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Abstract
In this article we present a new fixed point theorem for a class of generalized concave
operators and we establish some properties of positive solutions for the operator
equation Ax = λx. Based on them, the existence and uniqueness of positive solutions
for a class of fractional differential equations with integral boundary conditions is
proved. Moreover, we present some properties of positive solutions to the boundary
value problem dependent on the parameter.
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1 Introduction
Owing to various applications of integral boundary value problems in applied fields such
as blood flow problems, chemical engineering, thermo-elasticity, underground water flow,
and population dynamics, the existence of solutions for fractional differential equations
with integral boundary conditions has been extensively studied in recent years (see [–]
and the references therein). In these papers, most of the authors have investigated the ex-
istence and multiplicity of positive solutions. For example, by means of the monotone iter-
ation method, Sun and Zhao [] investigated the existence of positive solutions for a class
of Riemann-Liouville fractional differential equations with integral boundary conditions.
Zhao et al. [] used Krasnosel’skii’s fixed point theorem to obtain the existence and nonex-
istence of positive solutions for a fractional differential equation with integral boundary
conditions. In [], by using the properties of the Green function, a u-bounded function,
and fixed point index theory, the authors obtained the existence of positive solutions for a
class of nonlinear fractional differential equations with integral boundary conditions and
a parameter. But the uniqueness of positive solutions is not treated in [–]. As far as we
know, there are few papers reported on the integral boundary conditions of fractional dif-
ferential equations with a parameter. In particular, there are no clear explanations of the
relation between positive solutions and the parameter. The reason is that many methods
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used in the literature are independent of the parameters. So we need some properties of
positive solutions for the operator equation

Ax = λx, (.)

where A is a generalized concave operator and λ >  is an eigenvalue. In this article, we
first state and prove a new fixed point theorem for a class of generalized concave operators.
Further, we establish some properties of positive solutions for the operator equation (.).
Here we do not assume the existence of upper-lower solutions for the operator A, which is
usually done in the literature (for example, see [, ]). As applications, we utilize the main
results for (.) to the following fractional differential equation with integral boundary
conditions:

{
Dα

+ u(t) + λf (t, u(t)) = , t ∈ (, ),
u() = u′() = , u() = β

∫ 
 u(s) ds,

(.)

where  < α ≤ ,  < β < α, λ >  is a parameter. Dα
+ is the Riemann-Liouville fractional

derivative of order α, which is defined as follows:

Dα
+ u(t) =


�(n – α)

dn

dtn

∫ t



u(s)
(t – s)α+–n ds, n = [α] + ,

here � denotes the Euler gamma function and [α] denotes the integer part of number
α provided that the right side is point-wise defined on (, +∞); see []. We establish the
existence and uniqueness of positive solutions for problem (.) with any given parameter.
Moreover, we present some properties of positive solutions for problem (.) dependent
on the parameter.

2 Properties of positive solutions for the operator equation Ax = λx
For the discussion of this section, we first list some basic notations, concepts in ordered
Banach spaces. For the convenience of the reader, we refer to [, , ] for details.

Let (E,‖ · ‖) be a real Banach space which is partially ordered by a cone P ⊂ E, i.e., x ≤ y
if and only if y – x ∈ P. If x ≤ y and x �= y, then we denote x < y or y > x. By θ we denote the
zero element of E. A non-empty closed convex set P ⊂ E is a cone if it satisfies (i) x ∈ P,
r ≥  ⇒ rx ∈ P; (ii) x ∈ P, –x ∈ P ⇒ x = θ .

P is called normal if there is a constant N >  such that, for all x, y ∈ E, θ ≤ x ≤ y implies
‖x‖ ≤ N‖y‖; in this case N is the infimum of such constants, it is called the normality
constant of P. We say that an operator A : E → E is increasing if x ≤ y implies Ax ≤ Ay.

For all x, y ∈ E, the notation x ∼ y means that there exist λ >  and μ >  such that
λx ≤ y ≤ μx. Clearly, ∼ is an equivalence relation. Given h > θ (i.e., h ≥ θ and h �= θ ), we
denote by Ph the set Ph = {x ∈ E | x ∼ h}. It is easy to see that Ph ⊂ P.

