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79 Yingze W St, Taiyuan, Shanxi Beddington-DeAngelis functional response is proposed. By constructing Lyapunov
030024, China functions, we demonstrate the existence of global positive solution, which is

stochastically bounded and permanent. In addition, under some specific conditions,
the solution of this stochastic system is globally asymptotically stable, which means
that the properties of the solution will not be changed when the stochastic
perturbation is small. Finally, the influence of the stochastic perturbation is
demonstrated by simulation.

Keywords: stochastic differential equation; Beddington-DeAngelis functional
response; stochastic perturbation; global asymptotic stability

1 Introduction

As an important branch of ecology science, population ecology has become a system-
atic discipline where mathematics is thoroughly applied. The relationship between preda-
tor and prey is one of the basic relationships among species. Many significant functional
responses are constructed to model various situations. Most of the functional response
are prey-dependent, which fail to model the interference among predators. In fact, when
predators have to search, share, and compete for food, the functional response should be
predator dependent; such a scenario occurs more frequently in nature and laboratory (see
[1] and references therein).

In predator-prey systems, there are three classical predator-dependent functional re-
sponses: the Hassell-Varley, Beddington-DeAngelis, and Crowley-Martin responses (see
[1] and references therein). By comparing statistical evidence from 19 predator-prey sys-
tems, Skalski and Gilliam claimed that the above three predator-dependent functional
responses provided a better description of a predator feeding over a range of predator-
prey abundances [2]. Amongst the Beddington-DeAngelis type functional responses some
cases fitted better [2]. Beddington and DeAngelis et al. in 1975 first introduced the
Beddington-DeAngelis type predator-prey model (see [3] and references therein), which is

dx _ a12y

dt ~ x(rl —anx - 1+ﬁx+yy)’ (1)
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where x = x(¢) and y = y(¢) represent prey and predator densities, respectively; r; stands
for the average growth rate of prey, r; is the death rate of predator, and ay; is the preda-
tor density-dependence rate. r;, a;, B, and y are positive constants for i,j = 1,2. Be-
cause of its practical significance, many scholars have studied the system in recent years
[4-12].

In the study of predator-prey systems, the cooperation element is always neglected. Nev-
ertheless, the cooperative system is a sometimes rudimentary and sometimes important
ecological system in mathematical biology [13, 14]. To describe the mutual cooperation
between two species, May [15] proposed the following equations:

d.

a =1l - u1+b1y —ax), )
4 _

dt ~ ng(l a2+b2y Czy)

where r; represents the growth rate, and ¢; = % (K; is the carrying capacity). r;, a;, b;, and
¢; are positive constants for i,j =1, 2.

For each predator, various species of prey coexist in nature, so the multiple species
predator-prey system simulates the actual situation better. However, this has been ne-
glected in many existing studies [2, 16]. In this paper, we investigate the following cooper-
ative predator-prey system of one predator feeding on two prey species with Beddington-
DeAngelis functional response:

nx
dx = x(ﬂl - blx - fﬁfgly 1+Dllcﬁljrﬂlz) dt
dy = y(az — byy - f2+g2x 1+a;;iﬁ21) dt, ¥

_ _ dix day
dz = Z(&lg ng . l+ayx+p12 + 1+a2y+ﬁzz) dt’

where the species x, y are the preys of z; x and y are cooperative species. a; stands for the
average growth rate, and b; is the density-dependence rate. All the parameters in system
(3) are positive constants.

In reality, a population system is inevitably affected by environmental perturbation. May
[15] have claimed that owing to the environmental perturbation, the birth rates in the sys-
tem should be stochastic. At the same time, the natural growth of many species vary with
t, e.g. owing to the seasonality. However, environmental fluctuations have been neglected
in many existing studies. References [1, 3, 17] consider the effect of environmental noise.
We introduce stochastic perturbation into the intrinsic growth rate. The intrinsic growth
rate can be written as an average growth rate with some small random perturbed terms. In
general, by the central limit theorem, the small terms follow some normal distributions,
thus we can approximate the error term by a white noise 0;B;(t), where o is the inten-
sity of the noise and B;(¢) is a standard white noise. B;(¢) is a Brownian motion defined
on a complete probability space (2, F, P). The growth rates a;, a5, and a3 are disturbed to
ar+o1B1(t), ay + 02Bo(8), as + o3Bs(2), respectively. Finally we obtain the following stochas-

