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Abstract
In this paper, we consider the nonlinear three-point boundary value problem of
fractional differential equations

Dα
0+u(t) + a(t)f (t,u(t)) = 0, 0 < t < 1, 2 < α ≤ 3,

with boundary conditions

u(0) = 0, Dβ
0+u(0) = 0, Dβ

0+u(1) = bDβ
0+u(ξ ), 1≤ β ≤ 2,

involving Riemann-Liouville fractional derivatives Dα
0+ and Dβ

0+ , where a(t) maybe
singular at t = 0 or t = 1. We use the Banach contraction mapping principle and the
Leggett-Williams fixed point theorem to obtain the existence and uniqueness of
positive solutions and the existence of multiple positive solutions. We investigate the
above fractional differential equations without many preconditions by the fixed point
index theory and obtain the existence of a single positive solution. Some examples
are given to show the applicability of our main results.
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1 Introduction
The development of fractional differential equations is accompanied by fractional calcu-
lus; see [–]. With wide applications of fractional calculus in the fields of physical, bio-
logical, heat conduction, chemical physics, economics, etc., the study of boundary value
problems of fractional differential equations and inclusions gradually become hot issues
for many mathematicians [–].

In recent years, some researchers focused themselves on the solutions, especially posi-
tive solutions of multipoint boundary value problems of fractional differential equations
[–].
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In , Li et al. [] considered the existence and uniqueness for nonlinear fractional
differential equation of the type

Dα
+ u(t) + f

(
t, u(t)

)
= ,  < t < ,  < α ≤ ,

subject to the boundary conditions

u() = , Dβ

+ u() = aDβ

+ u(ξ ),  ≤ β ≤ ,

where Dα
+ is the standard Riemann-Liouville fractional-order derivative. They obtained

the existence and multiplicity results of positive solutions by using some fixed point the-
orems.

In , Jiang et al. [] discussed the existence of positive solutions for a multipoint
boundary value problem of the fractional differential equation

Dα
+ u(t) + f

(
t, u(t)

)
= ,  < t < ,  < α ≤ ,

u() = , Dβ

+ u() =
m–∑

i=

biDβ

+ u(ξi),  < β < ,

where Dα
+ and Dβ

+ are the Riemann-Liouville fractional derivatives. By fixed point index
theory they obtained the existence results.

In , Ahmad et al. [] investigated the existence theory for nonlinear fractional
differential equations of the type

cDqx(t) = f
(
t, x(t)

)
,  < t < T , n –  < q ≤ n, n ≥ ,

subject to the boundary conditions

x() = , x′() = , . . . , x(n–)() = , x(T) =
m∑

i=

γi
(
Iβi x(ηi) – Iβi x(ζi)

)
,

where cDq are the Caputo fractional derivatives. Their results were based on some stan-
dard tools of fixed point theory, and they obtained the existence theory for nonlinear
fractional differential equations of arbitrary order involving nonintersecting finitely many
strips of arbitrary length.

Motivated by excellent results and the methods in [, ], in this paper, we investigate
the three-point boundary value problem for the fractional differential equation

Dα
+ u(t) + a(t)f

(
t, u(t)

)
= ,  < t < , (.)

u() = , Dβ

+ u() = , Dβ

+ u() = bDβ

+ u(ξ ), (.)

where Dα
+ and Dβ

+ are the Riemann-Liouville fractional derivatives,  < α ≤ ,  ≤ β ≤ ,
α ≥ β + ,  < b < ,  < ξ < , A :=  – bξα–β– > , and a(t) maybe singular at t =  or
t = . We will systematically study the existence, uniqueness, and multiplicity of positive
solutions to the three-point boundary value problem (.)-(.).



Li et al. Advances in Difference Equations  (2015) 2015:383 Page 3 of 19

The main innovation points of this paper are as follows. (i) Compared with [], we pro-
pose some techniques to prove the complete continuity of operators and the properties of
the Green function that need not add more premise conditions. (ii) Compared with [],
the properties of the Green function happen to change with the order of original equa-
tions increasing. We use these new properties to obtain more general results. (iii) In [],
to prove the existence of the solutions, the function of two variables f (t, x) was imposed
to some preconditions. In this article, we investigate the fractional differential equations
without many preconditions by the fixed point index theory and obtain the existence of
single positive solutions. In fact, the fractional differential equations can respond better to
impersonal law, so it is very important to weaken preconditions. This work is motivated by
the []. (iv) Compared with [], we not only obtained the existence of solutions, but also
obtained the uniqueness and multiplicity of solutions with three-point boundary value
conditions. Our results extend some known results.

The plan of this paper is as follows. In Section , we shall give some definitions and
lemmas to prove our main results. In Section , we establish the existence and uniqueness
of single positives solutions to the three-point boundary value problem (.)-(.) by the
Banach contraction mapping principle and the fixed point index theory, and we investigate
the existence of multiple positives solutions for (.) and (.) by the Leggett-Williams fixed
point theorem. In Section , we present examples to illustrate the main results.

In order to facilitate to our study, we make the following assumptions:

(H) f : [, ] × [,∞) → [,∞) is a continuous function;
(H) a(·) ∈ L(, ) is nonnegative, a(t) does not vanish identically on any subinterval of

[, ], and  <
∫ 

 a(s)( – s)α–β–sα– ds < ∞.

