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is discussed, where 0 < h < +oo, f € C([0, h] x R, R), D, u(t) is the Riemann-Liouville
fractional derivative, 0 < o < 1. Different from other well-known results, a new
condition on the nonlinear term is given to guarantee the equivalence between the
solution of the periodic boundary value problem and the fixed point of the
corresponding operator. Moreover, the existence of extremal solutions for the
problem is given.
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1 Introduction
Differential equations of fractional order have played a significant role in engineering, sci-
ence, and pure and applied mathematics in recent years. Some researchers paid attention
to the existence results of the solution of the periodic boundary value problem for frac-
tional differential equations, such as [1-17]. Some recent contributions to the theory of
fractional differential equations initial value problems can be found in [4, 9].

In [4], by using the fixed point theorem of Schaeffer and the Banach contraction princi-
ple, Belmekki et al. obtained the Green’s function and gave some existence results for the

nonlinear fractional periodic problem

D{, u(t) — Au(t) :f(t, u(t)), te(0,1] (0<a<l),
tlir(r)1+ %) = u(1),

where f : [0,1] x R — R is continuous and the following assumptions hold:
(1) there exists a constant M > 0 such that

[f(t, u)| <M, foreachte (0,1),u€R,

© 2016 Zhang et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-

L]
@ Sprlnger vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and

indicate if changes were made.


http://dx.doi.org/10.1186/s13662-016-0869-4
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-016-0869-4&domain=pdf
mailto:zhanbingbai@163.com

Zhang et al. Advances in Difference Equations (2016) 2016:179 Page 2 of 8

(2) there exists a constant k > 0 such that
[f(t, u) - f(t, v)| <klu—v|, foreachte(0,1),u,veR.

The above conditions (see Lemma 4.2 of [4]) are very strong.

In [13], Wei et al. discussed the properties of the well-known Mittag-Leffler function,
and consider the existence and uniqueness of the solution of the periodic boundary value
problem for a fractional differential equation involving a Riemann-Liouville fractional
derivative

D, u(®) =f(¢,u(t)), te(0,T)(0<a<l),

Ut =0 = £ u(t) |-,

by using the monotone iterative method. In this result, the bounded demand of f in
[13] and the monotone demand of f in [9] were removed. However, the application of
Lemma 1.1 in the proof of Theorem 3.1 was not correct, due to o(n)(t) ¢ C[0,T]. In
other words, the definition of operator A may be not appropriate. Consequently, while
the uniqueness result was correct, the existence of an extremal result was maybe wrong.
In [14], Wei and Dong studied the existence of solutions of the following periodic bound-

ary value problem:

Dg‘iu(t) :f(t, u(t),D&u(t)), te(0,T)(0<a<l),
: l-a _ 1 1-a
}g‘%t u(t) = tli)n%t u(t),

lim £7*Dg, u(t) = li Ttl“"D‘(’)‘+u(t),

t—0 t—

where DY, is the standard Riemann-Liouville fractional derivative, D3*u = D%, (D%, u)
is the sequential Riemann-Liouville fractional derivative, 0 < T < 0o, and f defined on
[0, T] x R? is continuous. The methods used in [14] are monotone iterative techniques
and the Schauder fixed point theorem under the assumptions that there the upper and
lower solutions exist.

In this paper, we will focus our attention on the following problem:

Dy, u(t) =f(t,u(t)), te(0,h), (1.1)
lim u(t) = B u(h), 1.2)

where f € C([0, 1] x R, R), D§, u(t) is the Riemann-Liouville fractional derivative, 0 < o < 1.
The existence of the solution is obtained by the use of the upper and lower solution method
which has been used by authors to deal with the fractional initial value problems [2].
The remainder of this paper is as follows. In Section 2, we recall some notions and the
theory of the fractional calculus. Section 3 is devoted to the study of the existence of a
solution utilizing the method of upper and lower solutions. The existence of extremal

solutions is given. An example is given to illustrate the main result.
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2 Preliminaries
Given 0 <a < b < +oo and r > 0, define

C.la,b] = {u |ue Cla,bl,(t—a)ult) e C[a,b]}.

Clearly, C,[a, b] is a linear space with the normal multiplication and addition. Given u €
C,[a, b], define

Joal = max (¢ - a) |u(t)
tela,b]

’

then (C,[a,b], || - ||) is a Banach space.

Lemma 2.1 ([13]) For0<a <1, A > 0, the Mittag-Leffler type function E, ,(—\t*) satisfies

0 < Ego(-2t%) < t € (0,00).

