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Abstract
In this paper, we formulate a two-dimensional autonomous predator-prey model
with state-dependent impulsive effects and square root response function. The
square root response function indicates that the prey population gather together for
self-defense purposes. Firstly, we prove that the system has semitrivial periodic
solution under some conditions. Furthermore, by the Poincaré map and the theory of
impulsive differential equations, the existence and stability of positive order-1 or
order-2 periodic solution of the system are investigated in detail. The validity of all
results is illustrated by numerical simulations.
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1 Introduction
Many evolutionary processes in nature are subjected to short temporary perturbations
and experience abrupt changes at certain moments of time. The duration of the changes
is very short and negligible in comparison with the duration of the process considered.
These short-time perturbations are often assumed to be momentary changes or impulses.
Therefore, it is realistic that impulsive differential equations model such processes. In the
recent ten years, the theory of impulsive differential equations has been extensively used to
model many real processes in biology, physics, chemistry, engineering, and other sciences.
Particularly, some impulsive differential equations have been introduced successfully in
population dynamics (such as fishing or agriculture) and epidemic dynamics; see [–]
and references therein. In most of the cases, scholars investigate the population dynam-
ical systems with impulsive perturbation at fixed times. However, in practical ecological
systems, the implementations of some control strategy (by catching, poisoning or releas-
ing the natural enemy, etc.) depend on the state of target species, which is a more realistic
project. This is known as impulsive state feedback control strategy, which is widely used in
many biological systems. Recently, a few studies on state-dependent impulse effects were
made in [–]. In particular, Jiang et al. [, ], Nie et al. [–] and Zhang et al. []
investigated some predator-prey systems by using the Poincaré map and theory of impul-
sive differential equations, the sufficient conditions of existence and stability of semitrivial
solution and positive periodic solution were obtained. Guo and Chen [] and Tian et al.
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[] studied the existence and stability of the positive period- solution of the system with
impulsive state feedback control. The abundant dynamic behaviors of the systems were
obtained.

These predator-prey systems with prey group defense ability have more abundant and
interesting dynamic characteristics and attract attention of many scholars. A recent novel
contribution models the fact that it is the individuals at the edge of the herd that generally
suffer the heaviest consequences of the predators’ attacks. Recently, some predator-prey
models [–] in which the prey exhibits herd behavior were considered. In these models,
the predator interacts with the prey along the outer corridor of the herd of prey. As a
mathematical consequence of the herd behavior, the interaction terms in systems use the
square root of the prey population rather than simply the prey population. The use of the
square root properly accounts for the assumption that the interactions occur along the
boundary of the population. For example, for drifting herbivores in the savannas, moving
in very large herds and subject to individual attacks of predators, the likelihood that they
are hunted in the way we describe here is evident [].

Braza [] analyzed the following predator-prey model with square root functional re-
sponses:

{
dx(t)

dt = x(t)( – x(t)) –
√

x(t)y(t),
dy(t)

dt = –sy(t) + c
√

x(t)y(t),
(.)

where the prey is denoted by x(t), and the predator by y(t), s is the death rate of the preda-
tor, and c is the biomass conversion or consumption rate.

Basing on these reasons mentioned, we will consider the dynamic behaviors for system
(.) with state-dependent impulse effects; in other words, when the amount of the her-
bivores reaches a threshold value, we will release predators and capture some herbivores,
helping this way to preserve natural balance. The system is modeled by the following equa-
tions:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx(t)
dt = x(t)( – x(t)) –

√
x(t)y(t),

dy(t)
dt = –sy(t) + c

√
x(t)y(t),

}
x �= h,

�x(t) = x(t+) – x(t) = –px(t),
�y(t) = y(t+) – y(t) = qy(t) + α,

}
x = h,

(.)

where h > , α ≥ , p ∈ (, ), and q ∈ (–,∞), and (x∗, y∗) is the positive equilibrium of
system (.). When the amount of the prey reaches the threshold h at time th, a control
strategy is taken, and the amount of prey and predator abruptly turn to ( – p)h and ( +
q)y(th) + α, respectively.

