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Abstract
We study certain spectral aspects of the Sturm-Liouville problem with a finite number
of interior singularities. First, for self-adjoint realization of the considered problem, we
introduce a new inner product in the direct sum of the L2 spaces of functions defined
on each of the separate intervals. Then we define some special solutions and
construct the Green function in terms of them. Based on the Green function, we
establish an eigenfunction expansion theorem. By applying the obtained results we
extend and generalize such important spectral properties as the Parseval and
Carleman equations, Rayleigh quotient, and Rayleigh-Ritz formula (minimization
principle) for the considered problem.
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1 Introduction
The Sturm-Liouville differential equations are a class of differential equations often en-
countered in solving PDEs using the method of separation of variables. Their solutions
define many well-known special functions, such as Bessel functions, Legendre polynomi-
als, Chebyshev polynomials, or various hypergeometric functions arising in engineering
and science applications. The solutions of many problems in mathematical physics are in-
volved in investigation of a spectral problem, that is, the investigation of the spectrum and
the expansion of an arbitrary function in terms of eigenfunctions of a differential operator.
The issue of expansion in eigenfunctions is a classical one going back at least to Fourier
(see, e.g., [–]). The method of Sturm expansions is widely used in calculations of the
spectroscopic characteristics of atoms and molecules [–]. A relatively recent impact is
due to the study of wave propagation in random media [, ], where eigenfunction expan-
sions are an important input in the proof of localization. The use of this tool is settled by
classical results in the Schrödinger operator case. But with the study of operators related
to classical waves [, ], a need for more general results on eigenfunction expansion be-
came apparent. An important point is that a general function can be expanded in terms
of all the eigenfunctions of an operator, a so-called complete set of functions. That is, if
fn is an eigenfunction of an operator � with eigenvalue μn (so �fn = μnfn), then a general
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function g can be expressed as the linear combination g = cf + cf + · · · where the cn are
coefficients, and the sum is over a complete set of functions. The advantage of expressing
a general function as a linear combination of a set of eigenfunctions is that it allows us to
deduce the effect of an operator on a function that is not one of its own eigenfunctions.
The importance of Sturm-Liouville problems for spectral methods lies in the fact that
the spectral approximation of the solution of a differential equation is usually regarded
as a finite expansion of eigenfunctions of a suitable Sturm-Liouville problem. Eigenfunc-
tion expansion problems for classical Sturm-Liouville problems have been investigated by
many authors (see [, , , ] and references therein). In this paper we investigate certain
spectral problems arising in the theory of the convergence of the eigenfunction expansion
for one nonclassical eigenvalue problem, which consists of the Sturm-Liouville equation

L(y) := –a(x)y′′(x) + q(x)y(x) = λy(x) ()

on a finite number of disjoint intervals � =
⋃n+

i= (ξi–, ξi), where  = ξ < ξ < · · · < ξn+ = π ,
together with boundary conditions (BCs) at the endpoints x = ,π

Lα(y) := αy() + αy′() = , ()

Lβ (y) := βy(π ) + βy′(π ) =  ()

and transmission conditions at the interior points ξk ∈ (,π ), k = , , . . . , n,

Lk–(y) = δ′
k–y′(ξk + ) + δk–y(ξk + ) + γ ′

k–y′(ξk – )

+ γk–y(ξk – ) = , ()

Lk(y) = δ′
ky′(ξk + ) + δky(ξk + ) + γ ′

ky′(ξk – ) + γky(ξk – ) = , ()

where a(x) = a
i >  for x ∈ �i := (ξi–, ξi), i = , , . . . , n + , the potential q(x) is a real-

valued function that is continuous in each of the intervals (ξi–, ξi) and has finite limits
q( + ), q(π – ), and q(ξi ∓ ), i = , , . . . , n, λ is a complex spectral parameter, and
δk , δ′

k , γk , and γ ′
k (k = , , . . . , n) are real numbers. The conditions are imposed on the