2 Preliminaries
For the convenience of the reader, we present some necessary definitions and lemmas from
the fractional calculus theory.

Definition . ([]) The fractional integral of order α (α > ) of a function f : (, +∞) →R

is given by

Iα
+ f (t) =


�(α)

∫ t



f (s)
(t – s)–α

ds,

where �(·) is the gamma function, provided that the right side is pointwise defined on
(, +∞).

Definition . ([]) The Riemann-Liouville fractional derivative of order α >  of a con-
tinuous function f : (, +∞) →R is given by

Dα
+ f (t) =


�(n – α)

(
d
dt

)n ∫ t


(t – s)n–α–f (s) ds,

where �(·) is the gamma function, provided that the right side is pointwise defined on
(, +∞), and n = [α] +  with [α] standing for the largest integer less than α.

Definition . ([]) Let E be a real Banach space. A nonempty closed convex set K ⊂ E
is called cone if
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() if x ∈ K and λ > , then λx ∈ K ;
() if x ∈ K and –x ∈ K , then x = .

Definition . ([]) A map φ is said to be a nonnegative continuous concave functional
on a cone K of a real Banach space E if φ : K → [,∞) is continuous and

φ
(
λx + ( – λ)y

) ≥ λφ(x) + ( – λ)φ(y)

for all x, y ∈ K and  ≤ λ ≤ .

Lemma . ([]) Let α > –, β > , and t > . Then

Dβ

+ tα =
�(α + )

�(α – β + )
tα–β .

Lemma . ([]) Assume that u(t) ∈ C(, ) ∩ L(, ) and Dα
+ u ∈ C(, ) ∩ L(, ) with the

Riemann-Liouville fractional derivative of order α > . Then

Iα
+ Dα

+ u(t) = u(t) + ctα– + ctα– + · · · + cN tα–N ,

where ci ∈ R, i = , , . . . , N , and N is the smallest integer greater than or equal to α.

Lemma . For Riemann-Liouville fractional derivatives, we have

Dβ

+

∫ t


(t – s)α–f (s) ds =

�(α)
�(α – β)

∫ t


(t – s)α–β–f (s) ds,

where f ∈ L(, ), and α, β are two constants with α – β –  ≥ .

Proof From

Dα
+ Iα

+ f (t) = f (t), Iα
+ Iβ

+ f (t) = Iα+β

+ f (t)

we get

Dβ

+

∫ t


(t – s)α–f (s) ds = Dβ

+�(α)


�(α)

∫ t


(t – s)α–f (s) ds

= Dβ

+�(α)Iα
+ f (t) = �(α)Dβ

+ Iα
+ f (t)

= �(α)Dβ

+ Iβ

+ Iα–β

+ f (t) = �(α)Iα–β

+ f (t)

= �(α)


�(α – β)

∫ t


(t – s)α–β–f (s) ds.

The proof is completed. �

The following lemma is fundamental in the proofs of our main results.

Lemma . (Banach contraction mapping principle []) Let (X, d) be a nonempty com-
plete metric space, and let T : X → X be a contraction, i.e., there exists a number  ≤ ρ < 
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such that

d(Tx, Ty) ≤ ρd(x, y).

Then the operator T has a unique fixed point x∗ ∈ X.

Lemma . (Krein-Rutman []) Let K be a reproducing cone in a real Banach space E, and
L : E → E be a compact linear operator with L(K) ⊆ K and spectral radius r(L). If r(L) > ,
then there exists ϕ ∈ K\{} such that Lϕ = r(L)ϕ.

Lemma . (Fixed point index theory []) Assume that E is a Banach space, K ⊂ E is a
cone, and (K) is a bounded open subset in K . Furthermore, assume that T : (K) → K is
a completely continuous operator. Then the following conclusions hold:

(i) If there exists u ∈ K\{} such that u �= Tu + λu for all u ∈ ∂(K) and λ ≥ , then
the fixed point index i(T ,(K), K) = ;

(ii) If  ∈ (K) and Tu �= λu for all u ∈ ∂(K) and λ ≥ , then the fixed point index
i(T ,(K), K) = .

Lemma . (Leggett-Williams fixed point theorem []) Let K be a cone in a real Banach
space E, Kc = {x ∈ K : ‖x‖ < c}, φ be a nonnegative continuous concave functional on K such
that φ(x) ≤ ‖x‖ for all x ∈ Kc, and K(φ, b, d) = {x ∈ K : b ≤ φ(x),‖x‖ ≤ d}. Suppose that
T : Kc → Kc is completely continuous and there exist positive constants  < a < b < d ≤ c
such that

(i) {x ∈ K(φ, b, d) : φ(x) > b} �= ∅ and φ(Tx) > b for x ∈ K(φ, b, d),
(ii) ‖Tx‖ < a for x ∈ Ka,

(iii) φ(Tx) > b for x ∈ K(φ, b, c) with ‖Tx‖ > d.
Then T has at least three fixed points x, x, and x with ‖x‖ < a, b < φ(x), and a < ‖x‖
with φ(x) < b.

Remark . If d = c, then condition (i) implies conditions (iii).