tic system:
dx = x(a1 — bix — 5 — A di + o1xdB(2),
dy = y(ay — byy - 72 2E ) dt + oyy dBy(8), (4)

ftgax ~ Trazy+paz

_ dlx d2
dz = z(as — bsz + Taz 1+a2y+;32z) dt + 03zdBs(t),
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where b3z denotes the density dependence of the predator population. All the parameters
in system (4) are positive constants.

In this paper, we will study the stochastic predator-prey system of one predator feeding
on two prey species with Beddington-DeAngelis functional response. The rest of this pa-
per is organized as follows. Section 2, we show the existence of global positive solution.
Section 3, the stochastic boundedness of solution is studied. In Section 4, we prove that
the system is stochastically permanent. In Section 5, we investigated the global attractivity
of system (4). Finally, in Section 6, we present numerical simulation to verify our analytical
results.

2 Global positive solutions

In model (4), as x(t), y(¢), z(t) represent predator and prey densities, the solutions of model
(4) should be non-negative. In order for a stochastic differential equation to have a unique
global solution for any given initial value, the coefficients of the equation are generally re-
quired to satisfy the linear growth condition and the local Lipschitz condition (see [18]),
whereas the coefficients of (4) neither comply with the linear growth condition nor with
the local Lipschitz condition. In the following sections, we will construct Lyapunov func-

tions to demonstrate the existence and uniqueness of positive solutions.

Lemma 1 For any initial value xo > 0, yo > 0, zo > 0, system (4) has a unique positive local

solution (x(t), y(t), z(t)) for t € [0, t.) almost surely (a.s.), where 7, is the explosion time.

Proof Consider the following equations:

2
_ % hyet cre?
du = (a, — 72 — bie* T 71+ale”+ﬁle‘”)dt +01dB(¢t),
0. h Vv W
dv = (ay— 3 —bye’ - fzé;u ~ Taoaiger) At + 02 dBs (1), (5)

2
_ _ 93 _ W dyet dye’
dw = (a3 — 5 — bze" + Tameiiper 1+a26"+ﬁze‘”)dt + 03 dBs(t),

on ¢t > 0 with initial value u(0) = Inxg, v(0) = Inyy, w(0) = Inzy. The coefficients of (5)
satisfy the local Lipschitz condition, so there is a unique local solution (u(t), v(¢), z(t)) on
t € [0,7.). By Itd’s formula, we can see that x(t) = e“?, y(t) = '), z(¢) = e*? is the unique
positive local solution to (5) with initial value x¢ > 0, y9 > 0, zg > 0. O

Theorem 1 Consider system (4), for any given initial value (xo,%0,20) € R, there is a
unique solution (x(t),y(t),z(¢t)) for t > 0 and the solution will remain in R® with proba-
bility 1.

Proof Based on Lemma 1, we only need to show the 7, = co. Let m > 0 be sufficiently

large for x, yo0, zo lying within the interval [mio, my]. For each integer m > my, define the

stopping times

or max{x(t),y(t),z(t)} > m} 6)

3=

T = inf{t € [0, 7.] :min{x(t),y(t),z(t)} <

Clearly, 7, is increasing as m — 00. Set T, = lim,;,—, oo Ty, Whence 7o, < 7,,,. If we can prove

Too = 00, then t, = 0o and (x, yo,20) € Ri a.s. for all £ > 0. If this statement is false, there is
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a pair of constants 7' > 0 and € € (0,1) such that P{t,, < T} > €. So there exists an integer
my > myg such that

Plt,<T}>e¢, m>m. 7)

