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Abstract
In this paper, we consider the Appell-type Changhee polynomials and derive some
properties of these polynomials. Furthermore, we investigate certain identities for
these polynomials.
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1 Introduction
Let p be a fixed odd prime number. Throughout this paper, we denote by Zp, Qp, and Cp

the ring of p-adic integers, the field of p-adic numbers, and the completion of algebraic
closure of Qp. The p-adic norm | · |p is normalized as |p|p = 

p . Let C(Zp) be the space of
continuous functions on Zp. For f ∈ C(Zp), the fermionic p-adic integral on Zp is defined
by Kim to be

I–(f ) =
∫
Zp

f (x) dμ–(x) = lim
N→∞

pN –∑
x=

f (x)(–)x ()

(see [–]). For f(x) = f (x + ), we have

I–(f) + I–(f ) = f (). ()

As is well known, the Changhee polynomials are defined by the generating function

∫
Zp

( + t)x+y dμ–(y) =


 + t
( + t)x =

∞∑
n=

Chn(x)
tn

n!
. ()

When x = , Chn = Chn() are called the Changhee numbers (see [, , ]). The gamma
and beta functions are defined by the following definite integrals: for α > , β > ,

�(α) =
∫ ∞


e–ttα– dt ()
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and

B(α,β) =
∫ 


tα–( – t)β– dt

=
∫ ∞



tα–

( + t)α+β
dt ()

(see[, ]). Thus, by () and () we have

�(α + ) = α�(α), B(α,β) =
�(α)�(β)
�(α + β)

. ()

Stirling numbers of the first kind are defined by

(
log( + t)

)n = n!
∞∑

m=n
S(m, n)

tm

m!
, ()

and the Stirling numbers of the second kind are defined by

(
et – 

)n = n!
∞∑
l=n

S(n, l)
tl

l!
(n ≥ ). ()

Recently, Lim and Qi [] have derived integral identities for Appell-type λ-Changhee
numbers from the fermionic integral equation. The degenerate Bernoulli polynomials,
a degenerate version of the well-known family of polynomials, were introduced by Carlitz,
and after that, many researchers have studied the degenerate special polynomials (see [–
, , –]).

The goal of this paper is to consider the Appell-type Changhee polynomials, another
version of the Changhee polynomials in (), and derive some properties of these polyno-
mials. Furthermore, we investigate certain identities for these polynomials.

2 Some identities for Appell-type Changhee polynomials
Now we define the Appell-type Changhee polynomials Ch∗

n(x) by


 + t

ext =
∞∑

n=

Ch∗
n(x)

tn

n!
. ()

When x = , the Changhee numbers Ch∗
n = Ch∗

n() are equal to the Changhee numbers
Chn = Chn(). From () we have


 + t

ext =

( ∞∑
m=

Ch∗
m

tm

m!

)( ∞∑
l=

xl tl

l!

)

=
∞∑

n=

( n∑
m=

(
n
m

)
Ch∗

m xn–m

)
tn

n!
. ()

By () we have the following theorem.
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Theorem  For n ∈N, we have

Ch∗
n(x) =

n∑
m=

(
n
m

)
Ch∗

m xn–m. ()

By (), replacing t by et – , we get


 + et – 

ex(et–) =
∞∑

n=

Ch∗
n(x)

(et – )n

n!
. ()

Then we have

RHS =
∞∑

n=

Ch∗
n(x)

(et – )n

n!

=
∞∑

n=

Ch∗
n(x)


n!

n!
∞∑
l=n

S(l, n)
tl

l!

=
∞∑
l=

l∑
n=

Ch∗
n(x)S(l, n)

tl

l!
, ()

where S(l, n) are the Stirling numbers of the second kind, and

LHS =


 + et ex(et–)

=
∞∑

m=

Em
tm

m!

∞∑
n=

Beln(x)
tn

n!

=
∞∑
l=

l∑
n=

(
l
n

)
En Bell–n(x)

tl

l!
. ()

It is well known that the Bell polynomials are defined by the generating function

ex(et–) =
∞∑

n=

Beln(x)
tn

n!

