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Abstract
In this article, a mathematical model of a rotavirus infection incorporating vaccination
has been developed and comprehensively analyzed. The basic reproduction number,
Rv , has been established. Proof of existence of a positive endemic equilibrium has
been derived. Through the analysis and simulation, it has been shown that both
disease-free and endemic equilibria are globally asymptotically stable provided that
Rv < 1 and Rv > 1, respectively. Real data has been fitted to the model, showing that it
can be used to predict the nature of a rotavirus infection in a population. The results
of both the analysis and the simulation show that vaccination is a very effective way
of controlling rotavirus infection.
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1 Introduction
Rotavirus is a pathogen of the gastrointestinal tract that causes acute gastroenteritis and
diarrhea in infants and young children of below five years of age worldwide [, ]. In fact,
% of children worldwide are infected by the time they reach age  with peak incidence
occurring between ages of four months and  months []. It gets its name from the fact
that, under a microscope, the virus resembles a wheel. Severe rotavirus infections occur
most commonly in infants and children below six to  months of age. Its symptoms,
which may last for eight days, include; fever, nausea, vomiting, abdominal cramps, and
frequent watery diarrhea [–]. There are seven species of rotavirus, referred to as A, B,
C, D, E, F, and G. Humans are primarily infected by species A, B, and C, most commonly
by A. The diagnosis of a rotavirus infection is commonly made clinically, although a rapid
antigen stool test is available. Rotavirus is primarily transmitted by the faecal-oral route,
via contact with contaminated hands, surfaces and objects, and possibly by the respiratory
route [–]. For further information on diseases with multiple routes of infection, see [,
]. The incubation period is about two days [, ]. Reinfection does occur; however,
with each infection, immunity develops, so subsequent infections are less severe []. In-
deed, it has been observed in [] that children who experienced two natural rotavirus
infection had complete protection against moderate-to-severe diarrhea compared to chil-
dren without a previous infection. It has also been established that both symptomatic and
asymptomatic infections confer a similar degree of protection [].
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It is estimated that about % of children worldwide will have experienced a rotavirus
infection by age five [] with an annual mortality in excess of , among children
[, ]. Rotavirus-related hospitalizations can account for as many as .% of all hos-
pitalizations of children. Some review analyses show that rotavirus accounted for % of
diarrhea episodes and % of deaths caused by diarrhea in children less than five years
of age in developing countries []. In a study carried out in Ghana, it was observed that
.% of the  children examined were co-infected with plasmodium falciparum and
enteropathogens, where rotavirus was also found to be one of the enteropathogens com-
mon in more than half of the patients []. In Kenya, rotavirus causes more than ,
deaths yearly. The results of a study of rotavirus infections among HIV-infected children
in Nairobi, Kenya, indicate that rotavirus is an important viral etiological agent causing
diarrhea in HIV - seropositive children [].

The incidence of the rotavirus infection has been observed to be similar in both indus-
trialized and developing countries, suggesting that adequate control measures may not
be achieved by improvements in water supply, hygiene or sanitation. Consequently, de-
velopment, trial, and widespread use of rotavirus vaccines are recommended to prevent
both severe and fatal rotavirus disease []. So far, no specific cure for rotavirus infection
has been discovered. Therefore disease control primarily involves preventing dehydration.
Recent compelling data on the disease burden of rotavirus and the power of vaccines to
prevent it in low-resource settings informed the WHO’s June  recommendation that
rotavirus vaccination be included in every nation’s immunizations program [].

In this work, we have developed a new mathematical model for rotavirus infection that
incorporates vaccination. We have analyzed it comprehensively and proved that a posi-
tive endemic equilibrium E∗(S∗, V ∗, I∗) exists and is globally stable. In addition, we have
performed numerical simulations to confirm and demonstrate the validity of the various
assumptions and conclusions made during the analysis. The paper is organized as follows.
In this section, we have provided background information as regards rotavirus infection;
in Section , we developed the model; Section  established a disease-free equilibrium and
derived the basic reproduction number, Rv. We have also proved the existence of a positive
endemic equilibrium in this section and finally proved that the disease-free equilibrium
is globally asymptotically stable. In Section , we proved that the endemic equilibrium is
globally asymptotically stable; numerical simulation is performed in Section . Finally, a
discussion and conclusion is presented in Section .