Define V(x,y,z) =(x—1-Inx) + (y—1-1Iny) + (z—=1-1Inz). Since # — 1 —Inu > O for all
u > 0, we see that V(x,y,z) is non-negative. Applying Ito’s formula, we have

hx az
fitgy l4+ox+ piz

o2
dV:(x—l)(al—blx— )dt+71dt

hoy oz o3
-1 —boy— - dt + —=dt
+0 )(az 2 St gox 1+0l2}’+l322) "
d d 2
+(z—1)<a3—b3z+ i + 2 dt+ 3 dt
l+ax+ Bz 1+agy+ Paz 2
+01(x —1)dBy(t) + 02(y — 1) dBy(t) + 03(z — 1) dBs(¢), (8)
then
h
LV = (x-1) (al —bix— L az )
fitgy l+ox+ fiz
hzy C2Z
-1 — by — _
+U )<a2 24 fo+gox 1+a2y+ﬁ2z>
d d 2 2 2
+(z-1)( a3 — b3z + L 2 P W
l+ax+ Biz 1+azy+ Boz 2

dlx d2_)/ )

< -b -b -b
=l =bix) +ylar 2y)+z(ol3 3Z+1+a1x+ﬂlz+l+azy+,322

2, .2, 2
of +05 +0;
2

d d 2 2 2
< x(ay — bix) + y(az — byy) +z(a3 — b3z + ay —2> + %

o [¢5)
<K, )
where K is a positive number. Consequently,
dV < Kdt+ (x—1)o1 dB(t) + ()/ —1)09 dB5(t) + (z — 1)o3 dBs(¢). (10)

Integrating both sides of the inequality from 0 to 7,, A T and then taking the expectations,

we get
EV(%(tiu A T),y(tm A T),2(ts A T)) < V(%0,¥0,20) + KT. (11)

Set Q. = {t,y < T} for m > my, then we get P(Q2,,) > € by (7). For every w € Q,,, there is
at least one of x(7,,,, ), Y(tim, w), z(Tmm, ®), which equals either m or %, therefore V(x(t,, A
T),y(tw AT),z(t,, AT))isnolessthan m—1—-Inmor L —1-1In % Consequently, we have

m

V(x(fm AT),y(tu A T),z(T A T)) >(m—-1-Inm) A (% —1-1In %) (12)
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It follows from (11) that

V(x0,Y0,20) + KT > E[Igm V (%t A T),y(tm A T),2(Ti A T))]

1 1
ZG(m—l—lnm)/\<——1—ln—>, (13)
m m

where Ig,, is the indicator function of Q,,,. Letting m — 00, it results in the contradiction

that co > V/(x,y0,20) + KT = 00, thus we draw a conclusion that 7., = 00 a.s. O

Theorem 1 only tells us the solution of model (4) will remain in R? with probability 1.

Next, we will discuss how the solution varies in R? more detail.

3 Stochastic boundedness

Definition 1 (see [3] and references therein) The solution (x(¢), y(¢), z(t)) of system (4) is
said to be stochastically ultimately bounded, if for any € € (0, 1), there is a positive constant
8 = §(¢). Such that for any initial value (xo, yo, z0) € R?, the solution (x(2), y(£), z(¢)) of system
(4) has the property that

lim supP{ |x(t),y(t),z(t)‘ = /x2(t) +y2(t) + 22(¢) > 8} <e. (14)

t—>00

Assumption 1 For any initial value (xo, yo,20) € R2, there exists p > 1 such that

p-1_2
a) + =-0q
xXg < ——2—, (15)
b
p-l 2
a) + D oy 16
Yo < —————, (16)
by
4 dp  pl2
az+ ot oot 503
Zo < (17)

b3

Lemma 2 [f Assumption 1 holds, let (x(t), y(t), z(t)) be a solution to system (4) with initial
value (x0,y0,20) € R®. Then, for all p > 1,

E[#"(1)] < Ki(p), (18)
EyY 0] <K0), (19)
E[Z(1)] < Ks3(p), (20)
where
p-1 o
Ki(p) := (%)p, (21)
p-1_2
Ky(p) := (012:972202)!: (22)

d, da | p-

az+ b+ 2+ ZLo2\P
Ks(p) := < by ) . (23)
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Proof Define V; = &* for x € R, and p > 0. By Itd’s formula, we have

