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1 Introduction

Fractional differential equations have been applied in many research fields in recent years
(see [1-4]). Leszczynski and Blaszczyk [2] studied the following fractional mathematical
model, which can be used to describe the height of granular material decreasing over time
in a silo:

DD h*(t) + BH*(t) =0, tel0,T],

where €D%_ and D?, are respectively the right Caputo and left Riemann-Liouville frac-
tional derivatives of order « € (0,1). Moreover, many valuable results related to boundary
value problems (BVPs) or initial problems for fractional differential equations have been
achieved by some scholars (see [5-11]).

Bai and Lii [5] considered the fractional BVP

Di.x(t) =f(t,x(£), t€(0,1), (L1)
x(0) =x(1) = 0,
and obtained the existence and multiplicity of positive solutions by taking advantage of
methods in cone. Here, Dj. is the left Riemann-Liouville fractional derivative of order
a €(1,2],and f: [0,1] x R? — R is a continuous function.

Recently, many scholars have focused on fractional BVPs with p-Laplacian operator (see
[12-14]). Chen and Liu [13] dealt with the following BVP involving p-Laplacian operator:

Dby (Dg.x(0) = f(t,x(2)), te[0,1],

(1.2)
x(o) = —x(l), Dg+x(0) = _Dg+x(l);
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where 0 < B,a <1,1<a + 8 <2, D§, is the Caputo fractional derivative, ¢,(-) is the p-
Laplacian operator, and f : [0,1] x R? — R is a continuous function.

However, many papers focused on the existence and multiplicity of solutions for frac-
tional BVPs. The uniqueness of solution for fractional BVPs with p(t)-Laplacian operator
has not been yet investigated. Thus, we deal with the following fractional BVP with p(¢)-
Laplacian operator and obtain the uniqueness of its solution by the method in cone (see
Theorem 3.2):

Dl gpio (DG () + f(£,2(£) = 0, £ €[0,1], 13)
x'(0) =x(1) =x"(0) = 0, D§.x(0) =0,

where Dj, is the Caputo fractional derivative, 2 < & < 3, 0 < 8 < 1, @p»(-) is the p(¢)-

Laplacian operator with p(¢) € C'[0,1] such that p(t) > 1. Moreover, f does not need to

satisfy the Lipschitz condition, so the problem becomes more complicated. An iterative

scheme is shown to approximate it.

Furthermore, we also discuss the existence and multiplicity of solutions for the BVP
(1.3) (see Theorem 3.1 and Theorem 3.3). Noting that when p(¢) = p, it becomes the well-
known p-Laplacian operator, our results extend and enrich some existing papers. For the
problems of integer differential equations with p(¢)-Laplacian or p-Laplacian operator, we
refer the readers to [15-19]).

2 Preliminaries
Let E = C[0,1] with norm ||x||cc = maX;c[o,) [#(¢)|, and P be a cone of E, where P = {x €
E|x(t) > 0}. Moreover, we define the partial ordering < with respect to P by x < y if only if

y—x € P. For ug € P such that ug > 0 (i.e., up(¢) is unequal to zero identically), we denote
Py, = {xlx € E,30(x) > 0, u(x) > 0 s.t. A(x)up <x < pu(x)uo }.

Lemma 2.1 ([16]) For any (¢,x) € [0,1] X R, @y (x) = |x|PO2x is a homeomorphism from
R to R and strictly monotone increasing for any fixed t. Moreover, w;(lt)(-) is continuous,
sends bounded sets to bounded sets, and is defined by

2-p(t)

(pl:(lt)(x) = |x|mx for'x € R \ {0}7 </71;(1t)(0) = O fO}"x = O

Definition 2.1 ([20]) Let E be a Banach space. A cone P C E is called normal if there is a
constant N > 0 such that & <x <yand ||x|| < N||y| for all x,y € E.

Lemma 2.2 ([21,22]) Let P C E be a normal cone. Suppose that A : P, — P, is increasing
and for any t € (0,1), there exists 1(t) > 0 such that

A(tx) > t(l + n(t))Ax, x€Py,.
Then, A has a unique fixed point x* if and only if there exist wy, vy € Py, such that wy <

Awg < Avg < vy. Moreover, for any xy € [wo,vol, letting x, = Ax,.1 (n=1,2,...), we have

X, — x*.
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Define P(0,b,d) = {x€P|b<6(x)and |x|| <d} and P, = {x€P||x| <c}, where
b,c,d > 0.

Lemma 2.3 ([23]) Let P be a cone of Banach space E, and T : P, — P, be a completely
continuous map. Suppose that there exists a nonnegative continuous concave functional
0 such that 0(x) < ||x|| for x € P and numbers 0 < a < b < d < c satisfying the following
conditions:
(i) {xeP,b,d)0(x)>b} W and 6(Tx) > b for x € P(6,D,d).

