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Abstract
We consider a time delay predator-prey model with Holling type-IV functional
response and stage-structured for the prey. Our aim is to observe the dynamics of this
model under the influence of gestation delay of the predator. We obtain sufficient
conditions for the local stability of each of feasible equilibria of the system and the
existence of a Hopf bifurcation at the coexistence equilibrium. By using the normal
form theory and center manifold theory we also derive some explicit formulae
determining the bifurcation direction and the stability of the bifurcated periodic
solutions. Finally, numerical simulations are given to explain the theoretical results.
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1 Introduction
The dynamic relationship between predators and their preys has long been and will con-
tinue to be one of the dominant themes in both ecology and mathematical ecology due to
its universal existence and importance. One of the familiar factors affecting the dynam-
ics of predator-prey models is the functional response, which relates the single predator’s
prey consumption rate to the prey population density. In general, functional response can
be classified as: () prey-dependent, when the prey density alone determines the response
[, ]; () predator-dependent, when both predator and prey populations affect the re-
sponse [, ]; () multispecies-dependent, when species other than the focal predator and
its prey species influence the functional response [].

It is well known that delay differential equations exhibit much more complicated dynam-
ics than ordinary differential equations since a time delay can induce various oscillations
and periodic solutions. A great deal of research have been devoted to the delay models
(see, e.g., [–] and references therein).

In nature, there are many species whose individual members have a life history that
takes them through two stages, immature and mature. The single-species model with
stage structure was studied by Aiello and Freedman []. Xu et al. [] considered a ratio-
dependent predator-prey model with stage structure for the prey. By constructing appro-
priate Lyapunov functions sufficient conditions are obtained for the global asymptotic sta-
bility of nonnegative equilibria of the model.

Motivated by the works of Chen and Jing [], Wangersky and Cunningham [], and Xu
et al. [, ], we consider the following predator-prey model with Holling type-IV func-
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tional response

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = ax(t) – bx(t) – dx(t),
ẋ(t) = bx(t) – bx

(t) – dx(t) – ax(t)y(t)
m+x

(t) ,

ẏ(t) = ax(t–τ )y(t–τ )
m+x

(t–τ ) – dy(t).
(.)

In system (.), x(t) and x(t) represent the densities of the immature and mature preys
at time t, respectively, and y(t) represents the density of the predator at time t.

The initial conditions for system (.) take the form

x(θ ) = φ(θ ), x(θ ) = φ(θ ), y(θ ) = ψ(θ ),

φ(θ ) ≥ , φ(θ ) ≥ , ψ(θ ) ≥ , θ ∈ [–τ , ], (.)

φ() > , φ() > , ψ() > ,

where (φ(θ ),φ(θ ),ψ(θ )) ∈ C([–τ , ), R
+), the Banach space of continuous functions map-

ping the interval [–τ , ] into R
+ = {(x, x, x) : xi ≥ , i = , , }.

By the fundamental theory of functional differential equations [] we know that there
is a unique solution (x(t), x(t), y(t)) to system (.) with initial conditions (.).

The organization of this paper is as follows. In Section , we give the stability analysis of
feasible equilibria and find the existence of a Hopf bifurcation at the coexistence equilib-
rium. The stability and direction of periodic solutions bifurcating from Hopf bifurcations
are established in Section . Finally, in order to illustrate the validity of the theoretical
result, some numerical simulations are included.

2 Local stability and Hopf bifurcation
In this section, we consider the stability of all feasible equilibria and the existence of a Hopf
bifurcation occurring at the coexistence equilibrium.

We denote A = d[ab–d(b+d)]
b(b+d) and B =

√
a

 – dm. Then the equilibria of system (.) are
as follows:

() System (.) always has a trivial equilibrium E(, , ).
() If

ab > d(b + d), (.)

then system (.) has a predator-extinction equilibrium E(x
 , x

, ), where

x
 =

a(ab – d(b + d))
b(b + d) , x

 =
ab – d(b + d)

b(b + d)
.

() If in addition to condition (.),

a
 – dm > , A – B < a < A + B, (.)

then system (.) has a unique coexistence equilibrium E∗(x∗
 , x∗

, y∗), where

x∗
 =

ax∗


b + d
, x∗

 =
a –

√
a

 – dm
d

, y∗ =
ax∗


ad

(
ab

b + d
– d – bx∗



)

.
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Now, by analyzing the characteristic equations we begin to discuss the geometric prop-
erties of the equilibria of system (.).