1
dVvi = pxPVdx + Ep(p — 1) 2(dx)*

hx az
fitgy l+ox+ fiz

= pxIH |:x (zzl —bix - ) dt + o1x dBl(t)]

1
+ Ep(p — ol dt

hx az
fitgy l+ox+ fiz

= px”{ [m —bix - + %(p - 1)01{| dt + o1 dBl(t)}. (24)

Integrating both sides of the equality from 0 to ¢ and then taking the expectations, we get

E[+ ()] - E[(0)]

t hx az 1
= Elax’ | a) — bix — - —(p-1)o2|}ds; 25
/Op { |:a1 1x Sitay 1+0l1x+,312+2(p )61“ ’ (29)

thus

dE[x*(t h 1
OV plwla —pp a9z —(p—l)af“
dt fitgqy l+ox+piz 2

i 1
< pE|a1x’ — by + E(p - l)afxp:|

_ p{ wr o 1)03}5[9&@)] _ blE[xp”(t)]}

- pE[» ()] {al v %(p 1o - hE[ (O] } (26)
Let X(¢) = E[x*(¢)], then
C-pxola s p-0-nxio) 27)

By Assumption 1, we know 0 < 5 X ’ (0) = b1x(0) < ay + ’%1012. Applying the standard com-

parison argument,

1oap+ 2ol
@] « 220 (28)
1
thus
a+ 5o \P
E[x¥ )] <Ki(p) = — ) (29)
1
Similarly, we can prove that
ay + 5o \?
Eyol=\—F—)" (30)
2
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as + % + Z—Z + 1%1032 p
E[0)] < ( Rz ) (31)
3

O

Theorem 2 Assume that Assumption 1 holds, the solutions of system (4) with initial value
(%0,50,20) € R® are stochastically ultimately bounded.

Proof 1f (x(¢),y(¢),2(t)) € R?, its norm here is denoted by

x(2), y(t), 2(t)| = V/22(O) + y2(2) + 22(2).

Then [x(6), y(t), 2(£)|” = 3% (|27(£)| + [5(£)| + |22(8)]). By Lemma 2, E[|x(2), y(t), 2(8) "] < L(p),
t> 0. L(p) is dependent on (o, yo,20) € R> and defined by L(p) = 3% (K1 (p) + Ky (p) + K3(p)].
By Chebyshev’s inequality, the above result is straightforward. O

4 Stochastic permanence

Definition 2 (see [3] and references therein) The solution (x(¢),y(z),z(¢)) of system (4) is
said to be stochastically permanent, if for any € € (0,1), there is a positive constant § = §(¢)
and x = x (&), such that for any initial value (xo,y0,20) € R3, system (4) has the properties

that
litrging{ |%(6),y(2),2(8)| = 8} =1 -, (32)
litrgioglfP{ ’x(t),y(t),z(t)| < X} >1-e¢. (33)

Assumption 2

1 . aq o
- max{af,af,o??} <min{ay, ds, a3 + — + — ;. (34)
2 o (%)

Theorem 3 If Assumption 2 holds, for any initial value (xo,y0,20) € R?, the solution

(x(2), y(t), z(t)) satisfies limsup,_, . E[
stant satisfying

m] < H, where 0 is an arbitrary positive con-

6+3 . a  C
max{alz,ozz,af} <minja, dg, a3 + — + — ¢, (35)
2 (¢35} (65}

where k is an arbitrary positive constant satisfying

60 +3) C2

. c
k+ ax{of,azz,ogz} < len{al,az,ag + 2y —} (36)

(05 %]