2 Preliminaries
The dynamic behaviors for system (.) are studied by many investigators. Throughout this
paper, we assume that system (.) has a unique positive equilibrium point (x∗, y∗) under
the following condition:

(H) c > s, where
{

x∗ = s

c ,
y∗ = s(c–s)

c .
(.)
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By the biological background of system (.) we only consider system (.) in the region
D = R

+. Obviously, the global existence and uniqueness of solutions of system (.) are
guaranteed by the smoothness properties of f , which is the mapping defined by the right-
hand side of system (.); for details, see [, ].

Denote R = (–∞,∞). First, we give the notion of the distance between a point and a
set. Let S ⊂ R = {(x, y) : x ∈ R, y ∈ R} be an arbitrary set, and P ∈ R be an arbitrary point.
Then the distance between the point P and the set S is denoted by

d(P, S) = inf
P∈S

‖P – P‖,

where ‖P – P‖ =
√

(x – x) + (y – y) for points P(x, y) ∈ R and P(x, y) ∈ S.
Let z(t) = (x(t), y(t)) be a solution of (.), and let z(t; t, z) denote the solution of (.)

for which z(t+
 ; t, z) = z. Next, we define the positive orbit through the point z ∈ R

+ =
{(x, y) : x ≥ , y ≥ } for t ≥ t as

O+(z, t) =
{

z ∈ R
+ : z = z(t), t ≥ t, z(t) = z

}
.

In the rest of this paper, we will use the following definitions.

Definition . [] The solution z(t) of system (.) is said to be:
() Orbitally stable if ∀ε > , ∃δ >  such that for any z∗(t) = (x∗

, y∗
) ∈̄ {h} × [y∗, +∞)

satisfying ‖z∗(t) – z(t)‖ < δ, we have d(z(t; t, z∗(t)), O+(z, t)) < ε for t > t.
() Orbitally attractive if ∀ε > , ∃δ >  and T̃ >  such that for any

z∗(t) = (x∗
, y∗

) ∈̄ {h} × [y∗, +∞) satisfying ‖z∗(t) – z(t)‖ < δ, we have
d(z(t; t, z∗(t)), O+(z, t)) < ε for any t > t + T̃ .

To discuss the dynamics of system (.), we define two cross-sections of the vector field
(.) by

∑p = {(x, y) : x = ( – p)h, y > } and
∑h = {(x, y) : x = h, y > }. Denote by Pt the

point representing the state of the system at time t. Suppose that the point Sn(h, yn) is on
the section

∑h; then the point Pt jumps from the position Sn(h, yn) to the point S+
n (( –

p)h, ( + q)yn + α) on the section
∑p due to the impulse effects. The point Pt continues its

motion along the solution curve of system (.) and reaches the point Sn+(h, yn+) on the
section

∑h again, where yn+ is decided by yn and the parameters q and α. Therefore, we
defined the Poincaré map of

∑h as follows:

yn+ = P(q,α, yn). (.)

Next, we consider the autonomous system with impulse effects

{
dx
dt = P(x, y), dy

dt = Q(x, y), ϕ(x, y) �= ,
�x = ξ (x, y), �y = η(x, y), ϕ(x, y) = ,

(.)

where P(x, y) and Q(x, y) are continuous differential functions defined on R, and ϕ(x, y)
is a sufficiently smooth function with gradϕ(x, y) �= . Let system (.) have a positive T-
periodic solution (u(t), v(t)) with moments of an impulse effect τj : τj+m = τj + T (j ∈ N ),
m is a positive integer. By Corollary  of Theorem  given in Simeonov and Bainov [] we
have the following lemma.
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Lemma . (Analogue of Poincaré’s criterion) If the Floquet multiplier μ satisfies the con-
dition |μ| < , where

μ =
m∏
j=

Kj exp

[∫ T



(
∂P(u(t), v(t))