Lemma . (see Theorem . in []) Let P be a normal cone in a real Banach space E and
h > θ . Assume that:

(D) A : P → P is increasing and Ah + x ∈ Ph with x ∈ P;
(D) for x ∈ P and t ∈ (, ), there exists ϕ(t) ∈ (t, ) such that A(tx) ≥ ϕ(t)Ax.

Then the operator equation x = Ax + x has a unique solution in Ph.
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Now we consider the operator equation

Ax = x. (.)

Theorem . Let P be a normal cone in a real Banach space E, h > θ , and let A : P → P be
an increasing operator, satisfying:

(i) there is h ∈ Ph such that Ah ∈ Ph;
(ii) for any x ∈ P and t ∈ (, ), there exists ϕ(t) ∈ (t, ) such that A(tx) ≥ ϕ(t)Ax.

Then:
() the operator equation (.) has a unique solution x∗ in Ph;
() for any initial value x ∈ Ph, constructing successively the sequence xn = Axn–,

n = , , . . . , we have xn → x∗ as n → ∞.

Remark . We say an operator A is generalized concave if it satisfies the condition (ii)
in Theorem .; see [].

Proof of Theorem . From the condition (ii), Ax = A(t · 
t x) ≥ ϕ(t)A( 

t x), t ∈ (, ). Thus
we have

A
(


t

x
)

≤ 
ϕ(t)

Ax, ∀x ∈ P, t ∈ (, ). (.)

Since Ah ∈ Ph, there exist constants λ,λ >  such that λh ≤ Ah ≤ λh. Also from
h ∈ Ph, there exists a constant t ∈ (, ) such that th ≤ h ≤ 

t
h. Then from (.) and

the monotonicity of operator A, we have

Ah ≥ A(th) ≥ ϕ(t)Ah ≥ ϕ(t)λh,

Ah ≤ A
(


t

h

)
≤ 

ϕ(t)
Ah ≤ λ

ϕ(t)
h.

Note that λϕ(t), λ
ϕ(t) > , we can get Ah ∈ Ph.

Now we show that A : Ph → Ph. For any x ∈ Ph, we can choose a sufficiently small number
t ∈ (, ) such that th ≤ x ≤ 

t
h. Then

Ax ≥ A(th) ≥ ϕ(t)Ah, Ax ≤ A
(


t

h
)

≤ 
ϕ(t)

Ah.

It follows from Ah ∈ Ph that Ax ∈ Ph. That is, A : Ph → Ph. Letting x = θ in Lemma .,
we can easily get the conclusion ().

Next we construct successively the sequence xn = Axn–, n = , , . . . for any initial value
x ∈ Ph. Since x ∈ Ph and Ax ∈ Ph, we can choose a sufficiently small number t ∈ (, )
such that tx ≤ Ax ≤ 

t
x. Note that t < ϕ(t) < , we can take a positive integer k such

that ( ϕ(t)
t

)k ≥ 
t

. Put u = tk
x, v = 

tk


x. Then u, v ∈ Ph and u ≤ x ≤ v. Take any r ∈
(, tk

 ], then r ∈ (, ) and u ≥ rv. By the monotonicity of A, we have Au ≤ Ax ≤ Av.
From the condition (ii),

Au = A
(
tk
x

)
= A

(
t · tk–

 x
) ≥ ϕ(t)A

(
tk–
 x

)
= ϕ(t)A

(
t · tk–

 x
) ≥ ϕ(t) · ϕ(t)A

(
tk–
 x

)



Zhai and Wang Advances in Difference Equations  (2015) 2015:366 Page 4 of 10

≥ · · · ≥ ϕ(t) · ϕ(t) · · ·ϕ(t) · ϕ(t)Ax

≥ (
ϕ(t)

)kAx ≥ (
ϕ(t)

)kth ≥ tk
x = u.