Proof Define U(x,y,z) = x + y + z. Applying Itd’s formula, we have

h
au(x,y,z) = x<a1 —bix — L az ) dt + o1xdB(t)
fitay l+ax+piz
hzy CZ
—byy— - dt dB,(t
+y<ag 24 fo+ox 1+a2y+,32z> +oaydBs (1)
d d
v2(as—byz+ LI U ) dt + 032dBs(t). (37)
l+oix+ Bz 1+agy+ faz
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Define V(x,7,2) = Toys - Using Ito’s formula, we obtain
av(x,y,z) = -Vv? |:x <a1 —bix— Imx - az )
fitgy l+ox+ piz
+y<“2 . )
f+gx l+ayy+ Pz

d d
+ z(ag — b3z + 1 + 2y >] dt

l+ax+ Bz 1+azy+ Baz

+ V3 (ola® + 05y* + 0327 dt

-V? (apc dBi(t) + o2y dBs(t) + 032 ng(t)), (38)
where
h
LV =-V*xla - bix- L az )
fitay l+ax+piz
b h2y CZ
+ 9| ay - - —
ARG fH+@ax l+oapy+ Pz

dlx dzy
+2z| as —bsz + +
l+ax+ Bz 1+axy+ Baz

+ V3 (ola® + 05y* + 032%). (39)

Under Assumption 2, choosing a positive constant 6 such that it satisfies (35), then by Ito’s

formula, we have
dl+V)? =00+ V) 1dv + %9(9 1)1+ V) 2(dv)?
{0(1 + V)LV + 0(9 1)1+ V)i~ 21/4(01 X+ oZy + 63222) } dt
—0V2(L+ V)" (012 dBi(t) + 02y dBy(t) + 032dBs(t)). (40)
Thus
LA+ V)Y =01+ V)P ILV + %9(9 —D)A+ V)2V (ola® + 05y* + 032%). (41)
Then choosing a positive constant k such that it satisfies (36). By Itd’s formula, we get

det(1+ V) =ed1+ V) + k1 + V)’ dt
=LA+ V) dt+ kA + V) dt
—e"0V*(1+ V) owxdBi(t) + 02y dBs(t) + 032dBs(t)],
L1+ V)’

1
=1+ V)Oz{k(l + V)2 4+ 56(«9 -1Vt (01 x* +olyt + 032z2)

+01+ V)V (07a? + 079" + 052%)
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hx az
-1+ V)V? —bix - -
1+V) [x(al ¥ fitgy 1+a1x+,312)
hyy 0z
— by — _
+y(a2 2y fotgomx 1+ay+ Bz

dlx dZy
+z|as — b3z + +
l+ox+ Bz 1+ayy+ Pz
1
<1+ V)e_z{k(l + V) + 59(9 + 1)V max{of, 03,03} (x* + * + 2%)
+0(1+ V)V max{ol, 07,05} (x* +y* +2%)
h
—9(1+V)V2|: ( b1x—ﬁ—%)

fi ox
h 6z
o= - )

1
<1+ V)”_Z{k(l + V) + 260 + DV max{or, 05,05} (+* + " + )
+0(1+ V)V max{ol, 05,05} (x* +5* + 2%)

-0(1L+ V)V? |:oz1x+ azy + |:a3 _a_ 0—2:|z
o 0

oo

1
<M1+ V)g'z{ 1+ V)2 + 9(9 +1)V*max{o?, 07,05} — %
+0(1+V)V3max{o 02,02 } 1 —0(1+ V)V?| mini a1, as,a _a_ae i
1;2;3V 1,042,043 a Ole
n h2
- bi+—,by+ —,b
ma"{ YRR S}VZ]}
h h
ekt(1+V)6_2{|:k+9max{b1+—1,b2+—2,b3”
h S
2 2 G G
+[2k+9max{01,02,03} Qmm{al,az, 3————}
o1 [0%))
n hy }]
+0Omaxyb; + —, by + —,b 1%
{1 RTRTT
1 ) C1 Cy 2
k+ 9(9+3)max{ol,02,03} Ominya,dg, a3 — — — — ¢ |V, (42)
2 o
where
VH(olx® + 039* + 032°) < V> max{o{, 05,05}, (43)
1
ax + axy + <a3 _al C—z)zz min{al,@,ag _al C—z}—. (44)
(5 %) o ap |V

Hence, we get Le¥'(1 + V)? < K,e*. Then

de"(1+ V)’ <Ky dt - 0" V(1 + V)'orxdBi(t) + 02y dBs(t) + 032dBs(t)].  (45)
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Integrating both sides of the inequality from O to ¢ and then taking the expectations, we
can see that

