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Abstract
In this paper, we give a reduction formula for a specific q-integral. Our formula is
expressed as a three term recurrence relations for basic hypergeometric 3φ2 series.
This is a q-analog of work by Watson and by Bailey of 1953.
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1 Introduction and preliminaries
In [], Watson constructed a reduction formula for the integral

In =
∫ 


xα( – x)β

dn{xγ ( – x)δ}
dxn dx.

In fact, he proved that

In =
�(α + γ – n + )�(β + δ – n + )

�(σ – n + )
Hn,

where

Hn =
n∑

r=

(–)n–r

(
n
r

)
(–γ )n–r(β + δ – n + )n–r(–δ)r(α + γ – n + )r ,

and the notation (x)r denotes the product

(x) ≡  and (x)r ≡ x(x + ) · · · (x + r – ), r ≥ .

Furthermore, Watson proved that Hn satisfies the following three term recurrence rela-
tion:

(σ – n)(σ – n)Hn+ – QnHn+ + SnHn = , (.)

where

Sn = (n + )(σ – n – )(α + β – n)(γ + δ – n)(β + δ – n),

Qn = (σ – n – )
{

(βγ – αδ)(σ + ) + θ(n + )(σ – n)
}

,

© 2016 Mansour and Al-Towailb. This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

http://dx.doi.org/10.1186/s13662-016-0812-8
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-016-0812-8&domain=pdf
mailto:mtowaileb@ksu.edu.sa


Mansour and Al-Towailb Advances in Difference Equations  (2016) 2016:82 Page 2 of 8

and σ = α +β +γ + δ, θ = α –β –γ + δ. Also, he remarked Hn can be expressed in terms
of a hypergeometric series of the type F with last element unity which implies that (.)
gives a three term contiguous relation for terminating F series.

The proof introduced by Watson depends on constructing a second order linear differ-
ential equation satisfied by the integrand of In. On the other hand, in [], Bailey derived
relations between contiguous hypergeometric functions of the type F(), and by using
these relations, he obtained another proof of Watson’s reduction formula.

In this paper, we introduce a q-analog of the integral In by

In,q =
∫ 


xα(qx; q)βDn

q–
[
xγ

(
qβ+x; q

)
δ

]
dqx, n = , , , . . . ,

where α, β , γ , and δ are complex numbers, and q is a positive number less than one. Our
aim to obtain a reduction formula for In,q.

It turns out to us that Watson technique for introducing (.) is too hard to applied to
our work. Therefore, we follow Bailey’s approach for deriving the reduction formula.

We recall the following definitions (see, e.g., [–]):
The q-shifted fractional is defined by

(a; q)∞ =
∞∏
j=

(
 – aqj), and (a; q)n :=

(a; q)∞
(aqn; q)∞

for n ∈ Z, a ∈C.

The q-derivative Dqf of an arbitrary function f is given by

(Dqf )(x) :=
f (x) – f (qx)

( – q)x
, x �= .

We follow Gasper and Rahman [] for the definitions of Jackson q-integrals, and the
q-gamma and q-beta functions (see also [–]).

The q-integration by parts rule (see []) is

∫ a


f (qt)Dqg(t) dqt = f (a)g(a) – lim

n→∞ f
(
qn)g

(
qn) –

∫ a


Dqf (t)g(t) dqt.

Let a, . . . , ar , b, . . . , bs be complex numbers, the q-hypergeometric series rφs defined by

rφs(a, . . . , ar , b, . . . , bs; q, z) =
∞∑

n=

(a, . . . , ar ; q)n

(q, b, . . . , bs; q)n
zn(–q(n–)/)n(s–r+)

The series representation of the function rφs converges absolutely for all z ∈C if r ≤ s, and
converges only for | z |<  if r = s +  (for more details and results see [–] and []).