From (.), we get

Av = A
(


tk


x

)
= A

(

t

· 
tk–


x

)

≤ 
ϕ(t)

A
(


tk–


x

)
=


ϕ(t)

A
(


t

· 
tk–


x

)

≤ 
ϕ(t)

· 
ϕ(t)

A
(


tk–


x

)
≤ · · ·

≤ 
ϕ(t) · ϕ(t) · · ·ϕ(t)

Ax

≤ 
ϕ(t)k · 

t
x ≤ 

tk


x = v.

Thus we have u ≤ Au ≤ Av ≤ v. Let un = Aun–, vn = Avn–, n = , , . . . . Evidently, u ≤
x ≤ v. In a general way, we obtain un ≤ xn ≤ vn, n = , , . . . and then

u ≤ u ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v ≤ v.

Because u ≥ rv, we have un ≥ u ≥ rv ≥ rvn, n = , , . . . . Let

rn = sup{t >  | un ≥ tvn}, n = , , . . . .

Thus we have un ≥ rnvn, n = , , . . . and then

un+ ≥ un ≥ rnvn ≥ rnvn+, n = , , . . . .

So rn+ ≥ rn, i.e., {rn} is increasing with {rn} ⊂ (, ]. Suppose rn → r∗ as n → ∞, then
r∗ = . Otherwise,  < r∗ < . Note that rn ≤ r∗. We obtain

un+ = Aun ≥ A(rnvn) = A
(

rn

r∗ r∗vn

)
≥ rn

r∗ A
(
r∗vn

) ≥ rn

r∗ · ϕ(
r∗)Avn.

By the definition of rn, rn+ ≥ rn
r∗ · ϕ(t∗). Let n → ∞, we get r∗ ≥ ϕ(r∗) > r∗, which is a

contradiction. Thus, limn→∞ rn = . For any natural number p, we have

θ ≤ un+p – un ≤ vn – un ≤ vn – rnvn = ( – rn)vn ≤ ( – rn)v,

θ ≤ vn – vn+p ≤ vn – un ≤ ( – rn)v.

Since P is normal, we have

‖un+p – un‖ ≤ N( – rn)‖v‖ →  (as n → ∞),

‖vn – vn+p‖ ≤ N( – rn)‖v‖ →  (as n → ∞),
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where N is the normality constant. So {un} and {vn} are Cauchy sequences in complete
space E, and there exist u∗, v∗ such that un → u∗, vn → v∗ as n → ∞. It is easy to see
that un ≤ u∗ ≤ v∗ ≤ vn with u∗, v∗ ∈ Ph and θ ≤ v∗ – u∗ ≤ vn – un ≤ ( – rn)v. Further,
‖v∗ – u∗‖ ≤ N( – tn)‖v‖ →  (n → ∞), and thus u∗ = v∗. It follows from conclusion ()
that u∗ = v∗ = x∗ and then un → x∗, vn → x∗ as n → ∞. Thus, from the normality of P,
xn → x∗ as n → ∞. �

Next we state and prove some properties of positive solutions for the operator equation
(.).

Theorem . Assume that all the conditions of Theorem . hold. Let xλ (λ > ) denote the
unique solution of operator equation (.). Then we have the following conclusions:

(i) xλ is strictly decreasing in λ, that is,  < λ < λ implies xλ > xλ ;
(ii) if there exists γ ∈ (, ) such that ϕ(t) ≥ tγ for t ∈ (, ), then xλ is continuous in λ,

that is, λ → λ (λ > ) implies ‖xλ – xλ‖ → ;
(iii) limλ→∞ ‖xλ‖ = , limλ→+ ‖xλ‖ = ∞.

Proof Fix λ >  and by Theorem ., 
λ

A : Ph → Ph is increasing and satisfies

(

λ

A
)

(tx) =

λ

A(tx) ≥ 
λ

ϕ(t)Ax = ϕ(t)
(


λ

A
)

(x), x ∈ Ph, t ∈ (, ).

So it follows from Theorem . that 
λ

A has a unique fixed point xλ in Ph. That is, Axλ = λxλ.
(i) Suppose  < λ < λ and let t = sup{t >  | xλ ≥ txλ}, then we have  < t < ∞,

xλ ≥ txλ . Next we prove t ≥ . In fact, if  < t < , then

xλ =

λ

Axλ ≥ 
λ

A(txλ ) ≥ 
λ

ϕ(t)Axλ =
λ

λ
ϕ(t)xλ .