2 Model formulation and description
The total human population size, N , at any time is subdivided into classes: susceptible
S, infectious with rotavirus I , vaccinated V and removed R. Since the incubation period
is very short, we assume that the probability of survival till the infectious state for the
individuals exposed to rotavirus is unity and therefore exclude the exposure stage. The in-
dividuals infected with rotavirus include both symptomatic and asymptomatic cases [].
The removed class comprises those who have been removed from the scene of infection by
such means as infection-acquired immunity [] and death. Although it is possible to have
some level of immunity to rotavirus from maternal antibodies due to breastfeeding [],
we explore the effect of vaccination at birth and vaccination of susceptibles. The human
population is not assumed to be constant, since birth, migration, emigration, and death
occur. The recruitment into susceptible population takes place at the rate of ( – ρ)�,



Omondi et al. Advances in Difference Equations  (2015) 2015:381 Page 3 of 12

while recruitment into the vaccinated class occurs at the rate of ρ�. Susceptibles are sub-
sequently vaccinated at the rate γ , while the vaccine efficacy wanes at the rate of ω. The
parameter  < ε <  models the expected decrease in the risk of infection as a result of
vaccination. Disease mortality is assumed to take place at the rate τ , while the rate of flow
into the removed class is taken as κ . Let μ define the per capita natural death rate. We
assume that the mass-action incidence transmission is defined by βSI where β is the ef-
fective contact rate for disease transmission.

From the above definitions and variables, we have the following model with non-
negative initial conditions:

dS
dt

= ( – ρ)� – βSI – γ S + ωV – μS,

dV
dt

= ρ� + γ S – εβVI – (ω + μ)V ,

dI
dt

= βSI + εβVI – (τ + κ + μ)I,

dR
dt

= κI – μR.

()

Since N = S + V + I + R, we have

dN
dt

= � – μN – τ I. ()

From () we note that in the absence of infection we get dN
dt = � – μN , so that N would

approach carrying capacity �
μ

. Model () describes the human population and therefore it
can be shown that the associated state variables are non-negative for all time t ≥  and that
the solutions of the model () with positive initial data remain positive for all time t ≥ .
Thus () is mathematically well posed and its dynamics can be considered in a proper
subset 
 = {(S, V , I, R) ∈ R

+ : N ≤ �
μ
}.

3 Equilibrium points of the model
The first three equations in () do not contain terms in R and therefore we can analyze the
following reduced model:

dS
dt

= ( – ρ)� – βSI – γ S + ωV – μS,

dV
dt

= ρ� + γ S – εβVI – (ω + μ)V , ()

dI
dt

= βSI + εβVI – (τ + κ + μ)I.

The equilibrium points of () are obtained by equating the derivatives to zero and solving
for the variables. It can be shown, by using S + V = �

μ
that the disease-free equilibrium of

the model is defined by

E =
(
S, V , I) =

{
μ( – ρ)� + ω�

μ(γ + ω + μ)
,

(ρμ + γ )�
μ(γ + ω + μ)

, 
}

.
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3.1 The basic reproduction number Rv

The global dynamics of model () are highly dependent on an important epidemiological
parameter called the basic reproduction number. It is defined as the average number of
secondary infections an infectious individual would cause over his infectious period in
an entirely susceptible population [, ]. We specifically define the basic reproduction
number Rv of the model () as the number of secondary rotavirus infections caused by a
single rotavirus infected individual in the presence of vaccination. When no such inter-
vention is employed then the basic reproduction number is defined by R. When the basic
reproduction number is greater than one it means that an infectious individual is causing,
on average, more than one new infection and thus the disease invades and persist in the
population. Using the next-generation operator approach [, ], we determine Rv as

Rv =
β

μ(τ + κ + μ)

[
μ( – ρ)� + ω� + ε�(ρμ + γ )

(γ + μ + ω)

]
. ()

In the absence of vaccination, ρ = ω = γ =  and the basic reproduction number becomes

R =
β�

μ(τ + κ + μ)
. ()

Using (), we can express () as

Rv = R

[
μ( – ρ + ρε) + ω + εγ

(γ + μ + ω)

]
. ()

Since we have set  < ε < , it follows that μ(–ρ+ρε)+ω+εγ

(γ +μ+ω) < , which implies that Rv < R.
When ε =  or ρ = ω = γ = , Rv = R. Thus we see from the expression of Rv that the
vaccination from birth as well as vaccination of susceptibles both have a positive impact
on the reduction of new infections. Note that ε =  implies that vaccination is not impor-
tant and this should not be the case. Though we have used a next-generation approach to
calculate R, it is worth noting that there are other methods that can be used in models
where it fails. For example, the survival function, the eigenvalues of the Jacobian matrix,
the existence of endemic equilibrium or the constant characteristic polynomial. All these
methods have their own limitations. For further details, see [].