Observe that

I,q =
∫ 


xα+γ (qx; q)β+δ dqx = Bq(α + γ + ,β + δ + )

=
�q(α + γ + )�q(β + δ + )

�q(α + γ + β + δ + )
,
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and, by using the q-integration by parts, one can verify that

I,q =
∫ 


xα(qx; q)βDq–

[
xγ

(
qβ+x; q

)
δ

]
dqx

= q–γ �q(α + γ )�q(β + δ)
�q(α + γ + β + δ + )

[
[γ ][β + δ] – qβ [δ][α + γ ]

]
,

where the notation [z] is defined by

[z] :=
 – qz

 – q
.

Note that the above values of the integrals I,q and I,q coincide with I and I, respectively,
which are given by Watson in the limit q → .

This paper is organized as follows. In Section , we derive three term contiguous rela-
tions for the basic hypergeometric function φ(a, b, c; d, e; q, q). In Section , we show that
In,q can be represented as φ(q) and a direct substation in the derived contiguous relation
yields the result of this paper.

2 Contiguous relations of 3φ2

Throughout this section, we simply used a to denotes the value q–n where n is an arbitrary
nonnegative integer. We denote by φ the function

φ(a, b, c; d, e; q, q),

and by φ(a+), φ(a–) the same function when a is changed to aq, a/q, respectively. We
use a similar notation when the other parameters are so changed. Also, let φ+, φ– be the
functions defined by

φ+ = φ(aq, bq, cq; dq, eq; q, q) and φ– = φ(a/q, b/q, c/q; d/q, e/q; q, q).

By the definition of φ, one can verify the following:

φ
(
a+)

– φ = qa
( – b)( – c)
( – d)( – e)

φ+, (.)

φ
(
a–)

– φ = –a
( – b)( – c)
( – d)( – e)

φ+
(
a–)

, (.)

φ
(
d+)

– φ = –qd
( – a)( – b)( – c)

( – d)( – qd)( – e)
φ+

(
d+)

, (.)

φ
(
d–)

– φ = d
( – a)( – b)( – c)

( – d/q)( – d)( – e)
φ+. (.)

These equations, and the symmetries of the φ, give us

c( – a)
{
φ
(
a+)

– φ
}

= a( – c)
{
φ
(
c+)

– φ
}

, (.)

a( – b)
{
φ
(
b+)

– φ
}

= b( – a)
{
φ
(
a+)

– φ
}

, (.)

qa( – d/q)
{
φ
(
d–)

– φ
}

= d( – a)
{
φ
(
a+)

– φ
}

, (.)
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d( – e/q)
{
φ
(
e–)

– φ
}

= e( – d/q)
{
φ
(
d–)

– φ
}

. (.)

Now, applying the transformation (see [])

φ(a, b, c; d, e; q, q) =
(de/bc; q)n

(e; q)n
(bc/d)n

φ(a, d/b, d/c; d, de/bc; q, q), (.)

to ψ = φ(a, d/b, d/c; qd, de/bc; q, q) yields the following relations:

φ =
(de/bc; q)n

(e; q)n
(bc/d)nψ

(
d–)

,

φ+ =
(de/bc; q)n–

(qe; q)n–
(qbc/d)n–ψ

(
a+)

,

φ+
(
a–)

=
(de/bc; q)n

(qe; q)n
(qbc/d)nψ .

(.)

Thus, from (.), changing φ into ψ , and using (.) we get

d( – a)
{

(qe; q)n–

(de/bc; q)n–
(d/qbc)n–φ+ –

(qe; q)n

(de/bc; q)n
(d/qbc)nφ+

(
a–)}

– a( – d)
{

(e; q)n

(de/bc; q)n
(d/bc)nφ –

(qe; q)n

(de/bc; q)n
(d/qbc)nφ+

(
a–)}

= .

After some simplification this yields

a( – d)( – e)φ – (a – e)(a – d)φ+
(
a–)

– ( – a)(qabc – de)φ+ = . (.)

From the symmetries of the φ, we have

b( – d)( – e)φ – (b – e)(b – d)φ+
(
b–)

– ( – b)(qabc – de)φ+ = . (.)