∂x
+

∂Q(u(t), v(t))
∂y

)
dt

]

with

Kj =
( ∂η

∂y
∂ϕ

∂x – ∂η

∂x
∂ϕ

∂y + ∂ϕ

∂x )P+ + ( ∂ξ

∂x
∂ϕ

∂y – ∂ξ

∂y
∂ϕ

∂x + ∂ϕ

∂y )Q+
∂ϕ

∂x P + ∂ϕ

∂y Q
,

and P, Q, ∂ξ

∂x , ∂ξ

∂y , ∂η

∂x , ∂η

∂y , ∂ϕ

∂x , and ∂ϕ

∂y are calculated at the point (u(τj), v(τj)), P+ =
P(u(τ+

j ), v(τ+
j )), Q+ = Q(u(τ+

j ), v(τ+
j )), and τj (j ∈ N ) is the time of the jth jump. Then,

(u(t), v(t)) is orbitally asymptotically stable.

Now, let z(t) = (x(t), y(t)) be a solution of system (.) with initial conditions z = z(t) =
(( – p)h, y) ∈ R

+. This trajectory O+(z, t) begins from the point E(( – p)h, y) and
moves along the solution curve z(t), then it first intersects the section

∑h at the point
F(h, ỹ), and, next, the point F is transferred to the point E(( – p)h, y) on the section∑p due to the impulse effects, then reaches the point F(h, ỹ) on the section

∑h again,
etc. So, we have two-point sequences {Ek(( – p)h, yk)} and {Fk(h, ỹk)} (k = , , , . . .). In
addition, notice that the coordinates satisfy the relation yk = ( + q)̃yk– + α (k = , , . . .).

Definition . A trajectory O+(z, t) of system (.) is said to be order-k periodic if there
exists a positive integer k ≥  such that k is the smallest integer for y = yk .

3 Main results
3.1 Existence of semitrivial periodic solution with α = 0
Let y(t) =  for t ∈ [,∞). Then from system (.) we have

{
dx(t)

dt = x(t)( – x(t)), x �= h,
�x = x(t+) – x(t) = –px, x = h.

Set x = x(+) = ( – p)h. Then the solution of the equation

dx(t)
dt

= x(t)
(
 – x(t)

)
is x(t) = 

+c̄e–t , where c̄ = 
(–p)h – .

By the periodic condition, let x(T) = h and x(T+) = x. Then

T = ln
{[

 – ( – p)h
]
/
[
( – p)( – h)

]}
,

where  < h <  ensures that T > .
This means that system (.) with α =  has the following semitrivial periodic solution

{
x̄(t) = (–p)h

(–p)h+[–(–p)h] exp(–(t–(k–)T)) ,
ȳ(t) = .

(.)

for (k – )T < t ≤ kT (k = , , . . .).
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3.2 Existence and stability of positive periodic solutions
In this subsection, we give sufficient conditions for the existence and stability of positive
periodic solutions in the cases h ≤ x∗ and h > x∗, respectively.

Case I : h ≤ x∗.
On the existence of positive periodic solution of system (.), we have the following

theorem.

Theorem . For any q > – and α > , system (.) has a positive order- periodic solution.

Proof Let the point M(( – p)h,β) be on the section
∑p, where β is small enough, and

β < α. The trajectory O+(M, t) of system (.) begins from the point M and moves along
the solution curve of system (.), then intersects the section

∑h at the point N(h,β). At
the point N, the trajectory O+(M, t) instantly jumps to the point M((–p)h, (+q)β +α)
on the section

∑p by impulse effect and then reaches the point N(h,β) on the section∑h again. Since ( + q)β + α > β, the point M is above the point M. Without doubt, the
point N is above the point N, and β > β. So, from (.) we have β = P(q,α,β) and

β – P(q,α,β) = β – β < . (.)

On the other hand, suppose that the vertical isocline L :  – x – y√
x =  intersects the sec-

tion
∑p at the point E(( – p)h, ( – ( – p)h)

√
( – p)h). The trajectory O+(E, t) from the

initial point E intersects the section
∑h at the point F(h, y) with y < y∗, then suddenly

jumps to the point F+
 (( – p)h, ( + q)y + α) on the section

∑p, and finally reaches the
point F(h, y) on the section

∑h again. Suppose that there is a positive constant q∗ such
that ( + q)y + α = ( – ( – p)h)

√
( – p)h. Then, the point F+

 coincides with the point E

for q = q∗, the point F+
 is above the point E for q > q∗, and F+

 is under the point E for
q < q∗. However, on account of the point E on the isocline L and the phase portrait of
system (.), we find that the point F is under the point F for any q ∈ (–, q∗) ∪ (q∗,∞).