We now establish the existence of an endemic equilibrium. This is done in the lemma
below.

3.2 Existence of a unique positive endemic equilibrium E∗(S∗, V∗, I∗)
Lemma  An endemic equilibrium E∗(S∗, V ∗, I∗) exists provided that Rv > .

Proof At an endemic state, equation () becomes

 = ( – ρ)� – βS∗I∗ – γ S∗ + ωV ∗ – μS∗,

 = ρ� + γ S∗ – εβV ∗I∗ – (ω + μ)V ∗, ()

 = βS∗I∗ + εβV ∗I∗ – (τ + κ + μ)I∗.
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Solving for S∗ from the first equation in (), we obtain

S∗ =
( – ρ)� + ωV ∗

βI∗ + γ + μ
. ()

Solving for V ∗ from the second equation of (), we get

V ∗ =
ρ� + γ S∗

εβI∗ + ω + μ
. ()

Again, from the third equation of (), we obtain

S∗ =
(τ + κ + μ) – εβV ∗

β
. ()

Equating () to () and solving for V ∗, we get

V ∗ =
(τ + κ + μ)(βI∗ + γ + μ) – β( – ρ)�

β(ω + ε(βI∗ + γ + μ))
. ()

Substituting () into () and simplifying, we get

V ∗ =
βρ� + γ (τ + κ + μ)
β(εβI∗ + ω + μ + εγ )

. ()

To obtain the value of I∗, we equate () to () and simplify to get

μρβ� – εμρβ� – γ εβ� + γ εβ(τ + κ + μ)I∗ + γμ(τ + κ + μ) – εβ�I∗

+ εβ(τ + κ + μ)I∗ + εμβ(τ + κ + μ)I∗ – ωβ� + ωβ(τ + κ + μ)I∗

+ μω(τ + κ + μ) – μβ� + μβ(τ + κ + μ)I∗ + μ(τ + κ + μ) = , ()

which we express as AI∗ + BI∗ + C = , where

A = εβ(τ + κ + μ),

B =
[
γ εβ(τ + κ + μ) – εβ� + εμβ(τ + κ + μ) + ωβ(τ + κ + μ) + μβ(τ + κ + μ)

]
,

C =
[
μρβ� – εμρβ� – γ εβ� + γμ(τ + κ + μ) – ωβ� + μω(τ + κ + μ)

– μβ� + μ(τ + κ + μ)
]
.

To determine the sign of C, we express it as

C = μ
[
βρ� + (τ + κ + μ)(γ + ω + μ)

]
– β�[εμρ + εγ + ω + μ]. ()

Since Rv = β

μ(τ+κ+μ) [ μ(–ρ)�+ω�+ε�(ρμ+γ )
(γ +μ+ω) ] > , it is easy to show that

β�[μ + ω + εμρ + γ ε] > μ
[
βρ� + (τ + κ + μ)(γ + ω + μ)

]
.

This proves that C < , when Rv > . We therefore see that () can only be expressed as
either Aλ – Bλ – C =  or Aλ + Bλ – C = , and by the Descartes rule of sign changes
there is only one positive root of (); that is, I∗ >  [, ]. �
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3.3 Global stability of the disease-free equilibrium
The global stability of the disease-equilibrium E is easily proved by using a common
quadratic Lyapunov function and LaSalle’s invariance principle.

Theorem  If Rv ≤ , then the disease-free equilibrium of () is globally asymptotically
stable in 
.

Proof Define L : {(S, V , I) ∈ 
 : S, V > } →R by

L(S, V , I) = (ω + μ)I.