(see []). By () and () we have the following theorem.

Theorem  For l ∈N, we have

l∑
n=

Ch∗
n(x)S(l, n) =

l∑
n=

(
l
n

)
En Bell–n(x). ()

By () we can derive the following equation:

d
dx

Ch∗
n(x) =

n–∑
m=

(
n
m

)
Ch∗

m(n – m)xn–m–

= n Ch∗
n–(x). ()
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From () we get

n
∫ x


Ch∗

n–(s) ds =
∫ x



d
ds

Ch∗
n(s) ds

= Ch∗
n(s)|xs=

= Ch∗
n(x) – Ch∗

n . ()

By () we can derive the following theorem.

Theorem  For n ∈N, we have

Ch∗
n+(x) – Ch∗

n+
n + 

=
∫ x


Ch∗

n(s) ds. ()

By () we note that

 =

( ∞∑
n=

Ch∗
n

tn

n!

)
( + t)

=

( ∞∑
n=

 Ch∗
n

tn

n!

)
+ t

∞∑
n=

Ch∗
n

tn

n!

=

( ∞∑
n=

 Ch∗
n

tn

n!

)
+

∞∑
n=

n Ch∗
n–

tn

n!

=  Ch∗
 +

∞∑
n=

(
 Ch∗

n +n Ch∗
n–

) tn

n!
. ()

By () we have the following theorem.

Theorem  For n ∈N, we have

Ch∗
 = ,  Ch∗

n +n Ch∗
n– =  if n ≥ . ()

Now we observe that

∞∑
n=

Ch∗
n( – x)

tn

n!
=


 + t

e(–x)t

=


 + t
ete–xt

=

( ∞∑
l=

Ch∗
l ()

tl

l!

)( ∞∑
m=

(–x)m tm

m!

)

=
∞∑

n=

( n∑
m=

(
n
m

)
Ch∗

n–m()(–x)m

)
tn

n!
. ()

From () we obtain the following theorem.
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Theorem  For n ∈ N, we have

Ch∗
n( – x) =

n∑
m=

(
n
m

)
Ch∗

n–m()(–x)m. ()

By () we get

∫ 


Ch∗

n( – x)xn dx =
n∑

m=

(
n
m

)
Ch∗

n–m()(–)m
∫ 


xn+m dx

=
n∑

m=

(
n
m

)
(–)m Ch∗

n–m()
n + m + 

. ()

From () we note that

∫ 


yn Ch∗

n(x + y) dy

=
yn+

n + 
Ch∗

n(x + y)
∣∣∣∣


y=
–


n + 

∫ 


yn+ d

dy
Ch∗

n(x + y) dy

=
Ch∗

n(x + )
n + 

–
n

n + 

∫ 


yn+ Ch∗

n–(x + y) dy

=
Ch∗

n(x + )
n + 

–
n

n + 

(
Ch∗

n–(x + y)
n + 

yn+
∣∣∣∣


y=

)

+ (–) n
n + 


n + 

(n – )
∫ 


yn+ Ch∗

n–(x + y) dy

=
Ch∗

n(x + )
n + 

–
n

n + 
Ch∗

n–(x + )
n + 

+ (–) n
n + 

n – 
n + 

∫ 


yn+ Ch∗

n–(x + y) dy

=
Ch∗

n(x + )
n + 

–
n

n + 
Ch∗

n–(x + )
n + 

+ (–) n
n + 

n – 
n + 

Ch∗
n–(x + )
n + 

+ (–) n
n + 

n – 
n + 

n – 
n + 

∫ 


yn+ Ch∗

n–(x + y) dy. ()

Also, we get

∫ 


yn– Ch∗

 (x + y) dy =
Ch∗

 (x + y)
n

yn
∣∣∣∣


y=
–


n

∫ 


yn Ch∗

(x + y) dy. ()