left and right limits of solutions and their derivatives at the interior points and are often
called ‘transmission conditions’ or ‘interface conditions.’ Such type problems often arise in
varies physical transfer problems (see []). Some problems with transmission conditions
arise in thermal conduction problems for a thin laminated plate (i.e., a plate composed by
materials with different characteristics piled in the thickness; see []). Similar problems
with point interactions are also studied in [, ], et cetera. Since the solutions of equa-
tion () may have discontinuities at the interior points of the interval and since the values
of the solutions and their derivatives at the interior points ξi are not defined, an impor-
tant question is how to introduce a new Hilbert space in such a way that the considered
problem can be interpreted as a self-adjoint problem in this space. The purpose of this
paper is to extend and generalize important spectral properties such as the Rayleigh quo-
tient, eigenfunction expansion, Rayleigh-Ritz formula (minimization principle), Parseval
equality, and Carleman equality for Sturm-Liouville problems with interior singularities.
The ‘Rayleigh quotient’ is the basis of an important approximation method that is used
in solid mechanics and quantum mechanics. In the latter, it is used in the estimation of
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energy eigenvalues of nonsolvable quantum systems, for example, many-electron atoms
and molecules. We note that spectral problems for ordinary differential operators with-
out singularities were investigated in many works (see the monographs [, , –] and
the references therein). Some aspects of spectral problems for differential equations hav-
ing singularities with classical boundary conditions at the endpoints were studied, among
others, in [, , –], where further references can be found.

2 Some preliminary results in according Hilbert space
We denote by θijk ( ≤ j < k ≤ ) the determinant of the jth and kth columns of the matrix

Ti =

[
δ′

i– δi– γ ′
i– γi–

δ′
i δi γ ′

i γi

]

, i = , , . . . , n.

Note that throughout this study we shall assume that θijk >  for all i, j, k. In the direct sum
space H =

⊕n+
i= L(�i) we define the new inner product associated with the considered

BVTP ()-() by

〈y, z〉H :=
n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +
y(x)z(x) dx ()

for y = y(x), z = z(x) ∈ H. Here we let θ = θ(n+) = . Let us introduce the linear opera-
tor (Ay)(x) = –a(x)y′′(x) + q(x)y(x) in the Hilbert space H with domain of definition D(A)
consisting of all functions y ∈H satisfying the following conditions:

(i) y and y′ are absolutely continuous in each interval �i (i = , , . . . , n + ) and has
finite limits y(ξ + ), y′(ξ + ), y(ξn+ – ), y′(ξn+ – ), y(ξk ∓ ), and y′(ξk ∓ ) for
k = , , . . . , n;

(ii) Ly(x) ∈H, Lαy(x) = Lβy(x) = Lk–y(x) = Lky(x) = , k = , , . . . , n. Then problem
()-() is reduced to the operator equation Ay = λy in the Hilbert space H.

Theorem . For all y, z ∈ D(A), we have the equality 〈Ay, z〉H = 〈y,Az〉H.

Proof From the definition of Hilbert space H it follows that

〈Ay, z〉H =
n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +
Ly(x)z(x) dx

=
n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +
y(x)Lz(x) dx

+ θθ · · · θn
(
W (y, z; ξ–) – W (y, z; )

)

+ θθ · · · θn
(
W (y, z; ξ–) – W (y, z; ξ+)

)

+ · · · + θθ · · · θn
(
W (y, z;π ) – W (y, z; ξn+)

)

= 〈y,Az〉 + θθ · · · θn
(
W (y, z; ξ–) – W (y, z; )

)

+ θθ · · · θn
(
W (y, z; ξ–) – W (y, z; ξ+)

)

+ · · · + θθ · · · θn
(
W (y, z;π ) – W (z, z; ξn+)

)
, ()
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where, as usual, W (y, z; x) denotes the Wronskian of the functions y and z. From the
boundary conditions ()-() it follows that

W (y, z; ) =  and W (y, z;π ) = . ()

The transmission conditions ()-() lead to

θiW (f , g; ξi–) = θiW (f , g; ξi+), i = , , . . . , n. ()

Substituting () and () into (), we obtain the needed equality. �

Lemma . The linear operator A is densely defined in H.