From this analysis we have that
(i) if y = y, then system (.) has a positive order- periodic solution;

(ii) if y > y, then

y – P(q,α, y) = y – y > . (.)

By (.) and (.) it follows that the Poincaré map (.) has a fixed point, that is, system
(.) has a positive order- periodic solution. This completes the proof. �

Next, we state and prove the stability of the positive order- periodic solutions of system
(.).

Theorem . Let (φ(t),ψ(t)) be a positive order- T-periodic solution of system (.) that
starts from the point (h,γ ). Suppose that

|μ| =
∣∣∣∣k exp

∫ T



[
 – φ(t) –

ψ(t)

√

φ(t)
– s + c

√
φ(t)

]
dt

∣∣∣∣ < , (.)



Sun et al. Advances in Difference Equations  (2016) 2016:50 Page 6 of 13

where

γ > , k =
( – p)( + q)[ – ( – p)h – (+q)γ +α√

(–p)h
]

 – h – γ√
h

.

Then (φ(t),ψ(t)) is orbitally asymptotically stable.

Proof Suppose that the periodic solution (φ(t),ψ(t)) intersects the sections
∑p and

∑h

at the points E+(( – p)h, ( + q)γ + α) and E(h,γ ), respectively. Comparing with system
(.), we have

{
P(x, y) = ( – x – y√

x )x,
Q(x, y) = (–s + c

√
x)y,

and ξ (x, y) = –px, η(x, y) = qy+α, ϕ(x, y) = x–h, (φ(T),ψ(T)) = (h,γ ), and (φ(T+),ψ(T+)) =
(( – p)h, ( + q)γ + α).

Thus,
{

∂P
∂x =  – x – y


√

x ,
∂Q
∂y = –s + c

√
x,

(.)

and

∂ξ

∂x
= –p,

∂η

∂y
= q,

∂ϕ

∂x
= ,

∂ξ

∂y
=

∂η

∂x
=

∂ϕ

∂y
= . (.)

It follows from (.), (.), and Lemma . that

k =
( + q)P(φ(T+),ψ(T+))

P(φ(T),ψ(T))

=
( – p)( + q)[ – ( – p)h – (+q)γ +α√

(–p)h
]

 – h – γ√
h

and

μ = k exp
∫ T



[
 – φ(t) –

ψ(t)

√

φ(t)
– s + c

√
φ(t)

]
dt.

Therefore, by Lemma ., provided that condition (.) is satisfied, the order- periodic
solution (φ(t),ψ(t)) of system (.) is orbitally asymptotically stable. This completes the
proof. �

Case II: h > x∗.
On the existence and stability of positive periodic solution of system (.), we have the

following theorem.

Theorem . For h > x∗, there is a positive constant α∗ = α(h) >  such that for any q > –
and α > α∗, system (.) only has a orbitally asymptotically stable positive order- or order-
 periodic solution.
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Figure 1 Geometrical construction. The phase
portrait of the phase space of the system (1.2).

Figure 2 A stable semitrivial periodic solution. x(0) = 0.5, y(0) = 0.6. (a) Time series graph for prey x(t);
(b) Time series graph for predator y(t); (c) Phase space graph for prey x(t) and predator y(t).

Proof In view of the phase portrait of system (.), there is a trajectory � that begins from
the point D((–p)h, ỹ), crosses

∑p at the point D((–p)h, ỹ) (ỹ < ỹ), and then tangents
to the section

∑h at the point D(h, ( – h)
√

h). So, the trajectory of system (.) that starts
from the point (( – p)h, y) with y ∈ (ỹ, ỹ) will not meet

∑h, and tends to the equilibrium
point (x∗, y∗). (See Figure .)