From () we get

Ch∗
(x) = , ()

and hence

∫ 


yn– Ch∗

 (x + y) dy =
Ch∗

 (x)
n

–


n

∫ 


yn dy

=
Ch∗

 (x)
n

–


n(n + )
. ()
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By (), continuing the process in (), we have

∫ 


yn Ch∗

n(x + y) dy

=
Ch∗

n(x + )
n + 

+
n∑

m=

(–)m Ch∗
n–m(x + )

n(n – ) · · · (n – m + )
(n + )(n + ) · · · (n + m + )

. ()

We note that

Ch∗
n(x + y) = Ch∗

n(x +  + y – )

=
n∑

l=

(
n
l

)
Ch∗

l (x + )(–)n–l( – y)n–l. ()

By () we get

∫ 


yn Ch∗

n(x + y) dy

=
n∑

l=

(
n
l

)
Ch∗

l (x + )(–)n–l
∫ 


yn( – y)n–l dy

=
n∑

l=

(
n
l

)
Ch∗

l (x + )(–)n–lB(n + , n – l + )

=
n∑

l=

(
n
l

)
Ch∗

l (x + )(–)n–l �(n + )�(n – l + )
�(n – l + )

=
n∑

l=

(–)n–l
(

n
l

)
n!(n – l)!

(n – l + )!
Ch∗

l (x + )

=
n∑

l=

(–)n–l n
(n

l
)

(n – l + )
(n–l

n
) Ch∗

l (x + ). ()

By () and () we have the following theorem.

Theorem  For n ∈N, we have

n∑
l=

(–)n–l n
(n

l
)

(n – l + )
(n–l

n
) Ch∗

l (x + )

=
Ch∗

n(x + )
n + 

+
n∑

m=

(–)m Ch∗
n–m(x + )

n(n – ) · · · (n – m + )
(n + )(n + ) · · · (n + m + )

. ()

From () we note that

∫ 


yn Ch∗

n(x + y) dy

=
Ch∗

n+(x + y)
n + 

yn
∣∣∣∣


y=
–


n + 

n
∫ 


yn– Ch∗

n+(x + y) dy
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=
Ch∗

n+(x + )
n + 

–
n

n + 

∫ 


yn– Ch∗

n+(x + y) dy

=
Ch∗

n+(x + )
n + 

–
n

n + 
Ch∗

n+(x + )
n + 

+
n(n – )

(n + )(n + )

∫ 


yn– Ch∗

n+(x + y) dy

=
Ch∗

n+(x + )
n + 

–
n

n + 
Ch∗

n+(x + )
n + 

+
n(n – )

(n + )(n + )
Ch∗

n+(x + )
n + 

–
n(n – )(n – )

(n + )(n + )(n + )

∫ 


yn– Ch∗

n+(x + y) dy. ()

Also, we have

∫ 


y Ch∗

n–(x + y) dy

=
Ch∗

n(x + y)
n

y
∣∣∣∣


y=
–


n

∫ 


 · Ch∗

n(x + y) dy

=
Ch∗

n(x + )
n

–


n


n + 
Ch∗

n+(x + y)
∣∣∣∣


y=

=
Ch∗

n(x + )
n

–
Ch∗

n+(x + ) – Ch∗
n+(x)

n(n + )
. ()

By (), continuing the process in (), we obtain the following theorem.

Theorem  For n ∈N, we have

n∑
l=

(–)n–l n
(n

l
)

(n – l + )
(n–l

n
) Ch∗

l (x + )

=
Ch∗

n+(x + )
n + 

+
n–∑
m=

(–)m Ch∗
n+m+(x + )

n(n – ) · · · (n – m + )
(n + )(n + ) · · · (n + m + )

+ (–)n n!
(n + )n+

(
Ch∗

n+(x + ) – Ch∗
n+()

)
. ()

Now, we have

∫ 


Ch∗

n(x) Ch∗
m(x) dx

=
Ch∗

n+(x) Ch∗
m(x)

n + 

∣∣∣∣



–


n + 

m
∫ 


Ch∗

n+(x) Ch∗
m–(x) dx

=


n + 
(
Ch∗

n+() Ch∗
m() – Ch∗

n+() Ch∗
m()