Theorem . For system (.), we have the following:
(i) If ab < d(b + d), then the trivial equilibrium E is locally asymptotically stable; if

(.) hold, then E is unstable.
(ii) If (.) holds and

aA – A < dm, (.)

then the predator-extinction equilibrium E is locally asymptotically stable; if (.)
holds and

aA – A > dm, (.)

then E is unstable.

Proof (i) For equilibrium E(, , ), the characteristic equation of system (.) is

(λ + d)
[
λ + (b + d + d)λ + d(b + d) – ab

]
= . (.)

The characteristic roots are λ = –d, λ, λ, and λ + λ = –(b + d + d) < , λλ =
d(b + d) – ab. It is easy to show that if ab < d(b + d), then λ < , λ < ; hence, E

is locally asymptotically stable; if ab > d(b + d), then Eq. (.) has one positive real root,
and therefore E is unstable.

(ii) The characteristic equation of system (.) at the predator-extinction equilibrium E

is given by

[
λ +

(
b + d + d + bx


)
λ + ab – d(b + d)

]
(

λ + d –
ax

e–λτ

m + (x
)

)

= . (.)

If (.) holds, then the equation

λ +
(
b + d + d + bx


)
λ + ab – d(b + d) = 

has two roots with negative real parts, and other roots of (.) are given by the roots of
g(λ) = λ + d – ax

e–λτ

m+(x
) = .

From (.) and (.) we have

g() =
–

m + (x
)

aA – A – dm
d

<  and lim
λ→+∞ g(λ) = +∞.

It follows from the continuity of the function g that the equation g(λ) =  has at least one
positive real root. So E is unstable.

If (.) and (.) hold, then it is easy to show that g() > . By Theorem .. in [] we
know that the equilibrium E is locally asymptotically stable for all τ ≥ . This completes
the proof of Theorem .. �
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Theorem . Assume that (.) and (.) hold and that (p + q)(p + q) > p + p. If p >
q. Then the coexistence equilibrium E∗ is locally asymptotically stable for all τ > ; if p <
q, then there exists a positive number τ >  such that E∗ is locally asymptotically stable
if τ ∈ [, τ) and is unstable if τ > τ. Further, system (.) undergoes a Hopf bifurcation at
E∗ when τ = τ.

Proof The characteristic equation of system (.) at E∗ is

λ + pλ
 + pλ + p +

(
qλ

 + qλ + q
)
e–λτ = , (.)

where

p = d
[

(b + d)
(

d + bx∗
 +

ay∗(m – (x∗
))

(m + (x∗
)) – ab

)]

,

p = d
(

b + d + d + bx∗
 +

ay∗(m – (x∗
))

(m + (x∗
))

)

+ (b + d)
(

d + bx∗
 +

ay∗(m – (x∗
))

(m + (x∗
))

)

– ab,

p = b + d + d + bx∗
 +

ay∗(m – (x∗
))

(m + (x∗
)) + d,

q = –d
(
(b + d)

(
d + bx∗


)

– ab
)
,

q = –d
(
b + d + d + bx∗


)
, q = –d.

When τ = , (.) reduces to

λ + (p + q)λ + (p + q)λ + p + p = .

From (.) we derive that

p + q =
ady∗(m – (x∗

))(b + d)
(m + (x∗

)) > ,

p + q = b + d + d + bx∗
 +

ay∗(m – (x∗
))

(m + (x∗
)) > .

By the Routh-Hurwitz criterion we see that the equilibrium E∗ is locally asymptotically
stable when τ = .

When τ > , let λ = iω (ω > ) be a root of Eq. (.). Substituting it into Eq. (.) and
separating real and imaginary parts yield

ω – pω =
(
qω

 – q
)

sinωτ + qω cosωτ ,

–pω
 + p =

(
qω

 – q
)

cosωτ – qω sinωτ ,
(.)

which implies

ω +
(
p

 – p – q

)
ω +

(
p

 – pp + qq – q

)
ω + p

 – q
 = . (.)
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Noting that

p – q = d(b + d)
[


(

d + bx∗
 –

ab
b + d

)

+
ay∗(m – (x∗

))
(m + (x∗

))

]

,

p
 – p – q

 = ab + (b + d) +
[(d + bx∗

)(m + (x∗
)) + ay∗(m – (x∗

))]

(m + (x∗
)) ,

we have

p
 – pp + qq – q



=
[

(b + d)
(

d + bx∗
 +

ay∗(m – (x∗
))

(m + (x∗
)) – ab

)]

+
day∗(m – (x∗

))
(m + (x∗

))

[


(
d + bx∗


)

+
ay∗(m – (x∗

))
(m + (x∗

))

]

.