3 Main results
Let E = C[, ] be a Banach space of all continuous real functions on [, ] endowed with
norm ‖u‖ = sup≤t≤ |u(t)|, and K be the cone

K =
{

u ∈ E : u(t) ≥ , t ∈ [, ]
}

.

Obviously, K is a reproducing cone of E.
Let the nonnegative continuous concave functional φ on the cone K be defined by

φ(u) = min
ξ≤t≤

∣∣u(t)
∣∣.

Lemma . Let g(t) ∈ C(, )∩L(, ). Then the boundary value problem of the fractional
differential equation

Dα
+ u(t) + g(t) = ,  < t < ,  < α ≤ , (.)

u() = , Dβ

+ u() = , Dβ

+ u() = bDβ

+ u(ξ ),  ≤ β ≤ , (.)
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has the unique solution

u(t) = –
∫ t




�(α)

(t – s)α–g(s) ds +
tα–

A�(α)

∫ 


( – s)α–β–g(s) ds

–
tα–

A�(α)

∫ ξ


b(ξ – s)α–β–g(s) ds

=
∫ 


G(t, s)g(s) ds,

where

G(t, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

tα–(–s)α–β––btα–(ξ–s)α–β––A(t–s)α–

A�(α) ,  ≤ s ≤ min{t, ξ} < ,
tα–(–s)α–β––A(t–s)α–

A�(α) ,  < ξ ≤ s ≤ t ≤ ,
tα–(–s)α–β––btα–(ξ–s)α–β–

A�(α) ,  ≤ t ≤ s ≤ ξ < ,
tα–(–s)α–β–

A�(α) , max{t, ξ} ≤ s ≤ .

Proof In view of Definition . and Lemma ., it is clear that equation (.) is equivalent
to the integral form

u(t) = –Iα
+ g(t) + ctα– + ctα– + ctα–

for some c, c, c ∈ R. Consequently, the general solution of equation (.) is

u(t) = –
∫ t




�(α)

(t – s)α–g(s) ds + ctα– + ctα– + ctα–.

By the boundary condition u() =  we find that c = . In view of Lemma . and
Dβ

+ u() = , we have

Dβ

+ u(t) = Dβ

+

(
–

∫ t




�(α)

(t – s)α–g(s) ds
)

+c
�(α)

�(α – β)
tα–β– +c

�(α – )
�(α – β – )

tα–β–.

For α ∈ (, ] and β ∈ [, ] such that α ≥ β + , we have α – β –  ∈ [–, ]. Thus, c = .
From

Dβ

+ u() = bDβ

+ u(ξ )

we get

c =


A�(α)

∫ 


( – s)α–β–g(s) ds –

b
A�(α)

∫ ξ


(ξ – s)α–β–g(s) ds.

Then the boundary value problem has the unique solution

u(t) = –
∫ t




�(α)

(t – s)α–g(s) ds +
tα–

A�(α)

∫ 


( – s)α–β–g(s) ds

–
btα–

A�(α)

∫ ξ


(ξ – s)α–β–g(s) ds =

∫ 


G(t, s)g(s) ds.

The proof is completed. �
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Define the operator T : K → E and the linear operator L : K → K as follows:

Tu(t) = –
∫ t




�(α)

a(s)(t – s)α–f
(
s, u(s)

)
ds +

tα–

A�(α)

∫ 


a(s)( – s)α–β–f

(
s, u(s)

)
ds

–
btα–

A�(α)

∫ ξ


a(s)(ξ – s)α–β–f

(
s, u(s)

)
ds

=
∫ 


G(t, s)a(s)f

(
s, u(s)

)
ds,

Lu(t) =
∫ 


G(t, s)a(s)u(s) ds.

Set g(t) = a(t)f (t, u(t)) in Lemma .. We deduce that u is a solution of the boundary
value problem (.)-(.) if and only if it is a fixed point of the operator T .

Remark . a(t) may be singular at t =  or t = .

Lemma . The function G(t, s) in Lemma . satisfies the following properties:
(i) G(t, s) is continuous on [, ] × [, ];

(ii) G(t, s) >  for any t, s ∈ (, );
(iii) G(t, s) ≤ G(, s), for any t, s ∈ (, );
(iv) there exists a positive function γ (s) ∈ C(, ) such that

min
ξ≤t≤

G(t, s) ≥ γ (s) max
≤t≤

G(t, s) = γ (s)G(, s),  < s < .

Proof It is easy to see that (i) holds. So we prove that the rest are true. Let

g(t, s) =
tα–( – s)α–β– – btα–(ξ – s)α–β– – A(t – s)α–

A�(α)
,  ≤ s ≤ min{t, ξ} < ,

g(t, s) =
tα–( – s)α–β– – A(t – s)α–

A�(α)
,  < ξ ≤ s ≤ t ≤ ,

g(t, s) =
tα–( – s)α–β– – btα–(ξ – s)α–β–

A�(α)
,  ≤ t ≤ s ≤ ξ < ,

g(t, s) =
tα–( – s)α–β–

A�(α)
, max{t, ξ} ≤ s ≤ .

We will first show that

g(t, s) > ,  ≤ s ≤ min{t, ξ} < .