)

–
m

n + 

∫ 


Ch∗

n+(x) Ch∗
m–(x) dx

=
Ch∗

n+() Ch∗
m() – Ch∗

n+ Ch∗
m

n + 
–

m
n + 

Ch∗
n+() Ch∗

m–() – Ch∗
n+ Ch∗

m–
n + 

+ (–) m
n + 

m – 
n + 

∫ 


Ch∗

n+(x) Ch∗
m–(x) dx ()
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and

∫ 


Ch∗

n+m–(x) Ch∗
 (x) dx

=
Ch∗

n+m() Ch∗
 () – Ch∗

n+m Ch∗


n + m
–


n + m

∫ 


Ch∗

n+m(x) Ch∗
(x) dx

=
Ch∗

n+m() Ch∗
 () – Ch∗

n+m Ch∗


n + m
–


n + m

Ch∗
n+m+() – Ch∗

n+m+
n + m + 

. ()

By () with x =  we get

∫ 


Ch∗

n(x) Ch∗
m(x) dx

=
m∑

j=

(
m
j

)
Ch∗

j

∫ 


xm–j Ch∗

m(x) dx

=
m∑

j=

(
m
j

)
Ch∗

j

m–j∑
l=

(–)m–j–l (m – j)
(m–j

l
)

((m – j) – l + )
((m–j)–l

m–j
) Ch∗

l ()

=
m∑

j=

m–j∑
l=

(
m
j

)
(–)m–j–l (m – j)

(m–j
l

)
((m – j) – l + )

((m–j)–l
m–j

) Ch∗
j Ch∗

l (). ()

By (), continuing the process in (), we obtain the following theorem.

Theorem  For n ∈N, we have

m∑
j=

m–j∑
l=

(
m
j

)
(–)m–j–l (m – j)

(m–j
l

)
((m – j) – l + )

((m–j)–l
m–j

) Ch∗
j Ch∗

l ()

=
Ch∗

n+() Ch∗
m() – Ch∗

n+ Ch∗
m

n + 

+
m–∑
k=

(–)k m(m – ) · · · (m – k + )
(n + )(n + ) · · · (n + k + )

× (
Ch∗

n+k+() Ch∗
m–k() – Ch∗

n+k+ Ch∗
m–k

)

+ (–)m m!
(n + m + )m+

(
Ch∗

n+m+() – Ch∗
n+m+

)
. ()

3 Remarks
In this section, by using the fermionic p-adic integral on Zp, we derive some identities for
Changhee polynomials, Stirling numbers of the first kind, and Euler numbers. By () we
note that


 + t

ext =
∫
Zp

( + t)yext dμ–(y)

=
∫
Zp

ey log(+t)+xt dμ–(y) ()
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and

extey log(+t) =

( ∞∑
m=

xm tm

m!

)( ∞∑
l=

yl(log( + t))l

l!

)

=

( ∞∑
m=

xm tm

m!

)( ∞∑
l=

yl
∞∑
k=l

S(k, l)
tk

k!

)

=

( ∞∑
m=

xm tm

m!

)( ∞∑
k=

k∑
l=

ylS(k, l)
tk

k!

)

=
∞∑

n=

( n∑
k=

k∑
l=

(
n
k

)
xn–kylS(k, l)

)
tn

n!
. ()

Thus, by () and () we have

∞∑
n=

Ch∗
n(x)

tn

n!
=

∫
Zp

ey log(+t)ext dμ–(y)

=
∞∑

n=

( n∑
k=

k∑
l=

(
n
k

)
xn–k

∫
Zp

yl dμ–(y)S(k, l)

)
tn

n!

=
∞∑

n=

( n∑
k=

k∑
l=

(
n
k

)
xn–kElS(k, l)

)
tn

n!
. ()

From () we have the following theorem.

Theorem  For n ∈N, we have

Ch∗
n(x) =

n∑
k=

k∑
l=

(
n
k

)
xn–kElS(k, l). ()
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