(i) |Tx|| < aforx € P,.

(ili) 6(Tx) > b for x € P(0,b,c) with | Tx| > d.
Then T has at least three fixed points x1, xy, x3 in P,.

Definition 2.2 ([1]) The Riemann-Liouville fractional integral operator of order « of a

function x is given by

I§ox(t) = ﬁ /0 (¢ — )% Ln(s) ds,

provided that the right-hand side are pointwise defined on [0,1].

Definition 2.3 ([1]) The Caputo fractional derivative of order « of a function x is given
by

o n—o dnx(t) 1 ! n—-o— n
Dgx(t) = Iy " Ti-a) /0 (t—s)"x"(s)ds,

where 7 = [«] + 1, provided that the right-hand side is pointwise defined on [0, 1].

Lemma 2.4 ([1]) The general solution of the Caputo fractional differential equation
D.x(t)=0

is given by
x(t) =co+ 1t + Cat? + - + g "7,

wherec; €R,i=0,1,2,...,n—1,n=[a] +1.

Lemma 2.5 ([1]) Assume that D§.x(t) € C[0,1]. Then

I§. D x(t) = x(2) + co + a1t + Cot? + -+ 7Y

(@) .
where ¢; = -~ i-0,1,2,...,n -1, n=[a] + 1.

il

Lemma 2.6 Ify(t) € C[0,1], then the unique solution of

Db, 0 (D2 x(0)) + (1) =0, t€[0,1],
%'(0) = x(1) =x"(0) = 0, D2, x(0) =0,
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can be expressed as the integral

1
x(t) = /O G(t,5)0y% (15.3(5)) ds, @2.1)

where

(lis)a—li(tis)a—l 0 <
——, <s<t<l,
G(t,s) = { Y

a—1
(1;21) , 0<t<s<l.

Proof Based on Lemma 2.5, we have
0 (Dax(t)) = -I0.y() +¢, ceR.
Applying the operator ¢ (t) to both sides of this equality, we have
Dg.x(t) = (p;(lt) (—Iéiy(t) + c).

Combining this with D, x(0) = 0, for fixed ¢ = 0, we have Py0 (c) 0. By Lemma 2.1 we
have that ¢ = 0 and

1 t
x(t) = —m /0 (t- S)a_lwg(ls) (Ig+y(s)) ds + ¢ + oot + c3t?,

where ¢; € R, i =1,2,3. Since x'(0) = x(1) = x”(0) = 0, we get that

o= / (1 - gy (I8, y(5)) s

and ¢y = ¢3 = 0. Thus, we have

1 ¢ 1 !
x(t):—@'/o (t-5)"1p ’1 (1 (s)) ds + %fo (1—5)"‘_1¢;(15)(1§+y(s)) ds

Therefore, (2.1) holds. The proof is complete. O

Lemma 2.7 G(¢,s) satisfies the following conditions:

(Dy) G(t,s) € C([0,1] x [0,1]), G(¢,s) = O for t,s € [0,1].
(Dy) ﬁ(l—t“*l)(l $)* L < G(t,s) < —(l—t""l)for t,s €[0,1].

Proof Clearly, (D,) is satisfied. For s < ¢ and 2 < & < 3, we have

(L-9)*" = (t=9)"" = (1 -5 = (t—ts)*"

= (- -5

For given ¢, we have

dG(t,s) 1 o »
as _F(a—l)((t_s) -(1-5) )SO.
Thus, G(t,s) < FL(I oy,
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For t <s, it is easy to get that

(1 _ s)ot—l > (1 _ ta—l)(l _ S)a—l’

Q-5 t<@-pt<l-t<1-tL
Thus, (D) is satisfied. 0

3 Main result

Define the nonnegative continuous concave functional 6 by

1
0(Ax) = min Ax(t) T€E (0,§>,xeP,

te[r,1-1]

where

1
Ax(t) = /0 G(t,s)gz);(ls) (Ig+f(s,x(s))) ds

Let

-1
( /( " 1‘”f’“(rw D ) > !
(1-Q-1)! wl =

A( r@) f“‘s) <F(ﬂ D )ds> '

Theorem 3.1 Assume thatf: | x [0,00) — [0, 00) is continuous and there exist num-
bers 0 < a < b <d = c satisfying thefollowmg conditions:

(1) f(&x) < @py(Ara) for [0,1] x [0, a].
(I2) f(t,%) > @py(A2b) for [T,1 -] x [b,c].
(I3) f(t,%) < @p(Aic) for [0,1] x [0,c].