1
(@)’

Lemma 2.2 The linear periodic problem

Dy, u(t) + Au(t) = q(t), (2.1)
tli%l+ £7u(t) = K u(h), (2.2)

where A > 0 is a constant and q € L(0, h), has the following integral representation of the
solution:

t
u(t) = () u(h)t* " Eqq (-12%) + / (t =) Eqo (At - 9)*)q(s) ds.
0
Proof According to [8], for every initial condition
lim £7%u(t) = uo
t—0+

the unique solution of equation (2.1) is given by

t
u(t) = T(e)uot® " Ego(-At%) + f (t = ) Eqo (-2 - 9)%)q(s) ds.
0
Specially, choose u; as

B [ (= 9 Eq o (<A 5)*)q(s) ds
- 1- F(O[)Ea,a(_)"ha)

Uo

’

then u(t) satisfies the periodic boundary condition (2.2). That is to say that the linear pe-
riodic problem (2.1), (2.2) has the following integral representation of the solution:

u(t) = T(a) u(h)t*E, (—M"‘) + /t(t —8)"E, 4 (—A(t - s)“)q(s) ds.
0

The proof is complete. d
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Lemma 2.3 ([18]) Suppose that E is an ordered Banach space, xy,yo € E, x9 < y9, D =

[%0,90], T : D — E is an increasing completely continuous operator and xo < Txo, yo > Tyo.

Then the operator T has a minimal fixed point x* and a maximal fixed point y*. If we let
Xn = Txn—lr Yn = Tyn—l; n=12,3,...,

then

Xo <X <X = <X, ==Y, == y2 =951 =)0,

Definition 2.1 A function v(¢) € C1_4[0, 4] is called a lower solution of problem (1.1), (1.2),
if it satisfies

Dy v(t) <f(t,v(t)), te(0,h), (2.3)
tlir(r)1+ £7%v(t) < K %v(h). (2.4)

Definition 2.2 A function w(t) € C;_4[0, /] is called an upper solution of problem (1.1),
(1.2), if it satisfies

D w(t) = f(t,w(t)), t€(0,h), (2.5)
lim £27w(e) = B w(h). (2.6)

3 The main results
The following assumptions will be used in this section:
(S1) f:[0,h] x R— R is continuous and there exist constants A, B > 0 and
0<r <1<ry<1/(1-a)such that for ¢ € [0, 4]

[f(t,u) —f(t,v)| <Alu-vI" + Blu-v|?, wu,veR. 31

Theorem 3.1 Suppose (S1) holds. Then u solves problem (1.1), (1.2) if and only if it is a
fixed point of the operator T), : C1_4 [0, h] — C1_4[0, k] defined by

(Tou)(t) = T (@)h " u(h)t* " Eqo (—1t%)
+ /t(t S (—A(t - s)”‘) [f(s, u(s)) + )Lu(s)] ds,
0
where A > 0 is a constant.

Proof First of all, we show that the operator T is well defined. Clearly t*1E, ,(—At*) €
C1-«[0, 1], so it is enough to prove that for every u € C1_4[0, /1], the function

/t(t —8)*E,, (_)\.(t - s)”‘) [f(s, u(s)) + Au(s)] ds
0
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belongs to C;_4[0,/]. Taking into account that f is continuous on [0,/4] x R, for u €

Ci_«[0, ], we have

t
/ (t = 8)* " Equ (=2t = 8)*)[f (s, u(s)) + Aus)] ds € C(0, hl.
0
On the other hand, under the condition (S1), we have
[f(t,u)| < Alul™ +Blu| + C,

where C = max;cjo,1 f (2, 0).
By Lemma 2.1, for u € C;_,[0, 4], we have

A ft(t _ S)a_1ana (—)M(t _ S)“) [f(s, u(S)) + AM(S)] ds
0

<t / (=5 B (=58 1 56 + )]
0

<i f (9 B (1= ) Al 421 + Bl + C) s
0

< / =9 By (= 97) AL [ )]

+ As* 1s1°‘|u(s)|+Bs" 1’2[1°‘| s)|] +C}ds

A rltlot A tlrx
< AP [Cmsprsen g S /(t— s ds
o

+ B“u“rztl_a / (t S)a ls(a 1)ry dS+
INCY) o F(a +1)
<A||u||r1 F((C{ B l)rl + 1) t(()l*l))”1+ol+lfa + )\.”M” F(a) tol
- I =1 +a +1) I'2a)
+ BHu”rz F((Ol - 1)}"2 + 1) (a-1)ry+a+1-a Ct
M@ =1Dry +a+1) Mo +1)
Tl -1r +1]-A- et N )
< flull™ + Alla]]
Mo =Dr +a +1] I' 2 )
(e =1)ry +1] - B tle- D2+l e Ct
ul| + .
I'(ae = 1)1y + o +1] Mo +1)
That is to say that

t
/ (t—5)""E,q (_)\.(t - s)”‘) [f(s, u(s)) + Au(s)] ds € C1_[0, H].
0
The above inequalities and the assumption 0 < r; <1< ry <1/(1 - «) imply that
lim £~ "/ (t—s9)*" 1Etw( At — s)"‘)[f(s, u(s)) +Au(s)]

Combining with the fact that lim;_, o, Eq o (—At%) = Ey 4 (0) = 1/T () yields

tlir(r)] 7 (Tou) () = " u(h).

Page 5 of 8
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The above arguments combined with Lemma 2.2 imply that the fixed point of the oper-
ator 7T solves the periodic boundary value problem (1.1), (1.2), and vice versa. The proof
is complete. O

In the following, we consider the compactness of the set of the space C,[0, /].