Using (.), (.), and (.), we obtain the following contiguous relations:

ab(a – b)( – c)φ + b(a – e)(a – d)
{
φ
(
a–)

– φ
}

– a(b – e)(b – d)
{
φ
(
b–)

– φ
}

= , (.)

qa( – b)( – c)φ + q(a – e)(a – d)
{
φ
(
a–)

– φ
}

– ( – a)(qabc – de)
{
φ
(
a+)

– φ
}

= , (.)

qb( – b)( – c)φ + q(b – e)(b – d)
{
φ
(
b–)

– φ
}

– ( – b)(qabc – de)
{
φ
(
b+)

– φ
}

= . (.)

Now, replacing b by b/q in (.) and b by bq in (.) we get

(b – aq)
{
φ
(
b–)

– φ
}

+ b( – a)φ – b( – a)φ
(
a+, b–)

= , (.)

(a – qb)(ed – qabc)
{
φ
(
b+)

– φ
}

+ bq(a – e)(a – d)φ
(
a–, b+)

+
{

(a – qb)(ed – qabc) – a(qb – e)(qb – d)
}
φ = . (.)
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Hence, combining (.) and (.) yields the three term contiguous relation

(a – e)(a – d)( – b)(b – qa)φ
(
a–, b+)

– ( – a)(b – e)(b – d)(a – qb)φ
(
a+, b–)

+
{

d( – a)
[
a(e – b) + qb] + []ab(e – c)(a – b) – []b(ed + qba)

+ qba([] – a – d
)

+ q(b – a)
(
qbac + e(b + a)

)

+ b(qa – c) + qa(ac – d) + ed
(
qa + b)}φ = . (.)

3 The reduction formula
In this section, we state and prove the reduction formula for the q-integral In,q stated in
the introduction. We start with the following result.

Proposition . The q-integral In,q can be represented in terms of basic hypergeometric
series φ, that is,

In,q = Snφ
(
q–n, q–β–δ–α–γ +n–, q–β ; q–β–δ , q–α–β ; q, q

)
,

where

Sn = q
n
 (β+–n) �q(β + δ + )�q(α + γ + )

�q(α + γ + β + δ – n + )
(q–γ ; q)n(q–α–β ; q)n

(q–α–γ ; q)n(q–n+γ ; q)n
.

Proof Calculating Dn
q– [xγ (qβ+x; q)δ] by using a q–-type Leibiniz rule (see [], p.) gives

In,q =
∫ 


xα(qx; q)β

n∑
k=

[
n
k

]

q–

(
Dn–k

q– f
)(

q–kx
)
Dk

q– g(x) dqx,

where

f (x) = xγ and g(x) =
(
qβ+x, q

)
δ
.

Note that

{
Dn–k

q– (·)γ }(
q–kx

)
=

(–q)n–k(q–γ ; q)n–k

( – q)n–k q–k+nk–γ kxγ –n+k ,

Dk
q–

(
qβ+x, q

)
δ

= q(β+δ+)k q– 
 k(k–)

( – q)k

(
qβ+x, q

)
δ–k

(
q–δ , q

)
k .

This implies

In,q =
n∑

k=

[
n
k

]

q–

(–q)n–k(q–γ ; q)n–k

( – q)n

(
q–δ ; q

)
kq– 

 k(k–)

× q(β+δ+)k–(k–n+γ )k
∫ 


xα+γ –n+k(qx; q)β

(
qβ+x; q

)
δ–k dqx. (.)
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Denoting the q-integral in the left-hand-side of (.) by Jn, we obtain

Jn =
∫ 


xα+γ –n+k(qx; q)β+δ–k dqx

= Bq(α + γ – n + k + ,β + δ – k + )

=
�q(α + γ – n + k + )�q(β + δ – k + )

�q(α + γ + β + δ – n + )
.

Using [], Eq. (I.) and Eq. (I.), we get

Jn =
�q(α + γ + )�q(β + δ + )
�q(α + γ + β + δ – n + )

( – q)nqk–nk+ 
 n(n+)q–(β+δ)k–(n–k)(α+γ )

(–)n(q–β–δ ; q)k(q–α–γ ; q)n–k
. (.)