Note that λ
λ

ϕ(t) > t, which contradicts the definition of t. Hence t ≥  and xλ ≥ xλ ,

xλ =

λ

Axλ ≥ 
λ

A(xλ ) =
λ

λ
xλ > xλ . (.)

(ii) For given λ > , we know by (.),

xλ < xλ , ∀λ > λ. (.)

On the other hand, let tλ = sup{t >  | xλ ≥ txλ} (λ > λ), then we have  < tλ < , xλ ≥
tλxλ , for λ > λ. Thus λxλ = Axλ ≥ A(tλxλ ) ≥ ϕ(tλ)Axλ = ϕ(tλ)λxλ . By the definition of
tλ and the condition (ii), we know tλ ≥ λ

λ
ϕ(tλ) ≥ λ

λ
(tλ)γ , which in turn yields tλ ≥ ( λ

λ
)


–γ ,

∀λ > λ. Consequently,

xλ ≥
(

λ

λ

) 
–γ

xλ , ∀λ > λ. (.)

By (.), (.), and the normality of the cone P,

‖xλ – xλ‖ ≤ N
[

 –
(

λ

λ

) 
–γ

]
‖xλ‖,
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where N is the normality constant. Let λ → λ + , we have ‖xλ – xλ‖ → . Similarly, let
λ → λ – , we also have ‖xλ – xλ‖ → . So the conclusion (ii) holds.

(iii) Let λ = , λ = λ in (.), we have x ≥ λxλ, ∀λ > . Thus, we can easily obtain ‖xλ‖ ≤
N
λ
‖x‖, where N is the normal constant. Let λ → ∞, then ‖xλ‖ → . Similarly, let λ = λ,

λ =  in (.), then xλ ≥ 
λ

x, ∀ < λ < . Thus ‖xλ‖ ≥ 
Nλ

‖x‖, where N is the normality
constant. Let λ →  + , we have ‖xλ‖ → ∞. �

Remark . () We do not suppose the condition of upper-lower solutions which is com-
mon in many known results and is difficult to verify. Moreover, we give the iterative forms.
The existence of a unique positive solution is proved only in the case where the cone P is
normal and the operators A is generalized concave.

() The eigenvalue problem for generalized concave operators has not been studied in
the literature, so Theorem . complements the eigenvalue results for generalized concave
operators.

3 Properties of positive solutions for problem (1.2)
When λ =  in (.), Cabada and Hamdi [] established the existence of one positive solu-
tion for problem (.) under sublinear case or superlinear case. The method used there is
by Guo-Krasnosel’skii fixed point theorem. Different from the main result and the method,
we will apply Theorem . and present some properties of positive solutions for problem
(.) dependent on the parameter, and the method is also different from those in previous
works.

Lemma . (see []) Let  < α ≤  and α �= β . Assume y ∈ C[, ], then the following frac-
tional differential equation with integral boundary conditions:

{
Dα

+ u(t) + y(t) = , t ∈ (, ),
u() = u′() = , u() = β

∫ 
 u(s) ds,

has a unique solution u ∈ C[, ], given by the expression

u(t) =
∫ 


G(t, s)y(s) ds, (.)

where

G(t, s) =

⎧⎨
⎩

tα–(–s)α–(α–β+βs)–(α–β)(t–s)α–

(α–β)�(α) ,  ≤ s ≤ t ≤ ,
tα–(–s)α–(α–β+βs)

(α–β)�(α) ,  ≤ t ≤ s ≤ .
(.)

Lemma . Let  < α ≤  and  < β < α. The function G(t, s) defined by (.) has the
following properties:

( – s)α–βs
(α – β)�(α)

tα– ≤ G(t, s) ≤ ( – s)α–(α – β + βs)
(α – β)�(α)

tα–, t, s ∈ [, ].