Let α∗ = ỹ + ( – h)
√

h. The trajectory of system (.) that starts from the point
E(( – p)h, ỹ) (ỹ ∈ (, ỹ) ∪ (ỹ, +∞)) will intersect with

∑h infinitely many times due to
the impulse effects with α > α∗ and h > x∗. Suppose that the orbit O+(E, t) intersects

∑h

at the point (h, y); then y ∈ (, ( – h)
√

h). Further, from the Poincaré map (.) of the
section

∑h it follows that y = P(q,α, y) and y = P(q,α, y). Repeating this process, we
have yn+ = P(q,α, yn) (n = , , . . .). On the other hand, for any two points Ai(h, yi) and
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Figure 3 A unstable semitrivial periodic solution. x(0) = 0.5, y(0) = 0.6. (a) Time series graph for prey x(t);
(b) Time series graph for predator y(t); (c) Phase space graph for prey x(t) and predator y(t).

Aj(h, yj) on
∑h, where yi, yj ∈ (, ( – h)

√
h) and yi < yj, the points A+

i (( – p)h, ( + q)yi + α)
and A+

j (( – p)h, ( + q)yj + α) are above the point D for the impulse effects. Therefore,
from the phase portrait of the system (.) we have

 < yj+ < yi+ < ( – h)
√

h (.)

for α > α∗.
Now, suppose that the trajectory of system (.) that starts from the point E(( – p)h, y)

(y ∈ [ỹ,∞)) intersects with
∑h at the point E(h, y) for the fist time; then y ∈ (, ( –

h)
√

h]. If y = ( – h)
√

h and y = ( + q)y + α, then system (.) has a positive order-
periodic solution. Otherwise, from the Poincaré map (.) of the section

∑h it follows that
y = P(q,α, y) and y = P(q,α, y); and so forth, we have yn+ = P(q,α, yn) (n = , , . . .).
In particular, if y = y, then system (.) has a positive order- periodic solution, and if
y �= y and y = y, then system (.) has a positive order- periodic solution.

Next, similarly to [, , ], we discuss the general circumstance, that is, y �= y �= y �=
· · · �= yn (n > ).

(a) If y < y, then from (.) we obtain that y > y. Consequently, the relation of y, y,
and y is one of the following cases:

(i) y < y < y.
If y < y < y, then y > y > y > y by (.). Repeating the process, we have

 < · · · < yn < · · · < y < y < y < · · · < yn+ < · · · < ( – h)
√

h.

(ii) y < y < y.
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Figure 4 A unstable semitrivial periodic solution. x(0) = 0.5, y(0) = 0.6. (a) Time series graph for prey x(t);
(b) Time series graph for predator y(t); (c) Phase space graph for prey x(t) and predator y(t).

If y < y < y, then similarly to (i) we have

y < y < · · · < yn < · · · < yn+ < · · · < y < y < ( – h)
√

h.

(b) If y > y, from (.) we obtain that y < y. Consequently, the relation of y, y, and
y is one of the following cases:

(i) y < y < y.
If y < y < y, then y > y > y > y by (.). Repeating the process, we have

 < · · · < yn+ < · · · < y < y < y < · · · < yn < · · · < ( – h)
√

h.

(ii) y < y < y.
If y < y < y, then similarly to (i) we have

 < y < · · · < yn+ < · · · < yn < · · · < y < y < ( – h)
√

h.

From this analysis, in case (i) of (a), it follows from the monotone bounded theorem
that limn→∞ yn = θ and limn→∞ yn+ = θ; in addition,  < θ < y < θ < (r – h)

√
h. Thus,

we get θ = P(q,α, θ) and θ = P(q,α, θ). This means that system (.) has an orbitally
asymptotically stable positive order- periodic solution. Similarly, in case (i) of (b), system
(.) has also an orbitally asymptotically stable positive order- periodic solution. In cases
(ii) of (a) and (ii) of (b), it follows from the Poincaré map and the closed interval theorem
that system (.) has an orbitally asymptotically stable positive order- periodic solution.
The proof is completed. �
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Figure 5 A stable order-1 positive periodic solution. x(0) = 0.5, y(0) = 0.6. (a) Time series graph for prey
x(t); (b) Time series graph for predator y(t); (c) Phase space graph for prey x(t) and predator y(t).