Since

g(t, s) =


A�(α)
(
tα–( – s)α–β– – btα–(ξ – s)α–β– – A(t – s)α–)

=


A�(α)

(
tα–( – bξα–β– + bξα–β–)( – s)α–β– – btα–ξα–β–

(
 –

s
ξ

)α–β–

– Atα–
(

 –
s
t

)α–)
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=


A�(α)

(
tα–(A + bξα–β–)( – s)α–β– – btα–ξα–β–

(
 –

s
ξ

)α–β–

– Atα–
(

 –
s
t

)α–)

=


A�(α)

(
Atα–

(
( – s)α–β– –

(
 –

s
t

)α–)

+ btα–ξα–β–
(

( – s)α–β– –
(

 –
s
ξ

)α–β–))

>


A�(α)

(
Atα–

(
( – s)α– –

(
 –

s
t

)α–)

+ btα–ξα–β–
(

( – s)α–β– –
(

 –
s
ξ

)α–β–))

>


A�(α)
(
Atα–(( – s)α– – ( – s)α–)

+ btα–ξα–β–(( – s)α–β– – ( – s)α–β–))

= ,

we deduce

g(t, s) > ,  ≤ s ≤ min{t, ξ} < .

By a similar argument we can conclude that

g(t, s) > ,  < ξ ≤ s ≤ t ≤ , g(t, s) > ,  ≤ t ≤ s ≤ ξ < ,

and

g(t, s) > ,  ≤ max{t, ξ} ≤ s ≤ .

Therefore, we get that G(t, s) >  for any s, t ∈ (, ).
Next, we will prove (iii) is true. It is easy to check that g(t, s) and g(t, s) are increasing

with respect to t on [, s]. We will show that g(t, s) and g(t, s) are increasing with respect
to t on [s, ].

Let h(t, s) = g(t, s)�(α). Then we have

h(t, s) =
tα–( – s)α–β– – btα–(ξ – s)α–β– – A(t – s)α–

A
,  ≤ s ≤ min{t, ξ} < ,

and

∂h(t, s)
∂t

=
(α – )tα–

A

(
( – s)α–β– – bξα–β–

(
 –

s
ξ

)α–β–

– A
(

 –
s
t

)α–)

=
(α – )tα–

A

(
A

(
( – s)α–β– –

(
 –

s
t

)α–)

+ bξα–β–
(

( – s)α–β– –
(

 –
s
ξ

)α–β–))
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>
(α – )tα–

A

(
A

(
( – s)α– –

(
 –

s
t

)α–)

+ bξα–β–
(

( – s)α–β– –
(

 –
s
ξ

)α–β–))

>
(α – )tα–

A
(
A

(
( – s)α– – ( – s)α–)

+ bξα–β–(( – s)α–β– – ( – s)α–β–))

= .

So we have ∂h(t,s)
∂t > , and thus g(t, s) is increasing with respect to t on [s, ].

Next, we show that g(t, s) is increasing with respect to t on [s, ].
Let h(t, s) = g(t, s)�(α). Then we have

h(t, s) =
tα–( – s)α–β– – A(t – s)α–

A
,  < ξ ≤ s ≤ t ≤ ,

and

∂h(t, s)
∂t

=
(α – )tα–

A

(
( – s)α–β– – A

(
 –

s
t

)α–)

≥ (α – )tα–

A
(
( – s)α–β– – A( – s)α–)

=
(α – )tα–( – s)α–

A
(
( – s)–β – A

)

=
(α – )(t( – s))α–

A
(
( – s)–β + bξα–β– – 

)

≥ (α – )(t( – s))α–

A
(
( – s)–β – 

) ≥ .

So we have ∂h(t,s)
∂t ≥ , and thus g(t, s) is increasing with respect to t on [s, ].

Then we can conclude that G(t, s) is increasing with respect to t for t ∈ [, ]. Hence,
G(t, s) ≤ G(, s) for s, t ∈ [, ].

On the other hand, we know that

min
ξ≤t≤

G(t, s) =

⎧
⎨

⎩
minξ≤t≤{g(t, s), g(t, s)},  ≤ s ≤ ξ ,

minξ≤t≤{g(t, s), g(t, s)}, ξ ≤ s ≤ 

=

⎧
⎨

⎩
g(ξ , s),  ≤ s ≤ ξ ,

g(ξ , s), ξ ≤ s ≤ .

Let

γ (s) ≤
⎧
⎨

⎩

g(ξ ,s)
G(,s) ,  < s ≤ ξ ,
g(ξ ,s)
G(,s) , ξ ≤ s < ,
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where

G(, s) =

⎧
⎨

⎩
g(, s),  ≤ s ≤ ξ ,

g(, s), ξ ≤ s ≤ 

=

⎧
⎨

⎩

(–s)α–β––b(ξ–s)α–β––A(–s)α–

A�(α) ,  ≤ s ≤ ξ ,
(–s)α–β––A(–s)α–

A�(α) , ξ ≤ s ≤ .

Therefore, we have

γ (s) = ξα– ∈ (, ).

Then

min
ξ≤t≤

G(t, s) ≥ γ (s) max
≤t≤

G(t, s) = ξα–G(, s),  < s < .

The proof is completed. �

Lemma . Assume that (H)-(H) hold. Then the operators T : K → K and L : K → K
are completely continuous.