Therefore, if p > q, then (.) has no positive real roots. By Theorem .. in [] we
know that E∗ is locally asymptotically stable for all τ ≥ . If p < q, then (.) has a unique
positive root ω, that is, (.) has a pair of purely imaginary roots iω.

Denote

τn =


ω
arccos

qω

(ω

 – p) + (qω

 – q)(p – pω


)

q
ω


 + (qω


 – q) +

nπ

ω
, n = , , , . . . . (.)

By Theorem .. in [] we see that E∗ is stable for τ < τ.
Next, we turn to show that

d Reλ

dτ

∣
∣
∣
∣
τ=τ

> .

This will signify that there exists at least one eigenvalue with a positive real part for
τ > τ. Differentiating (.) with respect to τ , we get

(
dλ

dτ

)–

=
λ + pλ + p

–λ(λ + pλ + pλ + p)
+

qλ + q

λ(qλ + qλ + q)
–

τ

λ
.

By direct calculation we get that

sgn

{
d Reλ

dτ

}

λ=iω

= sgn

{

Re

(
dλ

dτ

)–}

λ=iω

= sgn

{

–
(p – ω

)(ω
 – p) + p(p – pω


)

(ω
 – pω) + (p – pω


) –

q
 – q(q – qω


)

(q – qω

) + q

ω



}

.

Noting that

(
ω

 – pω
) +

(
p – pω



) =

(
q – qω



) + q

ω

,
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it follows that

sgn

{
d Reλ

dτ

}

λ=iω

= sgn

{
ω

 + (p
 – p – q

)ω
 + p

 – pp + qq – q


(q – qω

) + q

ω



}

> .

Therefore, the transversal condition holds, and a Hopf bifurcation occurs at ω = ω, τ = τ.
This completes the proof of Theorem .. �

3 Stability of bifurcated periodic solutions
As pointed out in [], it is interesting to determine the direction and stability of periodic
solutions bifurcating from the positive equilibrium E∗. In this section, we shall derive ex-
plicit formulae for determining the properties of the Hopf bifurcation at τ by using the
normal form theory and the center manifold theorem introduced by Hassard et al. [].

Let x̄(t) = x(t) – x∗
 , x̄(t) = x(t) – x∗

, ȳ(t) = y(t) – y∗. Then system (.) becomes
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

˙̄x(t) = –(b + d)x̄(t) + ax̄(t),
˙̄x(t) = bx̄(t) + ax̄(t) + aȳ(t) + ax̄

(t) + aax̄
(t)

+ aax̄(t)ȳ(t) + aax̄
(t)ȳ(t),

˙̄y(t) = –dȳ(t) + dȳ(t – τ ) + ax̄(t – τ ) + ax̄
(t – τ ) – aax̄

(t – τ )
– aax̄(t – τ )ȳ(t – τ ) – aax̄

(t – τ )ȳ(t – τ ),

(.)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = –c – ac
c


, a = –da

a
, a = –b + cax∗


c


+ ax∗

y∗
c


(c + x∗

),

a = x∗
y∗
c


– ( (x∗

)

c


– 
c


)c – (x∗

)y∗
c


(c + x∗

),

a = – m–(x∗
)

c


, a = x∗


c


+ x∗
(m–(x∗

))
c


,

a = ax∗
y∗

c


+ ac
c


, a = – acx∗


c


– ax∗

y∗(c+x∗
)

c


c = d + bx∗
 + ax∗

y∗
c


, c = m + (x∗

),

c = y∗(m – (x∗
) – mx∗

 – (x∗
)).