Using [], Eq. (I.), we get

(q–γ ; q)n–k

(q–α–γ ; q)n–k
=

(q–γ ; q)n

(q–α–γ ; q)n

(q–n+α+γ ; q)k

(q–n+γ ; q)k
q–αk . (.)

Substituting (.) into (.), using (.), yields

In,q =
�q(α + γ + )�q(β + δ + )
�q(α + γ + β + δ – n + )

qn(–γ –α)+ 
 n(n+) (q–γ ; q)n

(q–α–γ ; q)n

×
n∑

k=

[
n
k

]

q–

(–)kq– 
 k(k–) (q–n+α+γ ; q)k(q–δ ; q)k

(q–n+γ ; q)k(q–δ–β ; q)k
. (.)

Now using [], Eq. (I.) and Eq. (I.), we get

In,q = Kn

n∑
k=

qk (q–n, q–δ , q–n+α+γ ; q)k

(q–β–δ , q, q–n+γ ; q)k

= Knφ
(
q–n, q–n+α+γ , q–δ ; q–β–δ , q–n+γ ; q, q

)
,

where

Kn =
�q(β + δ + )�q(α + γ + )
�q(α + γ + β + δ – n + )

qn(–γ –α)+ 
 n(n+) (q–γ ; q)n

(q–α–γ ; q)n
.

Using the transformation (.) yields the required result and completes the proof. �

Corollary . If γ =  then In,q vanishes for all values of n where n – β – δ and β are
nonnegative integers.

Proof Since

φ
(
a, bqm , bqm ; b, b; q, a–q–(m+m)) = , (.)

where m, m are arbitrary nonnegative integers (see []), the proof follows directly from
Proposition . and (.). �
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Watson remarked In vanishes for odd values of n in two special cases, (i) α = γ and β = δ

and (ii) α = β and γ = δ.
Now, we can derive the reduction formula for In,q.

Theorem . The reduction formula satisfies a three term recurrence relations of In,q.
More precisely, the following holds:

If

Wn = φ
(
q–n, q–β–δ–α–γ +n–, q–β ; q–β–δ , q–α–β ; q, q

)
,

then

LnWn+ – QnWn– + MnWn = , (.)

where

Ln =
(
q–n – qθ

)(
q–n – qθ

)(
 – qθ+n)(qθ+n – q–n),

Qn =
(
 – q–n)(qθ+n – qθ

)(
qθ+n – qθ

)(
q–n – qθ+n+),

Mn = qθ
(
 – q–n)[q–n(qθ – qθ+n) + q(θ+n)+] + q(θ+n)(q–n – q–β

)

– []qθ+n(qθ+θ + q+θ
)

+ q+θ–n([] – q–n – qθ
)

+ q–n(q–n–β – qθ
)

+ q
(
qθ+n – q–n)(q+θ–β + qθ

(
qθ+n + q–n)) + qθ+θ

(
q–n + q(θ+n))

+ []qθ
(
qθ – q–β

)(
q–n – qθ+n),

and θ = –α – β , θ = –δ – β , θ = –α – β – δ – γ – .

Proof This result follows by applying Proposition . and using equation (.) with

b = q–β–δ–α–γ +n–, c = q–β , d = q–β–δ and e = q–α–β . �

Recall that the little q-Jacobi polynomials, see [], are defined by

Pn(x; a, b; q) = φ
(
q–n, abqn+; aq; q, qx

)
, (.)

and the formula

Pn(x; c, d; q) =
n∑

k=

ak,nPk(x; a, b; q)

holds with

ak,n = Ckφ
(
qk–n, cdqn+k+, aqk+; cqk+, abqk+; q, q

)
,

Ck = (–)kq
(q–n, aq, cdqn+; q)k

(q, cq, abqk+; q)k
.

(.)
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Remark . In (.), if we take a = q–β–, b = q–α–, c = q–β–δ– and d = q–α–γ –, we get
a,n = 

Sn
In,q. Thus, the little q-Jacobi polynomials and the q-integrals In,q are related in the

following way:

Pn(x; c, d; q) =


Sn
In,q +

n∑
k=

ak,nPk(x; a, b; q).
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