Proof It suffices to prove that if z ∈ H is orthogonal to all y ∈ D(A), then z = . Sup-
pose that 〈y, z〉H =  for all y ∈ D(A). Denote by

⊕n+
i= C∞

 (�i) the set of all infinitely
differentiable functions in � vanishing on some neighborhoods of the points x = ξk ,
k = , , , . . . , n + . Taking into account that C∞

 (ξk , ξk+) is dense in L(ξk , ξk+) (k =
, , , . . . , n + ), we have that the function z(x) vanishes on �. The proof is complete. �

Corollary . A is symmetric linear operator in the Hilbert space H.

Corollary . All eigenvalues of problem ()-() are real, and two eigenfunctions corre-
sponding to the distinct eigenvalues are orthogonal in the sense of the following equality:

n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +
y(x)z(x) dx = . ()

Remark . In fact, as in our previous work [], we can prove that the operator A is self-
adjoint in the Hilbert space H. Moreover, the resolvent operator (A – λI)– is compact in
this space.

Now we define two solutions υ(x,λ) and ϑ(x,λ) of equation () on the whole � =
⋃n+

i= (ξi–, ξi) by υ(x,λ) = υi(x,λ) for x ∈ �i and ϑ(x,λ) = ϑi(x,λ) for x ∈ �i (i = , , . . . ,
n + ), where υi(x,λ) and ϑi(x,λ) are defined recurrently by the following procedure. Let
υ(x,λ) and ϑn+(x,λ) be solutions of equation () on (, ξ) and (ξn,π ) satisfying the initial
conditions

y(,λ) = α, y′(,λ) = –α ()

and

y(π ,λ) = –β, y′(π ,λ) = β, ()

respectively. In terms of these solutions, we define recurrently the other solutions υi+(x,λ)
and ϑi(x,λ) by the initial conditions

υi+(ξi+,λ) =


θi

(

θiυi(ξi–,λ) + θi
∂υi(ξi–,λ)

∂x

)

, ()
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∂υi+(ξi+,λ)
∂x

=
–
θi

(

θiυi(ξi–,λ) + θi
∂υi(ξi–,λ)

∂x

)

and ()

ϑi(ξi–,λ) =
–
θi

(

θiϑi+(ξi+,λ) + θi
∂ϑi+(ξi+,λ)

∂x

)

, ()

∂ϑi(ξi–,λ)
∂x

) =


θi

(

θiϑi+(ξi+,λ) + θi
∂ϑi+(ξi+,λ)

∂x

)

, ()

respectively, where i = , , . . . . The existence and uniqueness of these solutions follow
from the well-known theorem of ordinary differential equation theory. Moreover, by ap-
plying the method of [] we can prove that all these solutions are entire functions of
parameter λ ∈C for each fixed x. Taking into account ()-() and the fact that the Wron-
skians ωi(λ) := W [υi(x,λ),ϑi(x,λ)] (i = , , . . . , n + ) are independent of the variable x, we
have

ωi+(λ) = υi+(ξi+,λ)
∂ϑi+(ξi+,λ)

∂x
–

∂υi+(ξi+,λ)
∂x

ϑi+(ξi+,λ)

=
θi

θi

(

υi(ξi–,λ)
∂ϑi(ξi,λ)

∂x
–

∂υi(ξi–,λ)
∂x

ϑi(ξi–,λ)
)

=
θi

θi
ωi(λ) =

i∏

j=

θj

θj
ω(λ) (i = , , . . . , n).

It is convenient to define the characteristic function ω(λ) for our problem ()-() as

ω(λ) := ω(λ) =
i∏

j=

θj

θi
ωi+(λ) (i = , , . . . , n).

Remark . Obviously, ω(λ) is an entire function. By applying the technique of [] we
can prove that there are infinitely many eigenvalues λk , k = , , . . . , of problem ()-(),
which coincide with the zeros of the characteristic function ω(λ).

