J, Ntoyas, SK: Multi-strip fractional g-integral boundary value problems for
nonlinear fractional g-difference equations. Adv. Differ. Equ. 2014, 193 (2014)

. Pongarm, N, Asawasamrit, S, Tariboon, J: Sequential derivatives of nonlinear g-difference equations with three-point

g-integral boundary conditions. J. Appl. Math. 2013, Article ID 7605169 (2013)

. Agarwal, RP, Wang, G, Hobiny, A, Zhang, L, Ahmad, B: Existence and nonexistence of solutions for nonlinear second

order g-integro-difference equations with non-separated boundary conditions. J. Nonlinear Sci. Appl. 8, 976-985
(2015)

. Sitthiwirattham, T: On nonlocal fractional g-integral boundary value problems of fractional g-difference and fractional

g-integrodifference equations involving different numbers of order and g. Bound. Value Probl. 2016, 12 (2016)

. Sitthiwirattham, T, Tariboon, J, Ntouyas, SK: Three-point boundary value problems of nonlinear second-order

g-difference equations involving different numbers of g. J. Appl. Math. 2013, Article ID 763786 (2013)
Patanarapeelert, N, Sitthiwirattham, T: Existence results of sequential derivatives of nonlinear g-difference equations
with a new class of three-point boundary value problems conditions. J. Comput. Anal. Appl. 18(5), 844-856 (2015)
Saengngammongkhol, T, Kaewwisetkul, B, Sitthiwirattham, T: Existence results for nonlinear second-order
g-difference equations with g-integral boundary conditions. Differ. Equ. Appl. 7(3), 303-311 (2015)

Krasnoselskii, MA: Two remarks on the method of successive approximations. Usp. Mat. Nauk 10, 123-127 (1955)

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	On a class of sequential fractional q-integrodifference boundary value problems involving different numbers of q in derivatives and integrals
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main results
	Example
	Competing interests
	Authors' contributions
	Acknowledgements
	References