Proof Since a(t) ∈ L(, ) is nonnegative, G(t, s) >  is continuous on [, ] × [, ], and
f : [, ] × [,∞] → [,∞) is a continuous function, it is easy to see that Tu(t) ≥ . So
T : K → K and T are continuous.

Let � ⊂ K be bounded, i.e., there exists a positive constant M such that f (t, u) ≤ M for
all t ∈ [, ], u ∈ �. Then

∣∣Tu(t)
∣∣ =

∣∣∣
∣–

∫ t




�(α)

a(s)(t – s)α–f
(
s, u(s)

)
ds +

tα–

A�(α)

∫ 


a(s)( – s)α–β–f

(
s, u(s)

)
ds

–
btα–

A�(α)

∫ ξ


a(s)(ξ – s)α–β–f

(
s, u(s)

)
ds

∣
∣∣
∣

≤
∣
∣∣∣–

∫ t




�(α)

a(s)(t – s)α–f
(
s, u(s)

)
ds

∣
∣∣∣

+
∣∣
∣∣

tα–

A�(α)

∫ 


a(s)( – s)α–β–f

(
s, u(s)

)
ds

∣∣
∣∣

+
∣∣
∣∣–

btα–

A�(α)

∫ ξ


a(s)(ξ – s)α–β–f

(
s, u(s)

)
ds

∣∣
∣∣

≤ M
�(α)

∫ t


a(s)(t – s)α– ds +

Mtα–

A�(α)

∫ 


a(s)( – s)α–β– ds

+
bMtα–

A�(α)

∫ ξ


a(s)(ξ – s)α–β– ds

≤ M
�(α)

∫ 


a(s) ds +

M
A�(α)

∫ 


a(s) ds +

bM
A�(α)

∫ 


a(s) ds

=
M(A +  + b)

A�(α)

∫ 


a(s) ds.
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Thus,

‖Tu‖ ≤ M(A +  + b)
A�(α)

∫ 


a(s) ds < ∞

for all u ∈ �. Hence, {Tu, u ∈ �} is bounded.
On the other hand, for  ≤ t < t ≤ , u ∈ �, we have

∣
∣Tu(t) – Tu(t)

∣
∣ =

∣∣
∣∣–

∫ t




�(α)

a(s)(t – s)α–f
(
s, u(s)

)
ds

+
tα–


A�(α)

∫ 


a(s)( – s)α–β–f

(
s, u(s)

)
ds

–
btα–


A�(α)

∫ ξ


a(s)(ξ – s)α–β–f

(
s, u(s)

)
ds

+
∫ t




�(α)

a(s)(t – s)α–f
(
s, u(s)

)
ds

–
tα–


A�(α)

∫ 


a(s)( – s)α–β–f

(
s, u(s)

)
ds

+
btα–


A�(α)

∫ ξ


a(s)(ξ – s)α–β–f

(
s, u(s)

)
ds

∣∣
∣∣

≤
∣∣∣
∣

∫ t




�(α)

a(s)(t – s)α–f
(
s, u(s)

)
ds

–
∫ t




�(α)

a(s)(t – s)α–f
(
s, u(s)

)
ds

∣
∣∣
∣

+
∣∣
∣∣

tα–


A�(α)

∫ 


a(s)( – s)α–β–f

(
s, u(s)

)
ds

–
tα–


A�(α)

∫ 


a(s)( – s)α–β–f

(
s, u(s)

)
ds

∣
∣∣
∣

+
∣
∣∣
∣

btα–


A�(α)

∫ ξ


a(s)(ξ – s)α–β–f

(
s, u(s)

)
ds

–
btα–


A�(α)

∫ ξ


a(s)(ξ – s)α–β–f

(
s, u(s)

)
ds

∣
∣∣
∣

≤
∣∣
∣∣

∫ t




�(α)

a(s)
(
(t – s)α– – (t – s)α–)f

(
s, u(s)

)
ds

∣∣
∣∣

+
∣∣∣
∣

∫ t

t


�(α)

a(s)(t – s)α–f
(
s, u(s)

)
ds

∣∣∣
∣

+
M(tα–

 – tα–
 )

A�(α)

∫ 


a(s) ds +

bM(tα–
 – tα–

 )
A�(α)

∫ 


a(s) ds

≤ M
�(α)

∣
∣∣∣

∫ t


a(s)

(
(t – s)α– – (t – s)α–)ds

∣
∣∣∣

+
M

�(α)

∣∣
∣∣

∫ t

t

a(s)(t – s)α– ds
∣∣
∣∣

+
M( + b)(tα–

 – tα–
 )

A�(α)

∫ 


a(s) ds
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≤ M(t – t)
�(α)

∫ t


a(s) ds +

M
�(α)

∣
∣∣
∣

∫ t

t

a(s)(t – s)α– ds
∣
∣∣
∣

+
M( + b)(tα–

 – tα–
 )

A�(α)

∫ 


a(s) ds.

Since a(t) ∈ L(, ), by the integration of Cauchy’s test for convergence and the uniform
continuity of tα , tα– on [, ], we can get that {Tu, u ∈ �} is equicontinuous. By the Arzela-
Ascoli theorem we conclude that T : K → K is a completely continuous operator.

By the same method we can get that L : K → K is a completely continuous operator. The
proof is completed. �

Now we use the Banach contraction mapping principle to prove that the boundary value
problem (.)-(.) has a unique solution on [, ].