Let t = sτ , x̄(sτ ) = x̂(s), x̄(sτ ) = x̂(s), ȳ(sτ ) = ŷ(s), τ = τ + μ, μ ∈ R, where τ is defined
by (.). We drop the hats for simplification of notation. Then system (.) is transformed
into the following FDE in C = C([–, ], R):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = (τ + μ)[–(b + d)x(t) + ax(t)],
ẋ(t) = (τ + μ)[bx(t) + ax(t) + ay(t) + ax

(t) + aax
(t)

+ aax(t)y(t) + aax
(t)y(t)],

ẏ(t) = (τ + μ)[–dy(t) + dy(t – ) + ax(t – ) + ax
(t – )

– aax
(t – ) – aax(t – )y(t – ) – aax

(t – )y(t – )].

We rewrite this system in the matrix form

ẋ(t) = Lμxt + f (μ, xt). (.)

where x(t) = (x(t), x(t), y(t))T ∈ R, and Lμ : C → R, f : R × C → R are given, respec-
tively, as follows: for φ(t) = (φ(t),φ(t),φ(t))T ∈ C([–τ , ], R), we define

Lμφ = Dφ() + Dφ(–) (.)
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and

f (μ,φ) = (τ + μ)M, (.)

where

D = (τ + μ)

⎛

⎜
⎝

–(b + d) a 
b a a

  –d

⎞

⎟
⎠ , D = (τ + μ)

⎛

⎜
⎝

  
  
 a d

⎞

⎟
⎠ ,

M =

⎛

⎜
⎝


aφ


 () + aaφ


() + aaφ()φ() + aaφ


 ()φ()

aφ

 (–) – aaφ


 (–) – aaφ(–)φ(–) – aaφ


 (–)φ(–)

⎞

⎟
⎠ .

(.)

By the Riesz representation theorem there exists a matrix function η(·,μ) : [–, ] → R

such that

Lμ(φ) =
∫ 

–
dη(θ ,μ)φ(θ ) for φ ∈ C. (.)

In fact, we can choose

η(θ ,μ) = Dδ(θ ) + Dδ(θ + ), (.)

where δ is the Dirac delta function. For φ ∈ C([–, ], R), define

A(μ)φ(θ ) =

{
dφ(θ )

dθ
, – ≤ θ < ,

∫ 
– dη(s,μ)φ(s), θ = 

and

R(μ)φ(θ ) =

{
, – ≤ θ < ,
f (μ, θ ), θ = .

Hence, system (.) is equivalent to the operator equation

ẋt = A(μ)xt + R(μ)xt ,

where xt(t) = x(t + θ ) for θ ∈ [–, ].
For ψ ∈ C([–, ], (R)∗), define

A∗(μ)ψ(s) =

{
– dψ(s)

ds ,  < s ≤ ,
∫ 

– dη(s,μ)ψ(–s), s = ,

and the bilinear inner product

〈φ,ψ〉 = ψ̄T()φ() –
∫ 

–

∫ θ

ξ=
ψ̄T(ξ – θ ) dη(θ )φ(ξ ) dξ , (.)

where η(θ ) = η(θ , ). Then A() and A∗ are adjoint operators.
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By the discussion in Section  we know that ±iωτ are eigenvalues of A(). Hence, they
are also eigenvalues of A∗.

Assume that q(θ ) = (, q, q)Teiωτθ is the eigenvector of A() corresponding to iωτ.
Then A()q(θ ) = iωτq(θ ). From the definition of A() and from (.), (.), and (.), for
q(–) = q()e–iωτ , we have

⎛

⎜
⎝

–(b + d) a 
b a a

  –d

⎞

⎟
⎠

⎛

⎜
⎝


q()
q()

⎞

⎟
⎠ = iωτ

⎛

⎜
⎝


q()
q()

⎞

⎟
⎠ .

Then we obtain

q =
b + d + iω

a
, q =

–ae–iωτ (b + d + iω)
a[de–iωτ – (d + iω)]

.

Similarly, we can calculate the eigenvector q∗(s) = D(, q∗
 , q∗

)Teiωτ of A corresponding
to –iωτ, where

q∗
 =

b + d – iω

b
, q∗

 =
–a(b + d – iω)

b[deiωτ – (d – iω)]
.

We normalize q and q∗ by the condition 〈q∗(s), q(θ )〉 = . Clearly, 〈q∗(s), q(θ )〉 = . In
order to ensure that 〈q∗(s), q(θ )〉 = , we need to determine the value of D. By (.) we can
choose

D̄ =
[
 + qq̄∗

 + qq̄∗
 +

(
aqq̄∗

 + dqq̄∗

)
τe–iωτ

]–.