Let F C C,[0,h] and E = {g(t) = t"h(¢) | h(t) € F}, then E C CI0, k). It is clear that F is a
bounded set of C,[0, /] if and only if E is a bounded set of C[0, /].

Therefore, to prove that F C C,[0, /4] is a compact set, it is enough to prove that E C
C[0, /] is a bounded and equicontinuous set.

Theorem 3.2 Suppose (S1) holds. Then the operator T, : C1_4[0,h] — C1_4[0, 4] is com-
pletely continuous.

Proof Given u, — u € C1_4[0,4], with the definition of T}, the condition (S1), and
Lemma 2.1, one has

I Thun — Tl

- 6 (T~ T

= max{{f‘ V' Eq o (~1t%) [1n () = u(h)]|

0<t<h

|

e /t(t —8)" 1 E, (—A(t - s)“)[f(s, uy) —f(s,u) + AMuy, - u)] ds
0

1 t
< —— max t'™ t =) Alu, —u|™ + Blu, — u| + Mu, — ul|]ds
< F /0( e[ Al — ™ + Bl — 1l + Mty — ]

+ [uy — ul|

1
<——| A max £ (t §)et gl gnl=a) 1y g
T I'(a) | o<t<h

+ A max tl_"/ (t—s)*t. g0 0= Ly oyl ds
0<t<h 0

t
+ B max '™ / (t—s)* . g2 gl 1 ol 4 (luy, — ul)
0<t<h 0

1 t
< ——|Alluy, — u|* max £~ / (t—s)* 1. g0 gg
F( ) 0<t<h 0

t
+ Aoy — u|| max, 1.‘1 “/ (t—s)*1. s g
0

t
+ B||lu,, — u"* max tl“"/ (£ s ge | 4 |y, — ul|
0<t<h 0

<A||un_u||rlr[1_rl(1_a)] 1-r1(1-a) AMuy — u|| T[] o
- 'lt-rnl-o)+aoa I'[2«x]
Blluy —ul?T'[1-ry(1-a)]
'l-rnl-a)+al

P20 4y, — |
-0 (n— ).

That is to say that T} is continuous.
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Suppose that F C C;_4[0, /] is a bounded set and there is a positive constant M such
that || u|| < M for u € F. The proof process of Theorem 3.1 shows that T (F) C C;_4[0, 4]
is bounded.

We omit the proof details of the equicontinuity of T'(F) here and refer the reader to [2]
for a similar details. The proof is complete. O

Theorem 3.3 Assume (S1) hold and v,w € Cy_,[0, h] are lower and upper solutions of prob-
lem (1.1), (1.2), respectively, such that

v(t) <w(), 0<t<h. (3.2)
Moreover, f : [0,h] x R — R satisfies
ft,x)—ft,y) +AMx—y) >0, forv<y<x<w. (3.3)

Then the fractional periodic boundary value problem (1.1), (1.2) has a minimal solution x*
and a maximal solution y* such that

x* = lim T}, y* = lim T} w.

n—00 n—00

Proof Clearly, if the functions v, w are lower and upper solutions (or strict) of problem
(1.1), (1.2), then there are v < Tyv, w > T, w (or the inequality is strict). In fact, by the
definition of the lower solution, there exist g(¢) > 0 and € > 0 such that

D (o) =f(t,v(t)) —q(t), te(0,h),

lim £7%v(8) = K %v(h) — €.

t—0%

By the use of Theorem 3.1 and Lemma 2.1, one has
W(#) = T(@)(H=v(h) - €)t* By (~22)

+ /0 (t = ) Eqo (A = 9)%) [f (s, v(8)) + Av(s) — q(s)] ds

< (Tw)(®).

Similarly, we have w > T)w.

By condition (3.3) and Theorem 3.2, the operator T; : C1_4[0, 4] — C;_4[0, /] is an in-
creasing completely continuous operator. Setting D := [v, w], by the use of Lemma 2.3, the
existence of x*, y* is obtained. The proof is complete. 0

Remark 3.1 The main result is a consequence of the classical monotone iterative tech-
nique [19, 20]. However, the periodic condition is not the same.

Example 3.1 Consider the following periodic fractional boundary value problem:

Dy, u(t) =f(t,u(t)), te(0,h), (3.4)
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lim £ u(t) = B~ u(h), (3.5)

t—0*

where ¢ = 0.3, 1 =0.7, f(t,u) = % [1 + u(#)]. Obviously, the function f (¢, u) satisfies condi-
tion (3.3) and (S1), f(¢,0) > 0,and f(¢,0) £ 0 for ¢ € [0, &]. Thus, v(¢) = 0 is a lower solution
of problem (3.4), (3.5). Choose u(t) = 2t%~! Cos[2t] + t*, one can check that # € C;_4[0, /]
is an upper solution of problem (3.4), (3.5), and v(¢) < u(t) for ¢ € [0, h]. By the use of
Theorem 3.3, problem (3.4), (3.5) has at least one solution.
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