K.
EM(1+ V) < (1+V(0) + = (1 V(0))’ + Kz, (46)

K.
where K5 = 3%, so

lim supE[V(t)]e <lim supE[l + V(t)]9 <Ks. (47)

—00 t—00

Since (x +y + z)? <3%(x? + y? +22)% = 3% +y+2” and V(x,y,2) = —L

x+y+z’
0 1 01,0
<3 =3V0(¢). (48)
| +y + 2| w+y+2)0
Clearly,
1
lim supE[ie] <3%limsup E[V?(2)] < 3'Ks = K, (49)
t—00 Ix +y+ Z| t—00
which is the desired assertion. O

Theorem 4 Under Assumption 2, system (4) is stochastically permanent.

1
Proof By Theorem 2, we know that limsup,_, . Elx +y + 2|’ < L(p). Let x = (LT@)?’ , for all
& > 0. By Chebyshev’s inequality, we can obtain the required assertion. O

5 Global asymptotic stability

Definition 3 (see [3] and references therein) Let (x;(£), y1(£),z1(¢)) be a positive solution of
system (4). If we say that (x1(¢),y1(2), z1(¢)) is globally asymptotically stable in expectation,
it means that any other solution (x3(£), ¥2(£), z2(¢)) of system (4) has ¢ > 0 and that we have
initial value (xo,y0,20) € R®. That is,

P{}i‘f,‘o E[](x1(0,31(8), 21(8)) = (%2(8),32(0), 22(8)) | ] = 0} =1. (50)

Lemma 3 [19] Suppose that an n-dimensional stochastic process X(t) on t > 0 satisfies the
condition

EIX(8) - X()|" <clt—s"F, 0<st<o0, (51)
for some positive constants o, B, and c. There exists a continuous modification X(t) of X(¢)

which has the property that for every ¥ € (0, g) there is a positive random variable h(w)
such that

(52)

X(t,0) - X(s, ) 2
Plw: sup S < — (= 1.
0<|t—s|<h(w),0<s,t<00 |t - S| 1-2

In other words, almost every sample path of’)V( (¢) is locally but uniformly Holder continuous
with exponent ¥
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Lemma 4 Let (x(t), y(t),z(t)) be a positive solution of system (4) on t > 0 with initial value
(%0,%0,20) € R3. Then almost every sample path of (x(t),y(t),z(¢)) is uniformly continuous
ont>0.

Proof The first equation of system (4) is equivalent to the following stochastic integral

equation:

¢ hix(s) ¢12(s)
x(t) = x(0) + /0 x(s) (al — bix(s) _f1 el ~1: ) ¢ ﬂlz(s)) ds

+ /Otolx(s) dB(s). (53)

We estimate

i €z i1
Elx| a1 — bix - -
( 1o fi+tay 1+a1x+51z>
1 1 h w
< —Elx|* + ZE|ay - bix - L az
2 2 fitgy l+ax+ piz
1 1 h »
< ZE|x|? + —E|ay + bix + hx + a
2 2 A B

1 32p-1 A\ 2p
< —Ex/®+—1{a¥+ (b + L) Ex+ a
2 2 fi B

1 321 ( n\% o\ ¥
—Ki(2 b+ =) K2 =
< 1K+ > {al +(1+ﬁ) “’“(m) }

In addition, applying the moment inequality for stochastic integrals [18], we have, for 0 <
L <tp<ooandp>2,

E[ / " 1) dBy(5) ,,} < (o?) [@] -0 / " B9 ds
< (o)’ [”T_”] (6 - K (). (55)
Lett, —t <1and }7 + %1 =1, we obtain
E|x(tz) - x(t)[”
~ 2 x(s) c12(s) 2 s
_E /q #(5) (m bt~ (s)) ds + /q o1x(s) By ()
1 £ h1x(s) a1z(s) P
<o f /t; x(s) <a1 — b1x(s) _fl e -1 w1xG) + ﬂlz(s)) ds
ty P
+ 2”‘1E|: / 01x(s) dBi (s) ]

p

p (B2
52P—1(t2_t1)§/ E

5]

x(s) <a1 — bix(s) — Ix(s) a1z(s) )

fi +g@y(s) 1+ a1x(s) + Biz(s)
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+207 (o) [’@] ’ (t - 1) 2K (p)