In the following, we use the same notation as in [], and using a computation similar to
that of Wei and Ruan [], we can obtain the coefficients that will be used for determining
the important qualities:

{
g = τD̄(kq̄∗

 + kq̄∗
), g = τD̄(kq̄∗

 + kq̄∗
),

g = τD̄(kq̄∗
 + kq̄∗

), g = τD̄(kq̄∗
 + kq̄∗

),

where

k = aq
 + aaqq,

k = aqq̄ + aa(qq̄ + qq̄),

k = aq̄
 + aaq̄q̄,

k = a
[
q̄W ()

 () + qW ()
 ()

]
+ aaq

 q̄ + aa
(
q

 q̄ + qqq̄
)

+ aa

[



q̄W ()
 () + qW ()

 () +



q̄W ()
 () + qW ()

 ()
]

,

k =
(
aq

 – aaqq
)
e–iωτ ,

k =
[
aqq̄ – aa(qq̄ + qq̄)

]
e–iωτ ,

k =
(
aq̄

 – aaq̄q̄
)
e–iωτ ,
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k = a
[
q̄W ()

 (–) + qW ()
 (–)

]
e–iωτ – aaq

 q̄e–iωτ

– aa
(
q

 q̄ + qqq̄
)
e–iωτ

– aa

[



W ()
 (–)q̄ + qW ()

 (–) +



q̄W ()
 (–) + qW ()

 (–)
]

e–iωτ

and

{
W(θ ) = ig

ωτ
q()eiωτθ + iḡ

ωτ
q̄()e–iωτθ + Eeiωτθ ,

W(θ ) = – ig
ωτ

q()eiωτθ + iḡ
ωτ

q̄()e–iωτθ + E.

Moreover E and E satisfy the following equations:

⎛

⎜
⎝

iω + (b + d) –a 
–b iω – a –a

 –ae–iωτ iω – d – de–iωτ

⎞

⎟
⎠E = 

⎛

⎜
⎝


k

k

⎞

⎟
⎠ ,

⎛

⎜
⎝

b + d –a 
–b –a –a

 –a 

⎞

⎟
⎠E =

⎛

⎜
⎝


k

k

⎞

⎟
⎠ .

Furthermore, gij is expressed by the parameters and delay in (.). Thus, we can compute
the following values:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C() = i
ωτ

(gg – |g| – |g|
 ) + g

 ,

μ = – Re{C()}
Re{ dλ(τ)

dτ
} ,

β =  Re{C()},
T = Im{C()}+μ Im{ dλ(τ)

dτ
}

ωτ
, k = , , , . . . .

(.)

By the result of Hassard et al. [] we have the following theorem.

Theorem . In view of (.), the following results hold:
(i) the sign of μ determines the directions of the Hopf bifurcation: if μ >  (μ < ),

then the Hopf bifurcation is supercritical (subcritical) and the bifurcating periodic
solutions exist for τ > τ ∗ (τ < τ);

(ii) the sign of β determines the stability of the bifurcating periodic solutions: the
bifurcating periodic solutions are stable (unstable) if β <  (β > );

(iii) the sign of T determines the period of the bifurcating periodic solutions: the period
is increasing (decreasing) if β >  (β < ).

4 Computer simulations
In this section, we present some numerical results for system (.).

In (.), let a = , b = /, a = , a = , b = , d = d = /, d = /, m = . It is easy
to show that (.) and (.) hold. Hence, system (.) has a unique coexistence equilibrium
E∗(., ., .).

By calculation we have τ ≈ ., C() ≈ .–.i, μ ≈ –. < , β ≈
. > , T ≈ . > .
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Figure 1 τ = 3 < τ0, E∗ is locally asymptotically stable.

Figure 2 τ = 3.2 > τ0, E∗ is unstable.
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By Theorem ., E∗ is locally asymptotically stable if  < τ < τ and is unstable if τ > τ,
and system (.) undergoes a Hopf bifurcation at E∗. When τ = τ, we know that the bifur-
cation is subcritical and the bifurcating periodic solution is unstable (see Figure ). With
the increase of the delays, system (.) shows complicated dynamical behaviors. A numer-
ical simulation illustrates this fact (see Figure ).
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