Then, if R ≤ ,

L′ = (ω + μ)
[
βSI + εβVI – (τ + κ + μ)I

]

= (ω + μ)
[
β(S + εV ) – (τ + κ + μ)

]
I

≤ (ω + μ)
[
β(S + V ) – (τ + κ + μ)

]
I

≤ (ω + μ)
[

β�

μ
– (τ + κ + μ)

]
I

≤ (R – )(ω + μ)(τ + κ + μ)I

≤ (Rv – )(ω + μ)(τ + κ + μ)I,

since Rv < R in  < ε < .
If L′ = , then I =  or Rv = . Hence L is a Lyapunov function on 
. Thus I →  as

t → ∞. When we substitute I =  in (), we obtain S + V → �
μ

. Therefore it follows from
LaSalle’s invariance principle [–] that every solution of (), with initial conditions in

, approaches E as t → ∞. �

4 Global stability of the endemic equilibrium of the model
To prove the global stability of the endemic equilibrium, we use the Lyapunov direct
method. We construct the Lyapunov function by using the logarithmic functions.

Theorem  If Rv >  then the unique endemic equilibrium E∗(S∗, V ∗, I∗) of () is globally
asymptotically stable in the interior of 
.

Proof Define L : {(S, V , I) :∈ 
 : S, V , I > } →R by

L =
(

S – S∗ – S∗ ln
S
S∗

)
+

(
V – V ∗ – V ∗ ln

V
V ∗

)
+

(
I – I∗ – I∗ ln

I
I∗

)
.

Then L is C on the interior of 
, E∗ is a global minimum of L on 
 and L(S∗, V ∗, I∗) = .
dL
dt computed along the solutions of () is given by

L′ =
(

 –
S∗

S

)
[
( – ρ)� – βSI – γ S + ωV – μS

]

+
(

 –
V ∗

V

)
[
ρ� + γ S – εβVI – (ω + μ)V

]

+
(

 –
I∗

I

)[
βSI + εβVI – (τ + κ + μ)I

]
. ()
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At the equilibrium point of (), we have

( – ρ)� = βS∗I∗ + γ S∗ – ωV ∗ + μS∗,

ρ� = –γ S∗ + εβV ∗I∗ + (ω + μ)V ∗.
()

Substituting () into (), we obtain

L′ =
(

 –
S∗

S

)
[
βS∗I∗ + γ S∗ – ωV ∗ + μS∗ – βSI – γ S + ωV – μS

]

+
(

 –
V ∗

V

)
[
–γ S∗ + εβV ∗I∗ + (ω + μ)V ∗ + γ S – εβVI – (ω + μ)V

]

+
(

 –
I∗

I

)[
βSI + εβVI – (τ + κ + μ)I

]

=
(

 –
S∗

S

)[
–(γ + μ)

(
S – S∗) + βS∗I∗ – βSI – ωV ∗ + ωV

]

+
(

 –
V ∗

V

)
[
–(ω + μ)

(
V – V ∗) – γ S∗ + γ S + εβV ∗I∗ – εβVI

]

+
(

 –
I∗

I

)
[
βSI + εβVI – (τ + κ + μ)I

]
.

Using (τ + κ + μ)I∗ = βS∗I∗ + εβV ∗I∗ and  = βS∗I + εβV ∗I – (τ + κ + μ)I , we get

= –
(

γ + μ

S

)
(
S – S∗) –

(
ω + μ

V

)
(
V – V ∗)

+ βS∗I∗ – βS∗I∗ S∗

S
– βSI∗ + εβV ∗I∗

– εβV ∗I∗ V ∗

V
– εβVI∗ + γ S – γ S∗ + γ S∗ V ∗

V

– γ S
V ∗

V
+ ωV – ωV ∗ + ωV ∗ S∗

S
– ωV

S∗

S
.

Setting μ = (ω + γ ) and γ = ωV∗
S∗ , we get

≤ βS∗I∗
(

 –
S∗

S
–

S
S∗

)
+ εβV ∗I∗

(
 –

V ∗

V
–

V
V ∗

)

– γ S + γ S∗ – γ
S∗

S
– ωV + γ S∗ – γ S∗ V ∗

V

– γ S∗ + ωV + γ
S∗

S
– ωV

S∗

S
– γ S∗ + γ S + γ S∗ V ∗

V
– γ S

V ∗

V

≤ βS∗I∗
(

 –
S∗

S
–

S
S∗

)
+ εβV ∗I∗

(
 –

V ∗

V
–

V
V ∗

)