3 Eigenfunction expansion based on the Green function. Modified Parseval
equality

We can show that the Green function for problem ()-() is of the form

G(x, s;λ) =

{
υ(s,λ)ϑ(x,λ)

ω(λ) ,  < s ≤ x < πx, s 	= ξi, i = , , . . . , n + ,
υ(x,λ)ϑ(s,λ)

ω(λ) ,  < x ≤ s < πx, s 	= ξi, i = , , . . . , n + ,
()

for x, s ∈ � (see, e.g., []). It is symmetric with respect to x and s and is real-valued for
real λ. Let us show that the function

y(x,λ) =
n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +
G(x, s;λ)f (s) ds, ()

called a resolvent, is a solution of the equation

a(x)y′′ +
{
λ – q(x)

}
y = f (x) ()
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(where f (x) 	=  is a continuous function in each �i with finite one-hand limits at the end-
points of these intervals) satisfying the boundary-transmission conditions ()-(). With-
out loss of generality, we can assume that λ =  is not an eigenvalue. Otherwise, we take
a fixed real number η and consider the boundary-value-transmission problem for the dif-
ferential equation

a(x)y′′(x,λ) +
{

(λ + η) – q(x)
}

y(x,λ) =  ()

together with the same boundary-transmission conditions ()-() and the same eigenfunc-
tions as for problem ()-(). All the eigenvalues are shifted through η to the right. It is
evident that η can be selected so that λ =  is not an eigenvalue of the new problem. Let
G(x, s; ) = G(x, s). Then the function

y(x,λ) =
n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +
G(x, s)f (s) ds ()

is a solution of the equation a(x)y′′ – q(x)y = f (x) satisfying the boundary-transmission
conditions ()-(). We rewrite () in the form

a(x)y′′ – q(x)y = f (x) – λy. ()

Thus, the homogeneous problem (f (x) ≡ ) is equivalent to the integral equation

y(x,λ) + λ

{ n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +
G(x, s)y(s) ds

}

= . ()

Denoting the collection of all the eigenvalues of problem ()-() by λ < λ < λ < · · · <
λn, . . . and the corresponding normalized eigenfunctions by y, y, y, . . . , yn, . . . , consider
the series

Y (x, ξ ) =
∞∑

n=

yn(x)yn(ξ )
λn

.

We can show that λn = O(n). From this asymptotic formula for the eigenvalues it follows
that the series for Y (x, ξ ) converges absolutely and uniformly; therefore, Y (x, ξ ) is contin-
uous in �. Consider the kernel

K(x, ξ ) = G(x, ξ ) + Y (x, ξ ) = G(x, ξ ) +
∞∑

n=

yn(x)yn(ξ )
λn

,

which is continuous and symmetric. By a familiar theorem in the theory of integral equa-
tions, any symmetric kernel K(x, ξ ) that is not identically zero has at least one eigenfunc-
tion [], that is, there are a number μ and a function ψ(x) 	=  satisfying the equation

ψ(x) + μ

{ n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +
K(x, ξ )ψ(ξ ) dξ

}

= . ()



Aydemir and Mukhtarov Advances in Difference Equations  (2016) 2016:76 Page 7 of 14

Thus, if we show that the kernel K(x, ξ ) has no eigenfunctions, we obtain K(x, ξ ) ≡ , that
is,

G(x, ξ ) = –
∞∑

n=

yn(x)yn(ξ )
λn

. ()

It follows from equation () that

n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +
G(x, ξ )ψn(ξ ) dξ = –λ–

n ψn(x). ()

Therefore,

n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +
K(x, ξ )ψn(ξ ) dξ = , ()

that is, the kernel K(x, ξ ) is orthogonal to all eigenfunctions of the boundary-value-
transmission problem ()-(). Let y(x) be a solution of the integral equation (). Let us
show that y(x) is orthogonal to all ψn(x). In fact, it follows from () that

n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +
y(x)ψn(x) = .