Then BVP (1.3) has three positive solutions.

Proof To begin with, for u € P, we will prove that A : P, — P.. By I3 we have

[[Ax|| = max
telo,

1
x /0 G(t,s)w;(ls) (Ig+f(s,x(s))) ds

T a)/ =5)" gy (10:S (5.%(5))) ds

r<a)/ S (F(ﬂ D )ds ¢

Thus, AP, C P.. It is easy to get that A is continuous by the continuity of f. Let Q be any
bounded open subset of P.. Since Py ( ) and f are continuous, there exists a constant B > 0
such that |<p;1t (I +f(t x(t)))] < Bon [0, 1] x Q. Thus, we have

A1C

1
B
A Ax| < —— —5)*Bds= .
|Ax|| = maxlxl_r() (1-5) s FarD
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Thus, AR is uniformly bounded. On the other hand, for all £, £, € [0,1] such that {;, < t,

and for all x € ©, we have
1 1
|Ax(t,) - Ax(t,)| = ’ /0 Glta, )y (15, f (5,%(5))) ds — /0 Glt1, )@y (15.f (5,x(s)) ) ds
1
< B/ ’G(tg,S) - G(tl,s)’ ds
0
B

= F(O{ + 1) (tg - tix)

Thus, we have
’Ax(tz) —Ax(t1)| — 0 uniformly as ; — .

Therefore, A is equicontinuous on Q,sothat A: P, — P, is completely continuous by the
Arzela-Ascoli theorem. Similarly, by I; we obtain that ||Ax| < a for x € P,. So, condition
(ii) of Lemma 2.3 is satisfied. Let xo(f) = %. Clearly, ||xo|| < ¢ and 0(xp) > b. Thus,

{x € P(0,b,d)|0(x) > b} Z0.
For x € P(6,b,d), by (I;) we have b < x(t) <¢, t € [tr,1 - 7], and

0(Ax) = min Ax(¢)

telr,1-1]
1 .
> —— min
~ T'(«) telr,1-1]

1-1-7)?t ! 1
> bAz% /0 (1 - S)ail(p;é) <msﬁ) ds=b.

Thus, condition (i) of Lemma 2.3 holds. When d = ¢, condition (i) implies (iii) in
Lemma 2.2. Then BVP (1.3) has three positive solutions. O

1
fo (1 - t“‘l)(l — s)“_1<p};(1s) (Igj(s,x(s))) ds

Example 3.1 Consider the following BVP:

D§+¢3(D§+x(t)) +f(t,x(t)) = O,8 t € [0,1],
x'(0)=x(1)=x"(0)=0,  Dg.x(0)=0.

Choosear=%,8=1,p(t)=3,7=1,

t+45x3, x <10,
flxw) =1 """
L+ 5555 + 44,955, x>10,

a = 7,b=10, ¢ =50. By simple calculation we have

=

rE):réE) e

r@ -G

! ~ 20.89.
r(3)

5.29, A=

So, we have
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(I) f(&x(£)) <171 <1.75 ~ @3(A1a) for [0,1] x [0,1];
(L) f(tx(t)) = 45,000.25 > 43,639.21 = ¢3(A2b) for [1, 3] x [10,50];
(Is) f(t%(t)) < 50,580 < 69,960.25 = @3(A1c) for [0,1] x [0,50].

Thus, Example 3.1 has three positive solutions.

Theorem 3.2 Assume that f : [0,1] x [0,00) — (0,00) is continuous and the following
conditions hold:

(Iy) f(t %) is increasing in x.
(Is) There exists r € (0,1) such that

p6)-1 o ) 1 _p)-1
flt,rx) >=r 2 f(t,x), whichimpliesf|t,-x ) <r~ 2 f(t,x).
r

Then BVP (1.3) has a unique positive solution.

Proof Let ©(t) =1 -7, A(x) = fo 1-9""g L f (s, %(5))) ds, () = fo P X
(Ig+f(s,x(s)))ds. For u € Pg, we w1ll prove that A : Pg — Pg. Indeed, by Lemma 2.7, we
have

Ax(t) > @(t)m/ 1-s)% l(pp (]0+f(s x(s))) ds,
1 ! -1 (78
Ax(t) < @(t)m /0 Ppls) (10+f(s,x(s))) ds
Clearly, we have A(x)®(f) < Ax < ,u(x) (). Thus, we that A : Pg — Pg, together with (I4)

and the monotone increasing of ¢, ( ), yields that A is an increasing operator. In view of

(Is), we have
s
A(rx) >r2 /o G(t,s)w;(ls) (I€+f(s,x(s))) ds
. 1
=r(l+r2-1) /0 G(t, s)w;(ls) (Igj(s,x(s))) ds
We have n(r) := 72 —1>0. Let
1
b(t) = fo G(t, )y (15:f (5, ©(5))) s,
1
b =min{l,ﬁ/0 1-s)% (10+f(s, )) ds},
1
by = max{l, ﬁ /(; ¢1;(1s) (1g+f(s, 0(s))) ds}.