Proof Evidently, the right inequality holds. So we only need to prove the left inequality. If
 ≤ s ≤ t ≤ , then we have  ≤ t – s ≤ t – ts = ( – s)t, and thus

(t – s)α– ≤ ( – s)α–tα–.
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Since α – β > , we obtain

G(t, s) =
tα–( – s)α–(α – β + βs) – (α – β)(t – s)α–

(α – β)�(α)

≥ 
(α – β)�(α)

[
tα–( – s)α–(α – β + βs) – (α – β)( – s)α–tα–]

=
( – s)α–βs
(α – β)�(α)

tα–.

When  ≤ t ≤ s ≤ , from α – β > , we have

G(t, s) =
tα–( – s)α–(α – β + βs)

(α – β)�(α)

≥ ( – s)α–βs
(α – β)�(α)

tα–.

So the left inequality also holds. �

In the following considerations we will work in the Banach space C[, ], the space of
all continuous functions on [, ] with the standard norm ‖x‖ = sup{|x(t)| : t ∈ [, ]}. Evi-
dently, this space can be equipped with a partial order given by

x, y ∈ C[, ], x ≤ y ⇔ x(t) ≤ y(t) for t ∈ [, ].

Set P = {x ∈ C[, ] | x(t) ≥ , t ∈ [, ]}, the standard cone. We know that P is a normal
cone in C[, ] and the normality constant is .

Theorem . Assume that:

(H) f : [, ] × [, +∞) → [, +∞) is continuous with f (t, ) �≡ ;
(H) f (t, x) is increasing in x for each t ∈ [, ];
(H) for any r ∈ (, ), there exists ϕ(r) ∈ (r, ) such that

f (t, rx) ≥ ϕ(r)f (t, x), ∀t ∈ [, ], x ∈ [, +∞).

Then the following conclusions hold:
() For any given λ > , problem (.) has a unique positive solution u∗

λ in Ph, where
h(t) = tα–, t ∈ [, ]. Moreover, for any initial value u ∈ Ph, constructing successively
the sequence

un(t) = λ

∫ 


G(t, s)f

(
s, un–(s)

)
ds, n = , , . . . ,

we have un(t) → u∗
λ(t) as n → +∞, where G(t, s) is given as in Lemma ..

() u∗
λ is strictly increasing in λ, that is,  < λ < λ implies u∗

λ
< u∗

λ
.

() If there exists γ ∈ (, ) such that ϕ(t) ≥ tγ for t ∈ (, ), then u∗
λ is continuous in λ,

that is, λ → λ (λ > ) implies ‖u∗
λ – u∗

λ
‖ → .

() limλ→+ ‖u∗
λ‖ = , limλ→+∞ ‖u∗

λ‖ = +∞.
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Proof For any u ∈ P, we define an operator A by

Au(t) =
∫ 


G(t, s)f

(
s, u(s)

)
ds, t ∈ [, ],

where G(t, s) is given as in Lemma .. From Lemma ., u(t) is the solution of problem
(.) if and only if u(t) = λAu(t). Noting that f (t, x) ≥  and G(t, s) ≥ , it is easy to check
that A : P → P. From (H), (H), we can easily prove that A : P → P is increasing. In the
sequel we check that A satisfies all assumptions of Theorem ..

First of all, we show that A satisfies the second condition of Theorem .. From (H), for
any r ∈ (, ) and u ∈ P, we obtain

A(ru)(t) =
∫ 


G(t, s)f

(
s, ru(s)

)
ds ≥ ϕ(r)

∫ 


G(t, s)f

(
s, u(s)

)
ds = ϕ(r)Au(t), t ∈ [, ].

Hence, A(ru) ≥ ϕ(r)Au, ∀u ∈ P, r ∈ (, ).
Next we show that the first condition of Theorem . also holds. That is, take h = h, we

prove Ah ∈ Ph. On one hand, it follows from (H) and Lemma . that

Ah(t) =
∫ 


G(t, s)f

(
s, h(s)

)
ds =

∫ 


G(t, s)f

(
s, sα–)ds

≥
∫ 



( – s)α–βs
(α – β)�(α)

tα–f (s, ) ds

=
β

(α – β)�(α)

∫ 


( – s)α–sf (s, ) ds · tα–, t ∈ [, ].