– γ S + γ S∗ – ωV – γ
S∗

S
– γ S∗ V ∗

V
– ωS

S∗

S
– γ S

V ∗

V

≤ βS∗I∗
(

 –
S∗

S
–

S
S∗

)
+ εβV ∗I∗

(
 –

V ∗

V
–

V
V ∗

)

+ γ S∗ – γ S – γ
S∗

S
– γ S∗ V ∗

V
+ ωV ∗ – ωV – ω

V ∗

V
– ωV

S∗

S
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≤ βS∗I∗
(

 –
S∗

S
–

S
S∗

)
+ εβV ∗I∗

(
 –

V ∗

V
–

V
V ∗

)

+ γ S∗
(

 –
S∗

S
–

S
S∗ –

SV ∗

S∗V

)
+ ωV ∗

(
 –

V
V ∗ –

V ∗

V
–

VS∗

V ∗S

)
.

Replacing ωV ∗ with γ S∗ as defined above, we get

≤ βS∗I∗
(

 –
S∗

S
–

S
S∗

)
+ εβV ∗I∗

(
 –

V ∗

V
–

V
V ∗

)

+ γ S∗
(

 –
S∗

S
–

S
S∗ –

SV ∗

S∗V

)
+ γ S∗

(
 –

V
V ∗ –

V ∗

V
–

VS∗

V ∗S

)

≤ βS∗I∗
(

 –
S∗

S
–

S
S∗

)
+ εβV ∗I∗

(
 –

V ∗

V
–

V
V ∗

)

+ γ S∗
(

 –
S∗

S
–

S
S∗ –

V
V ∗ –

V ∗

V
–

VS∗

V ∗S
–

SV ∗

S∗V

)

≤ .

Thus, using the arithmetic-geometric mean inequality, L′ ≤  with equality if S = S∗, V =
V ∗, and I = I∗. This implies that the largest compact invariant set in {(S, V , I) ∈ 
 : L′ = }
is the singleton {E∗}, where E∗ is the endemic equilibrium. Therefore, LaSalle’s invariance
principle [–] implies that E∗ is globally asymptotically stable in the interior of 
. �

5 Numerical simulations
We now present the numerical simulation results that are used to illustrate global asymp-
totic stability of model (). The parameter values in Table  are used in simulating Fig-
ures (a), (b), (a), (b), and (a). The data in Table  is used in fitting the model; see
Figure (b).

6 Discussion and conclusion
From the numerical simulation results, Figure (a) shows that the disease-free equilibrium
is globally asymptotically stable when Rv = ., which is less than unity. In the figure,
we also note that there are few individuals who are vaccinated compared to those who
are susceptible. This may be due to the fact that vaccination is not necessary at this time
since there are still no infections in the population; that is, I = . Figure (b) shows that
the endemic equilibrium is globally asymptotically stable for Rv = .. The figure also
depicts an increase in the number of infected individuals at the onset of an infection be-
fore the global asymptotic stability is attained. Therefore it is highly recommended that

Table 1 Parameter values used in Figures 1, 2, and 3

Parameter Symbol Value Source

Recruitment rate of humans � 4.109× 103 people/day [33]
Recruitment rate of vaccinated individuals ρ 1.884× 10–3 people/day [34]
Natural death rate of humans μ 2.537× 10–5 day–1 [33]
Rotavirus-induced deaths τ 4.466× 10–5 day–1 [19]
Effective contact rate β Variable day–1 Variable
Rate of flow into the removed class κ 9.5× 10–4 day–1 Estimated
Expected decrease in the risk of infection ε 1.0× 10–3 day–1 Assumed
Vaccine efficacy waning rate ω 2.778× 10–3 day–1 [35]
Vaccination rate γ 1.884× 10–3 day–1 [34]
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Figure 1 Simulation of model (3). Figure 1(a) shows the global stability of the disease-free equilibrium
when Rv = 0.9692. Figure 1(b) shows the global stability of the endemic equilibrium plotted at various initial
values with Rv = 1.7195. All other parameters are shown in Table 1.

Figure 2 Figure 2 shows how varying ε affects both the susceptible and the vaccinated population. In
Figure 2(a) ε = 0.01 with Rv = 1.6135 and in Figure 2(b) ε = 0.001 and Rv = 1.2163. All other parameters
remain as in Table 1.