Thus, we have b10O(t) < b(t) < b,O(¢). Let a; = min{%,bl}, as > 1, wo(t) = a1b(t), vo(t) =
a,b(t). Since A is an increasing operator, we have Awy < Avy. On one hand,

F(t,wo) =f (£, arb(®) = (6, b1 O(1)) > (@) T £ (£, 0(0)).
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For a; < by, we have a; < (albl)%. Therefore,
1 1
Awo(t) = / G(t, s)/ (plj(ls) (Iéif(s, wo(s))) ds
0 0
1
= (@b} [ 66 (1. (00) ds
0

1
> 611/0 G(f,S)QDI;(Is) (Iéif(s, ©(s))) ds

= W()(t).
On the other hand,
L\
S(t;vo) =f(£,a2b(8)) <f (£, a2020(2)) < (E) f( o).

Hence,

1
Avy(t) = /0 G(t,s)(p;(ls) (15+f(s, vo(s)))ds

1
2

< b /IG(ts) -L (1P ® da
= o ’ wp(s)( 0+f(S, (S))) S

ﬂgbz
1
<a / Glt. 5oyt (10, (5, ©(5))) ds

= V()(t).

Thus, we have wy < Awy < Avy < vp. In view of Lemma 2.2, BVP (1.3) has a unique pos-
itive solution. Moreover, for any uy € [wo, vo], letting u,, = Au,1 (n=1,2,...), we have

u, —> u*. O

Example 3.2 Consider the following BVP:

4 1
D ¢ai2,0(Dgex(t)) + x*(8) sine =0, £ €[0,1],

x'(0) = x(1) =x"(0) = 0, Dy, x(0) =0,

where o = 2, 8 = 2, p(¢) = 4£> + 9, 7 = 1, f(£,x(¢)) = x*(¢) sin¢. It is easy to verify that (I,) is

satisfied. Moreover,
1 \2 1 242 s
(§x> sint = sz sint > (Z) X% sint, (2x)2 sin# = 4x? sint < 4% *2x? sint,
which yields that (I,) is satisfied. Thus, Example 3.2 has a unique positive solution.

In order to state Theorem 3.3, let P;, := mine[o,1) p(£), Py := maxeeo,1) P(2).

Theorem 3.3 Assume that f : [0,1] x R — R is continuous and the following conditions
hold.
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(Ig) There exist constants Iy, Iy > 0 such that

f&,x)| <h+blx™", 1<r<p.

1 1

(I7) 7KZPK <1, K= max{l PM Y
T(e)(r(p+1) PMT

Then BVP (1.3) has a solution.

Proof In the same way as in the proof of Theorem 3.2, it is easy to prove that A : C[0,1] —

C[0,1] is completely continuous. Denote
V ={x€X|x=1A4x,1 € (0,1)}.

According to Schaefer’s fixed point theorem, we just need to prove that V' is bounded. For

x € V, we have

yléf(t,x(t)) < t(t —s)f! [f(s,x(s)) ’ ds

1

') Jo
1

= %ﬂ)/o (t —S)ﬁ_l(ll + 12|x(s)|r_1)

=

r-1
FE+1) (b +Llxlt).

By the inequality (x + y)? < 2P(x” + y?) for x,y,p > 0 we have

|x(t)| = A|Ax(t)|

1
< /0 G(t,s)go;(ls) (Ig+f(s,x(s))) ds

25T MU
< (1-35)* 1(7 4 i B )ds.
F(“)/ coepi )

,1], we have

oo < ——2 1 (1 9L+ T (| + 1)) ds
[ (@)(T( + )Pt

By (I7) there exists a constant x > 0 such that ||x||s < p. Thus, the operator has a fixed
point, which implies that BVP (1.3) has a solution. d

Example 3.3 Consider the following BVP:

3 5
D(A)L+(pt2+2(D3+x(t)) +1+ ixz(t) = 01 te [O’ 1])

5 (3.3)
x'(0) =x(1) =x"(0) = 0, DZ.x(0)=0
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wherea =3, 8=2,p(t) =2 +2,r=2,f(t,x(t)) =1+ 1x*(£), lh = 1, [ = 1. Clearly, (I¢) holds.
Moreover,

o,
NENENE

which implies that (I7) is satisfied. Thus, BVP (3.3) has a solution.
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