Theorem . Assume that (H) and (H) hold and there exists a constant � such that

∣
∣f (t, x) – f (t, y)

∣
∣ ≤ �|x – y|

for almost every t ∈ [, ] and all x, y ∈ [,∞).
If

 < �

∫ 


G(, s)a(s) ds < ,

then the boundary value problem (.)-(.) has a unique positive solution on [, ].

Proof By Lemma ., T : K → K . Moreover, for any u, v ∈ K , we deduce

∣∣Tu(t) – Tv(t)
∣∣ =

∣
∣∣
∣

∫ 


G(t, s)a(s)

(
f
(
s, u(s)

)
– f

(
s, v(s)

))
ds

∣
∣∣
∣

≤
∫ 


G(t, s)a(s)

∣
∣f

(
s, u(s)

)
– f

(
s, v(s)

)∣∣ds

≤ �

∫ 


G(, s)a(s)

∣∣u(s) – v(s)
∣∣ds

≤ �

∫ 


G(, s)a(s) ds‖u – v‖.

This implies that

‖Tu – Tv‖ ≤ α‖u – v‖,

where α = �
∫ 

 G(, s)a(s) ds ∈ (, ). So T is a contraction mapping. Hence, by the Banach
contraction mapping principle the boundary value problem (.)–(.) has a unique posi-
tive solution on [, ]. The proof is completed. �

Remark . For a ∈ C[, ], the integral condition reduces to �σ‖a‖ < , where σ =
∫ 

 G(, s) ds is the exact value.
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Now we study the existence of solutions for the boundary value problem (.)-(.) by
the fixed point index theory.

Lemma . Assume that (H)-(H) hold. Then the spectral radius of the operator L is pos-
itive, that is, r(L) > .

Proof Take u(t) = tα– ∈ E. Then ‖u‖ = .
We have

Lu(t) = –
∫ t




�(α)

a(s)(t – s)α–u(s) ds +
tα–

A�(α)

∫ 


a(s)( – s)α–β–u(s) ds

–
btα–

A�(α)

∫ ξ


a(s)(ξ – s)α–β–u(s) ds

= –
tα–

�(α)

∫ t


a(s)

(
 –

s
t

)α–

sα– ds +
tα–

A�(α)

∫ 


a(s)( – s)α–β–sα– ds

–
btα–ξα–β–

A�(α)

∫ ξ


a(s)

(
 –

s
ξ

)α–β–

sα– ds

= tα–
(

–


�(α)

∫ t


a(s)

(
 –

s
t

)α–

sα– ds +


A�(α)

∫ 


a(s)( – s)α–β–sα– ds

–
bξα–β–

A�(α)

∫ ξ


a(s)

(
 –

s
ξ

)α–β–

sα– ds
)

> tα–
(

–


�(α)

∫ 


a(s)

(
 –

s
t

)α–

sα– ds +


A�(α)

∫ 


a(s)( – s)α–β–sα– ds

–
bξα–β–

A�(α)

∫ 


a(s)

(
 –

s
ξ

)α–β–

sα– ds
)

> tα–
(

–


�(α)

∫ 


a(s)( – s)α–sα– ds +


A�(α)

∫ 


a(s)( – s)α–β–sα– ds

–
bξα–β–

A�(α)

∫ 


a(s)( – s)α–β–sα– ds

)

= tα–
(

–


�(α)

∫ 


a(s)( – s)α–sα– ds +


�(α)

∫ 


a(s)( – s)α–β–sα– ds

)

:=ltα– > .

Since L : K → K , according to the monotonicity of L and (H), we deduce

Lu(t) = L
(
Lu(t)

)
> L

(
ltα–)

> lL
(
tα–) > ltα–.

Repeating the process gives Lnu(t) > lntα–. So we get ‖Ln‖ > ln. Hence,

∥
∥Ln∥∥


n > l, r(L) = lim

n→∞
∥
∥Ln∥∥


n > l > .

The proof is completed. �
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Define

f = lim inf
u→+

min
t∈[,]

f (t, u)
u

,

f ∞ = lim sup
u→∞

max
t∈[,]

f (t, u)
u

,

Kc =
{

x ∈ K : ‖x‖ < c
}

,

r(L) =

μ

, μ ∈ R+.

Lemma . Assume that (H)-(H) hold and μ < f ≤ ∞. Then there exists ρ >  such
that for ρ ∈ (,ρ], if u �= Tu, u ∈ ∂Kρ , then i(T , Kρ , K) = .

Proof It follows from μ < f that there exist ε >  and ρ >  such that for t ∈ [, ] and
 ≤ u ≤ ρ,

f (t, u) ≥ (μ + ε)u. (.)

For  < ρ < ρ, assume that u �= Tu, u ∈ ∂Kρ . By Lemma . and Lemma .(i) we need
only to prove that

u �= Tu + λϕ, λ > ,

where ϕ ∈ K \ {} with Lϕ = r(L)ϕ.
Otherwise, there exist u ∈ ∂Kρ and λ >  such that

u = Tu + λϕ. (.)

Then, u ≥ Tu and u ≥ λϕ. By (.) we get that

Tu(t) =
∫ 


G(t, s)a(s)f

(
s, u(s)

)
ds ≥ (μ + ε)Lu(t). (.)