Therefore,

y(x,λ) + λ

{ n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +
K(x, ξ )y(ξ ) dξ

}

= y(x,λ) + λ

{ n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +
G(x, ξ )y(ξ ) dξ

}

= ,

that is, y(x,λ) is an eigenfunction of the boundary-value-transmission problem ()-().
Since it is orthogonal to all ψn(x), it is also orthogonal to itself, and, as a consequence,
y(x,λ) =  and K(x, ξ ) = . Formula () is thus proved.

Theorem . (Expansion theorem) If f (x) has a continuous second derivative in each �i

(i = , , . . . , n + ), and satisfies the boundary-transmission conditions ()-(), then f (x) can
be expanded into an absolutely and uniformly convergent series of eigenfunctions of the
boundary-value-transmission problem ()-() on �, that is,

f (x) =
∞∑

m=

rmψm(x), ()

where rm = rm(f ) are the Fourier coefficients of f given by

rm =
n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +
f (x)ψm(x) dx. ()
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Proof Put g(x) = a(x)f ′′ – q(x)f . Then, relying on () and (), we have

f (x) =
n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +
G(x, ξ )g(ξ ) dξ

= –
∞∑

m=

ψm(x)
λm

n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +
ψm(ξ )g(ξ ) dξ

≡
∞∑

m=

rmψm(x). ()

From the orthogonality and normalization of the functions ψm(x) we obtain (). �

Theorem . (Modified Parseval equality) For any function f ∈ ⊕n+
i= L(�i), we have the

Parseval equality

n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +
f (x) dx =

∞∑

m=

r
m(f ). ()

Proof If f (x) satisfies the conditions of Theorem ., then () follows immediately from
the uniform convergence of the series (). Indeed,

n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +
f (x) dx =

∞∑

m=

r
m(f ). ()

Now, suppose that f (x) is an arbitrary square-integrable function on the intervals �i

(i = , , . . . , n + ). Slightly modifying the familiar theorem in the theory of real analysis,
we can show that there exists a sequence of infinitely differentiable functions fk(x), con-
verging in mean square to f (x), such that each function fk(x) is identically zero in some
neighborhoods of the points ξi (i = , , . . . , n + ). From () it follows that

n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +

[
fs(x) – ft(x)

] dx

=
∞∑

m=

[
rm(fs) – rm(ft)

], ()

where rm(fs) are, as usual, the Fourier coefficients in (). Since the left-hand side ()
tends to zero as s, t → ∞, the right-hand side also tends to zero. By applying the Cauchy-
Schwarz inequality we obtain

∣
∣rm(f ) – rm(fs)

∣
∣ ≤

{ n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +

[
f (x) – fs(x)

] dx

} 


.

On the other hand, from the convergence in the mean of fs(x) to f (x) it follows that

lim
s→∞ rm(fs) = rm(f ), m = , , , . . . .
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It follows from () that

N∑

n=

[
rm(fs) – rm(ft)

] ≤
n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +

[
fs(x) – ft(x)

] dx

for an arbitrary integer N . Passing to the limit as s → ∞, we obtain

N∑

n=

[
rm(f ) – rm(ft)

] ≤
n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +

[
f (x) – ft(x)

] dx.

Now letting N → ∞ gives

∞∑

n=

[
rm(f ) – rm(ft)

] ≤
n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +

[
f (x) – ft(x)

] dx.

Taking into account the Minkowski inequality, we see that the series
∑∞

m= r
m(f ) con-

verges. Since

∣
∣
∣
∣
∣

∞∑

m=

(
rm(f )

) –
∞∑

m=

(
rm(ft)

)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∞∑

m=

[
rm(f ) – rm(ft)

][
rm(f ) + rm(ft)

]
∣
∣
∣
∣
∣

≤
( ∞∑

m=

∣
∣rm(f ) – rm(ft)

∣
∣

) 

( ∞∑

m=

∣
∣rm(f ) + rm(ft)

∣
∣

) 


,

we deduce that
∑∞

m={rm(ft)} → ∑∞
m= r

m(f ) as t → ∞. Moreover, from the convergence
in the mean of ft(x) to f (x) we derive that

lim
t→∞

( n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +
f 
t (x) dx

)

=
n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +
f (x) dx.