Figure 3 Figure 3 shows simulation of trends of infected individuals. Figure 3(a) shows simulations of
model (3) at various initial values showing plot for people infected with rotavirus I(t) when Rv = 0.4789.
Figure 3(b) shows real data from Table 2 fitted to model (3) with Rv = 0.9275.
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Table 2 Number of children (< 5 years of age) who are infected with rotavirus in Kenya
between January 2013 to July 2015

Period January-March April-June July-September October-December

2013 116,672 96,619 71,097 78,389
2014 94,796 85,681 63,805 80,212
2015 82,035 60,159 - -

Source: data from Ministry of Health, Kenya Government.

immediate control measures be undertaken whenever there is an outbreak of a rotavirus
infection. This will help in preventing a possible outbreak of an epidemic. This increase is
also attributed to the fact that the rotavirus is a highly contagious virus that infects nearly
all children by their fifth birthday. The figure also shows that the disease is persistent in
the population; hence long-term control measures like vaccination, maintaining hygiene,
and safe drinking water are recommended.

Figure  shows how varying ε affects both the susceptible and the vaccinated individ-
uals. Figure (a) is plotted with ε = . and Rv = .. In this figure, we observe that
there are more susceptible individuals than vaccinated ones. Since ε is the expected de-
crease in the risk of infection as a result of vaccination, this variation may be a result of
weak vaccines. The number of infections is likely to be high in this case because there are
many susceptibles. When ε = ., Rv reduces to . and the number of vaccinated
individuals are now more than the susceptibles as evident in Figure (b), consequently
resulting in few infectives. This therefore is an indication that stronger vaccines can sig-
nificantly reduce rotavirus infections in a population. A very low value of ε indicates that
the vaccine is very effective. It can therefore be concluded that vaccination at birth helps
in reducing the number of infectives in a population. The effects of vaccination have been
shown to be positive in areas where prevalence is high. These findings strongly support
the search for and developments of effective vaccines by the WHO [, , –].

Figure (a), shows that, when Rv = ., rotavirus infection can be wiped out of the
population after a given period of time regardless of the number of individuals who were
initially infected. This demonstrates that the fight against rotavirus infection can be suc-
cessfully addressed if measures that can reduce Rv are put in place. Measures like mini-
mizing contacts between infected and susceptibles, and maintaining re-hydration of the
infected are highly recommended. In Figure (b), we see that the control of the rotavirus
infection is taking longer than in Figure (a). This is because Rv = . is high, com-
pared to Rv = . of Figure (a). We have fitted real data from Table  to the model; see
Figure (b). Though the fit appears not to be very accurate, it can still be used to predict
the trend of the rotavirus infection in Kenya. The inaccuracy of the trend may be a result
of the following.

• Lack of elaborate data because most hospitals in Kenya, especially in rural areas,
started rotavirus vaccination in . This is why our plot also started from the same
year.

• Not all cases of rotavirus infections are reported to the hospitals, and also not all
births are carried out in hospitals. This results in inaccurate reports on the state of
rotavirus infections in the country.

• There is a delay in sending data from the sub-district hospitals to the Ministry
headquarters. In the process, a lot of data and information get lost.
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• Most people in rural parts of Kenya are not following the vaccination schedules. This
leads to false reports on the effectiveness of the vaccines.

• Finally, the model has mass-action transmission, which assumes homogeneous
mixing. However, in reality, people do not mix homogeneously and that may result in
disease clustering and persistence.

Though the model shows that the fight against rotavirus infection is promising in Kenya,
a lot can still be achieved if the challenges noted above are addressed.

In summary, a mathematical model that shows the effects of vaccination on rotavirus in-
fection has been developed and analyzed. The basic reproduction number (Rv) has been
established. It has been shown that an endemic equilibrium exists provided that Rv > .
Additionally, it has been proved that both the disease-free and the endemic equilibria are
globally asymptotically stable. Numerical simulations have been performed using data at-
tained from Ministry of Health, Kenya, to support the analysis and to show the effective-
ness of vaccination as a way of controlling rotavirus infection. Real data has been fitted into
the model to prove that it can be used to predict the rate of rotavirus infection in a pop-
ulation. From this work, it is recommended that all newborns be vaccinated (if possible)
in order to effectively control rotavirus infection. For future work, we suggest that an in-
vestigation of how inclusion of seasonality will affect this model should be done. We also
propose that future researchers should try and implement this model in a multi-group
framework with heterogeneous contacts. For further details see the work by Wang and
Cao [].
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