Considering u ≥ λϕ, we have

Lu ≥ λLϕ.

For Lϕ = r(L)ϕ, (μ + ε)r(L) > , so that (μ + ε)r(L)ϕ > ϕ. So we can conclude

Tu ≥ (μ + ε)λLϕ > λϕ.

Together with (.), we have u ≥ λϕ. By (.) we have Tu ≥ λϕ. So u ≥ λϕ. Re-
peating this process, we get that u ≥ nλϕ, so that we have ‖u‖ ≥ nλ‖ϕ‖ → ∞, n → ∞.
This is a contradiction.

It follows from Lemma .(i) that i(T , Kρ , K) = , ρ ∈ (,ρ]. The proof is completed.
�
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Lemma . Assume that (H)-(H) hold and  ≤ f ∞ < μ. Then there exists τ >  such
that for each τ > τ, if λu �= Tu, u ∈ ∂Kτ , then i(T , Kτ , K) = .

Proof Let ε >  satisfy f ∞ < μ–ε. Then there exists τ >  such that for u > τ and t ∈ [, ],

f (t, u) ≤ (μ – ε)u. (.)

Set �(t) = maxu∈[,τ] f (t, u). Then, for all u ∈ R+ and t ∈ [, ], we have

f (t, u) ≤ (μ – ε)u + �(t). (.)

Let

F =
∥
∥∥
∥

∫ 


a(s)G(t, s)�(s) ds

∥
∥∥
∥, τ =

∥
∥∥
∥

F
μ – ε

(
I

μ – ε
– L

)–∥∥∥
∥.

Take τ > τ. We will show that λu �= Tu for all u ∈ ∂Kτ and λ ≥ .
Otherwise, there exist u ∈ ∂Kτ and λ ≥  such that

Tu = λu. (.)

Together with (.), we have

u ≤ λu = Tu ≤ (μ – ε)Lu + F .

Then ( I
μ–ε

– L)u(t) ≤ F
μ–ε

for t ∈ [, ]. So we deduce F
μ–ε

– ( I
μ–ε

– L)u ∈ K . It follows
from L(K) ⊂ K that u(t) ≤ F

μ–ε
( I
μ–ε

– L)– for t ∈ [, ]. Therefore, we have ‖u‖ ≤ τ < τ .
This is a contradiction. So we can conclude that

Tu �= λu

for all u ∈ ∂Kτ and λ ≥ .
By Lemma .(ii) we get that i(T , Kτ , K) =  for each τ < τ . The proof is completed. �

Theorem . Suppose that (H)-(H) hold, μ < f ≤ ∞, and  ≤ f ∞ < μ. Then the bound-
ary value problem (.)-(.) has at least one positive solution on [, ].

Proof It follows from μ < f ≤ ∞ and Lemma . that there exists  < ρ < τ such that
either there exists u ∈ ∂Kρ with u = Tu or i(T , Kρ , K) = . By  ≤ f ∞ < μ and Lemma .
there exists τ >  such that i(T , Kτ , K) = . So we can conclude that T has a fixed point
u ∈ K with ρ < ‖u‖ < τ by the properties of index. Hence, the boundary value problem
(.)-(.) has at least one positive solution on [, ]. The proof is completed. �

Now we study the multiplicity of solutions for the boundary value problem (.)-(.) by
the Leggett-Williams fixed point theorem.

Theorem . Assume that (H)-(H) hold. Suppose that there exist constants  < a < b < c
such that the following assumptions hold:
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(i) f (t, u) < Ma, (t, u) ∈ [, ] × [, a],
(ii) f (t, u) ≤ Mc, (t, u) ∈ [, ] × [, c],

(iii) f (t, u) ≥ Nb, (t, u) ∈ [ξ , ] × [b, c],
where γ (s) ∈ (, ), M = (

∫ 
 a(s)G(, s) ds)–, and N = (

∫ 
ξ

a(s)γ (s)G(, s) ds)–. Then the
boundary value problem (.)-(.) has at least three positive solutions u, u, and u with

‖u‖ < a, b < φ(u) < ‖u‖ ≤ c, and a < ‖u‖, φ(u) < b.

Proof If u ∈ Kc, then ‖u‖ ≤ c. So  ≤ u(t) ≤ c, t ∈ [, ]. By condition (ii) we have

∣∣Tu(t)
∣∣ =

∣
∣∣
∣

∫ 


G(t, s)a(s)(f

(
s, u(s)

)
ds

∣
∣∣
∣

≤
∫ 


G(, s)a(s)Mc ds

= Mc
∫ 


a(s)G(, s) ds = c,

which implies that ‖Tu‖ ≤ c, u ∈ Kc. Hence, T : Kc → Kc. In view of Lemma ., T : Kc →
Kc is completely continuous.

Next, by using the analogous argument it follows from condition (i) that if u ∈ Ka, then
‖Tu‖ < a.

Choose u(t) = b+c
 , t ∈ [, ]. It is easy to see that u(t) ∈ K(φ, b, c), φ( b+c

 ) = b+c
 > b.

Therefore, {u ∈ K(φ, b, c)|φ(u) > b} �= ∅.
On the other hand, if u ∈ K(φ, b, c), then b ≤ u(t) ≤ c, t ≤ [ξ , ]. By condition (iii) we

have

f
(
t, u(t)

) ≥ Nb.