Finally, letting t → ∞ in the equality

n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +
f 
t (x) dx =

∞∑

m=

(
rm(ft)

),

we obtain () for arbitrary f ∈ ⊕n+
i= L(�i). The proof is complete. �

4 Modified Carleman equality
We now return to formula (), whose right-hand side has been called the resolvent. Let

y(x,λ) =
∞∑

n=

tn(λ)ψn(x). ()
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Then, from () we have

rm(f ) =
n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +
(a(x)y(x)′′ +

(
λ – q(x)y(x)

)
ψm(x) dx

= –λmtm(λ) + tm(λ). ()

Hence, tm(λ) = rm
λ–λm

, and the expansion of the resolvent is

y(x,λ) =
n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +
G(x, s;λ)f (s) ds

=
∞∑

m=

rmψm(x)
λ – λm

. ()

From this an important formula can now be derived. Substituting equality () into the
right-hand side of (), we find that

n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +
G(x, s;λ)f (s) ds

=
∞∑

m=

ψm(x)
λ – λm

{ n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +
f (s)ψm(s) dx

}

. ()

Since f (s) is arbitrary,

G(x, s;μ) =
∞∑

m=

ψm(x)ψm(s)
μ – λm

. ()

Thus, we obtain

n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +
G(x, x;μ) dx =

∞∑

m=


μ – λm

. ()

Denoting by S(λ) the number of eigenvalues λn less than λ, from () we get the modified
Carleman equation for our problem ()-()

n∑

k=


a

k+

k∏

i=

θi

n+∏

i=k+

θi

∫ ξk+–

ξk +
G(x, x;μ) dx =

∫ ∞



dS(λ)
μ – λ

. ()

5 The Rayleigh quotient and minimization principle for problem (1)-(5)
Let (λ,ψ) be an eigen-pair for linear operator A in the Hilbert space H, that is, Aψ = λψ .
From this equality it follows that

λ =
〈Aψ ,ψ〉H

‖ψ‖
H

.

This expression (the so-called Rayleigh quotient) enables to relate an eigenvalue λ to its
eigenfunction ψ . Especially in quantum physics it is important to find the first eigenvalue.
The Rayleigh quotient plays an important role in this content.
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Lemma . (Rayleigh quotient) Let (λ,ψ) be an eigen-pair for the Sturm-Liouville differ-
ential equation (). Then the Rayleigh quotient for problem ()-() takes the form

λ := R(ψ)

=

∑n
k=


a

k+

∏k
i= θi

∏n+
i=k+ θi{a

k(ψψ ′|ξk+–
ξk + ) +

∫ ξk+–
ξk + (a

k(ψ ′) + qψ) dx}
∑n

k=


a
k+

∏k
i= θi

∏n+
i=k+ θi

∫ ξk+–
ξk + ψ dx

. ()

Proof The needed Rayleigh quotient () can be derived from the Sturm-Liouville equa-
tion

–a(x)ψ ′′(x) + q(x)ψ(x) = λψ(x), x ∈ �, ()

by multiplying by ψ and integrating over �. Then we have

λ =
–

∑n
k=


a

k+

∏k
i= θi

∏n+
i=k+ θi{a

k
∫ ξk+–
ξk + ψψ ′′ dx +

∫ ξk+–
ξk + qψ dx}

∑n
k=


a

k+

∏k
i= θi

∏n+
i=k+ θi

∫ ξk+–
ξk + ψ dx

.

Integrating by parts gives equation (). �

Equation () is the Rayleigh quotient for considered problem ()-().

Theorem . (Minimization principle) The infimum of the Rayleigh quotient for all
nonzero continuous functions satisfying the boundary-transmission conditions ()-() is
equal to the least eigenvalue, that is,

λ := inf R(y)

= inf
–

∑n
k=


a

k+

∏k
i= θi

∏n+
i=k+ θi{a

k(ψψ ′|ξk+–
ξk + ) +

∫ ξk+–
ξk + (a

k(y′) + qy) dx}
–

∑n
k=


a

k+

∏k
i= θi

∏n+
i=k+ θi

∫ ξk+–
ξk + y dx

.