Remark From the proof of Theorem . we note that the trajectory of system (.) passing
through the point (( – p)h, y) (y ∈ (ỹ, ỹ)) will not intersect with

∑h as time increases and
will tend to the focus (x∗, y∗). Therefore, α > ỹ +(–h)

√
h is a sufficient condition ensuring

that the trajectory of system (.) intersects with
∑h infinitely many times in view of the

impulse effects.

4 Numerical simulation
We have obtained analytical results on dynamical behaviors of a predator-prey model with
state-dependent impulse effects in front sections. Now we will illustrate the validity of
these results through numerical simulation.

In system (.), let s = . and c = .. Then the positive equilibrium point (x∗, y∗) =
(., .) is globally asymptotically stable.

For the semitrivial periodic solution (.) of system (.), we set the parameters as fol-
lows:

() s = ., c = ., p = ., α = , h = . < x∗, q = ..
Under this choice of parameters, we find that the trajectory of system (.) intersects the

section
∑h infinitely many times and tends to the semitrivial T-periodic solution (.),

where T = ., so the semitrivial T-periodic solution (.) is stable (see Figure ).
() s = ., c = ., p = ., α = , h = . < x∗, q = ..
Under this choice of parameters, we find that the trajectory of system (.) intersects

the section
∑h infinitely many times and is away from the semitrivial T-periodic solu-

tion (.), where T = ., so the semitrivial T-periodic solution (.) is unstable (see
Figure ).
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Figure 6 A stable order-1 positive periodic solution. x(0) = 0.5, y(0) = 0.6. (a) Time series graph for prey
x(t); (b) Time series graph for predator y(t); (c) Phase space graph for prey x(t) and predator y(t).

() s = ., c = ., p = ., α = , h = . > x∗, q = ..
Under this choice of parameters, we find that the trajectory of system (.) intersects the

section
∑h finitely many times and tends to the positive equilibrium point (x∗, y∗), so the

semitrivial T-periodic solution (.), where T = ., is unstable (see Figure ).
For the positive periodic solution of system (.), we set the parameters as follows:
() s = ., c = ., p = ., α = ., h = . < x∗, q = ..
Under this choice of parameters, the conditions of Theorem . are established, so we

get a stable order- positive periodic solution (see Figure ).
() s = ., c = ., p = ., α = ., h = . > x∗, q = ..
Under this choice of parameters, the conditions of Theorem . are established, so we

also get a stable order- positive periodic solution (see Figure ).
() s = ., c = ., p = ., α = ., h = . > x∗, q = ..
Under this choice of parameters, the conditions of Theorem . are established, so we

obtain a stable order- positive periodic solution (see Figure ).

5 Conclusion
On the basis of the predator-prey model (.) with square root functional responses, we
formulate a new model (.) with state impulsive control strategy. In spite of the simplicity
of the model, which is composed of two ordinary differential equations together with rela-
tions defining the impulsive condition, it is very significant and has interesting dynamical
behaviors.

For the predator-prey model (.), the prey exhibits strong herd structure implying that
the predator generally interacts with the prey along the outer corridor of the herd, and this
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Figure 7 A stable order-2 positive periodic solution. x(0) = 0.5, y(0) = 0.6. (a) Time series graph for prey
x(t); (b) Time series graph for predator y(t); (c) Phase space graph for prey x(t) and predator y(t).

behavior makes their predators difficult to get food (such as lions on the vast grassland).
If this situation continues for a long time in this way, then the predator will be in peril
of extinction (see Figure ). In order to prevent the predator from dying out, we must
take some control strategy to ensure that this result does not happen. In this paper, we
investigate theoretically the state impulsive control strategy of protecting the predator.
Furthermore, we have obtained some interesting results (see Figures , , , ), which show
that h, q, and α are important control parameters. Unfortunately, we cannot currently
prove the stability of the semitrivial periodic solution (.).
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