Hence,

φ(Tu) = min
ξ≤t≤

∣∣Tu(t)
∣∣ = min

ξ≤t≤

∣
∣∣∣

∫ 


G(t, s)a(s)(f

(
s, u(s)

)
ds

∣
∣∣∣

≥ min
ξ≤t≤

∫ 


G(t, s)a(s)Nb ds

>
∫ 

ξ

γ (s)G(, s)a(s)Nb ds

= Nb

∫ 

ξ

a(s)γ (s)G(, s) ds = b,

which implies that φ(Tu) > b for u ∈ K(φ, b, c).
In conclusion, by Lemma . and Remark . the boundary value problem (.)-(.) has

at least three positive solution u, u, and u with

‖u‖ < a, b < φ(u) < ‖u‖ ≤ c, and a < ‖u‖, φ(u) < b.

The proof is completed. �
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4 Examples
In this section, we present some examples to illustrate our main results.

Example . Consider the following boundary value problem:

D


+ u(t) + a(t)

(
et

( + et)( + u)
+ sin t + 

)
= ,  < t < , (.)

u() = , D


+ u() = , D



+ u() = bD



+ u(ξ ), (.)

where b = 
 and ξ = 

 .
Here

α =



, β =



, a(t) =
( – t) 



t 


, f (t, u) =
et

( + et)( + u)
+ sin t + ,

(t, u) ∈ [, ] × [,∞],� =



.

It is clear that |f (t, u) – f (t, v)| ≤ �|u – v| for (t, u), (t, v) ∈ [, ] × [,∞].
Since a(t) is singular at t = , by simple calculation we have

 < �

∫ 


G(, s)a(s) ds ≤ �

∫ 



( – s) 
 ( – s)α–β– – ( – bξα–β–)( – s)α–( – s) 



s 
 ( – bξα–β–)�(α)

≈ . < .

By Theorem . we see that the boundary value problem (.)-(.) has a unique solution.

Example . Consider the following boundary value problem:

D


+ u(t) + a(t)f (t, u) = ,  < t < , (.)

u() = , D


+ u() = , D



+ u() = bD



+ u(ξ ), (.)

where

f (t, u) =

{
u 

 + t 
 , u ∈ [, ], t ∈ [, ],

u 
 + t 

 , u ∈ (,∞), t ∈ [, ],

and b = 
 , ξ = 

 .
Here α = 

 , β = 
 , a(t) = 

–t . It is easy to see that (H) and (H) are satisfied. By simple
calculation we can conclude that

f = ∞, f ∞ = .

Hence, by Theorem . we obtain that the boundary value problem (.)-(.) has at least
a solution.
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Example . Consider the following boundary value problem:

D


+ u(t) + a(t)f (t, u) = ,  < t < , (.)

u() = , D


+ u() = , D



+ u() = bD



+ u(ξ ), (.)

where

f (t, u) =

{
u + t

 , u ∈ [, ], t ∈ [, ],
, u > , t ∈ [, ],

and b = 
 , ξ = 

 .
Here α = 

 , β = 
 , a(t) = . By simple calculation we have

A =  – bξα–β– = .,
∫ 


a(s)G(, s) ds =

∫ 



( – s)α–β– – ( – bξα–β–)( – s)α–

( – bξα–β–)�(α)
ds ≈ .,

and

∫ 

ξ

γ (s)a(s)G(, s) ds =
∫ 




g(ξ , s) ds ≈ ..

Hence, M = (
∫ 

 a(s)G(, s) ds)– ≈ . and N = (
∫ 
ξ

γ (s)a(s)G(, s) ds)– ≈ ..
Choosing a = 

 , b = , and c = , we have

f (t, u) = u +
t


≤ . < Ma = ., (t, u) ∈ [, ] ×

[
,




]
,

f (t, u) = u +
t


≤ . < Mc = ., (t, u) ∈ [, ] × [, ],

f (t, u) =  ≤ Mc = ., (t, u) ∈ [, ] × (, ],

f (t, u) =  ≥ Nb = ., (t, u) ∈
[




, 
]

× (, ].

Hence, by Theorem . we obtain that the boundary value problem (.)-(.) has at least
three positive solutions u, u, and u such that

‖u‖ <



,  < φ(u) < ‖u‖ ≤ , and



< ‖u‖, φ(u) < .

5 Conclusion
In this paper, we systematically study the existence, uniqueness, and multiplicity of posi-
tive solutions for a class of Riemann-Liouville fractional differential equations with three-
point boundary conditions. By the properties of Green function, we establish the existence
and uniqueness of single positive solutions to the three-point boundary value problems
(.)-(.) by the Banach contraction mapping principle and the fixed point index theory,
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and we investigate the existence of multiple positive solutions for (.)-(.) by the Leggett-
Williams fixed point theorem. As applications, examples are presented to illustrate the
main results.

We propose some techniques to prove the completely continuity of operators and the
properties of the Green function that need not adding more preconditions. With the ele-
vation of order, the properties of the Green function happen to change. We use these new
properties to obtain more general results. We investigate the fractional differential equa-
tions without many preconditions by the fixed point index theory and obtain the existence
of single positive solutions.
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