()

Proof Suppose that {λn} is an increasing sequence of all eigenvalues of the Sturm-Liouville
problem ()-(). Let us write the Rayleigh quotient in the form

R(y) =
–

∑n
k=


a

k+

∏k
i= θi

∏n+
i=k+ θi

∫ ξk+–
ξk + yLky dx

–
∑n

k=


a
k+

∏k
i= θi

∏n+
i=k+ θi

∫ ξk+–
ξk + y dx

, ()

where Lky := –a
ky′′ + qy. Now, we expand the arbitrary function y in terms of the orthog-

onal eigenfunctions ψn. Denote � := {y ∈ ⊕n+
i= C(�i) : there exist finite one-hand limits

yk( + ), y(k)(π – ), y(k)(ξi ∓ ) for i = , n,Lαy = Lβy = Lk–y = Lky = , k = , , . . . , n, y 	=
}. If y ∈ �, then the series

y(x) =
∞∑

m=

rmψm(x) ()
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converges uniformly to y, where rm = rm(y) is the Fourier coefficient of y with respect to
the orthogonal set ψn. By applying the standard well-known technique we can show that

Ly =
∞∑

m=

rmλmψm. ()

Now substitution of () and () into () gives us

R(y) =
–

∑n
k=


a

k+

∏k
i= θi

∏n+
i=k+ θi

∫ ξk+–
ξk + (

∑∞
m=

∑∞
s= rmrsλsψmψs) dx

–
∑n

k=


a
k+

∏k
i= θi

∏n+
i=k+ θi

∫ ξk+–
ξk + (

∑∞
m=

∑∞
s= rmrsψmψs) dx

. ()

Since the eigenfunctions ψn are orthogonal, equation () becomes

R(y) =
∑∞

m= r
mλ

m‖ψm‖
H∑∞

m= r
m‖ψm‖

H
. ()

Let λ be the principal eigenvalue (λ < λm for all m ≥ ). Then

R(y) =
λn

∑∞
m= r

m‖ψm‖
H∑∞

m= r
m‖ψm‖

H
≥ λ

∑∞
m= r

m‖ψm‖
H∑∞

m= r
m‖ψm‖

H
= λ. ()

Therefore, R(y) ≥ λ for all y ∈ �, and thus inf R(y) ≥ λ. On the other hand, it is obvious
that R(y) = λ, where y is an eigenfunction corresponding to the least eigenvalue λ. The
proof complete. �

Remark . In fact, it is proven that λ = min R(y).

Corollary . Let λ < λ < · · · be the eigenvalues of problem ()-(). Denote �k := {y ∈ � :
〈y,ψi〉 = , i = , , . . . , k}. Then we have the equality

λk+ = min
y∈�k ,y	=

R(y) = min
y∈�k ,y	=

∑∞
m=k+ r

mλ
m‖ψm‖

H∑∞
m=k+ r

m‖ψm‖
H

. ()

Proof Consider relation (). Let y ∈ �k , y 	= . Then rj =  (j = , , . . . , k), and, conse-
quently, by () we have

R(y) =
∑∞

m=k+ r
mλ

m‖ψm‖
H∑∞

m=k+ r
m‖ψm‖

H
. ()

Now since λk < λm for m > k + , it follows that R(y) ≥ λk+, and, furthermore, the equality
holds if rm =  for m > k +  (i.e., y = rk+ψk+). �

Remark . By applying the Rayleigh-Ritz formula () it is difficult to explicitly compute
the principal eigenvalues. But using the Rayleigh quotient () with appropriate test func-
tions, we can obtain a good approximation for the eigenvalues. Moreover, from formula
() it follows that λk ≤ R(zk) for each test function zk ∈ �k . Thus, we can also find an
upper bound for the kth eigenvalue.
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