On the other hand, also from (H) and Lemma ., we obtain

Ah(t) ≤
∫ 



( – s)α–(α – β + βs)
(α – β)�(α)

tα–f (s, ) ds

=


(α – β)�(α)

∫ 


( – s)α–(α – β + βs)f (s, ) ds · tα–, t ∈ [, ].

Let

r =
β

(α – β)�(α)

∫ 


( – s)α–sf (s, ) ds,

r =


(α – β)�(α)

∫ 


( – s)α–(α – β + βs)f (s, ) ds.

Since α – β > , f is continuous and f (t, ) �≡ , we can get  < r ≤ r. Consequently,

Ah(t) ≥ rh(t), Ah(t) ≤ rh(t), t ∈ [, ].

So we have rh ≤ Ah ≤ rh. Hence Ah ∈ Ph. Therefore, by Theorem ., there exists a
unique u∗

λ ∈ Ph such that A(u∗
λ, u∗

λ) = 
λ

u∗
λ. That is, u∗

λ = λA(u∗
λ, u∗

λ), and then

u∗
λ(t) = λ

∫ 


G(t, s)f

(
s, u∗

λ(s)
)

ds, t ∈ [, ].
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It is easy to check that u∗
λ is a unique positive solution of problem (.) for given λ > .

From Theorem ., u∗
λ is strictly increasing in λ, that is,  < λ < λ implies u∗

λ
≤ u∗

λ
,

u∗
λ

�= u∗
λ

. Further, limλ→+ ‖u∗
λ‖ = , limλ→∞ ‖u∗

λ‖ = ∞. Moreover, if there exists γ ∈ (, )
such that ϕ(t) ≥ tγ for t ∈ (, ), Theorem . means that u∗

λ is continuous in λ, that is,
λ → λ (λ > ) implies ‖u∗

λ – u∗
λ

‖ → .
Let Aλ = λA, then Aλ also satisfies all the conditions of Theorem .. By Theorem ., for

any initial value u ∈ Ph, constructing successively the sequence un = Aλun–, n = , , . . . ,
we have un → u∗

λ as n → ∞. That is,

un(t) = λ

∫ 


G(t, s)f

(
s, un–(s)

)
ds, n = , , . . . , t ∈ [, ],

and un(t) → u∗
λ(t) as n → +∞. �

In Theorem ., let λ = , we can easily obtain the following conclusions.

Corollary . Assume (H)-(H) hold. Then the following Riemann-Liouville fractional
differential equation with integral boundary conditions

{
Dα

+ u(t) + f (t, u(t)) = , t ∈ (, ),
u() = u′() = , u() = β

∫ 
 u(s) ds,

where  < α ≤ ,  < β < α, has a unique positive solution u∗ in Ph, where h(t) = tα–, t ∈
[, ]. Moreover, for any initial value u ∈ Ph, constructing successively the sequence

un(t) =
∫ 


G(t, s)f

(
s, un–(s)

)
ds, n = , , . . . ,

we have un(t) → u∗(t) as n → +∞, where G(t, s) is given as in Lemma ..

Remark . Comparing Theorem . and Corollary . with many main results in the
literature, here we present an alternative approach to the study of similar problems under
different conditions. Our results cannot only guarantee the existence of a unique positive
solution for any given parameter, but they also help to construct an iterative scheme for
approximating it. Moreover, we can show that the positive solution with respect to the
parameter has some definite properties. So our results are seldom seen in the literature.

Remark . () We can see that there is a large number of functions which satisfy the
conditions of Theorem . or Corollary .. For example, let f (t, x) = a(t)[x 

 + b], where
a : [, ] → [, +∞) is continuous with a(t) �≡ , b > . Take ϕ(r) = r 

 . Also let f (t, x) =
g(t) + x 

 + x 
 + · · · + x 

n + b, where g : [, ] → [, +∞) is continuous, n ≥ , b > . Take
ϕ(r) = r 

 . We can easily prove that (H)-(H) in Theorem . hold.
() If the Green functions satisfy some properties similar to Lemma ., then Theo-

rems . and . can be applied to many fractional differential equations boundary value
problems.
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