<277ty - 41)PKs(p) + 277 (8o - tl)g (012)1’ [@] ZKI )

=2t - 1)} { H [,,(pz_ D] 7 } max{Ks(p), (o2)"Ki(p)}
<2ty - 1y)% {1 + |:p(p2— 1)] ’ }1(6(19% (56)

where K¢ (p) = max{Ks(p), (02)? K1 (p)}. Then according to Lemma 3, we know that almost
every sample path of x(¢) is locally but uniformly Hélder continuous with exponent ¢ for
every ¥ € (0, ”2;;). Therefore almost every sample path of x(¢) is uniformly continuous on
t > 0. In the same way, we can demonstrate that almost every sample path of y(t), z(¢) is

uniformly continuous on ¢ > 0. O

Lemma 5 [1] Let f be a non-negative function defined on R, such that f is integrable on

R, and is uniformly continuous on t > 0. Then lim;_, » f(£) = 0.

Theorem 5 If

h p-1l 2
Azbl_hl_h_ll_m_zgll_mw,

A B bof?
szz_hz_h_z_w_de_M>o (57)

L B bif? ’
C=b3—261—2€2—ﬁ;—fl—%>0,

then system (4) is globally attractive.

Proof Define W(t) = |Inx;(£) — Inxy(2)] + | Inyi(£) — Inyy(2)| + |Inzy(2) — Inzy(2)]. We can
prove W(t) is continuous positive function on ¢ > 0. By a direct calculation of the right
differential d* W (¢) of W(t), and then applying It6’s formula, we get

dxi (dn) dx;  (dxy)?
X 247 X 24

d*W(t) = sgn(x —xz){ [

dyi  (dy)? dy,  (dy2)*]
+Sgn(yl_y2){[y_1 Co2y? }_ [y_z T3 ]
dz (dzl)2i| ~ [@ _ (dz)*]

+sgn(z -z -
en(z 2){[ z 277 Z 2z5 |

[

[ ——

h h
= Sgn(x1 —xz){—bl(xl — %) — </ 1 - 12 )
1t&1N fl t+ 412

C1Z21 C122 dt
1+ +fi;n 1+ a1xs + Pizo

+sgn(n —y2){—b10’1 —¥2) - (J hay haya )

H+ X fat+ X

( 27 [&¥%) ) } dt
1+aoy + Bazi 1+ oagys + Bozo
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(1~ 22)| b3 - ) i s

+sgn(z; — -b3(z1 —z5) + -

SEla — 22 T l+a1x + 1z 1+ a1xs + Pizo

+< dn )}m. (58)
1+ 0[2_)/1 + ,3221 1+ 062_)12 + ,6222

Integrating both sides of the equality from 0 to ¢ and then taking expectations

E[W(2) - W(0)]

= E{/(; [sgn(xl(s) - xg(s)) {—bl (xl(s) —xz(s)) B (/lhpq(s) s (s) )

+an(s)  fi+gyls)

~ < c1z1(s) B a1z2(s) ) }
1+ a1xi(s) + przi(s) 1+ apxa(s) + Prza(s)

h h
B

3 ( C221(S) _ CZZZ(S) ) }
L+ aoy(s) + Bazi(s) 1+ azya(s) + Pazals)
+sgn(zi1(s) — 22(s)) {—bs (z1(s) — 22(5))
( dix1(s) d1%(s) )

L+ (s) + frza(s) 1+ anxa(s) + frza(s)

dayi(s) B dyy>(s) ) } i| }
* (1 + agyl(s) + ,3221(5) 1+ azyz(s) + /32Z2(5) ds | (59)

So

dE[;\;/(t)] _ E[sgn(xl(t) —xz(t)){—b1 (1(8) = 2%2(2)) — (ﬁ

hix,(t) 3 hixo(t) )
+g@in(t)  fi+g1y(t)

B < clzl(t) _ CIZZ(t) )}
L+apx(£) + przat) 1+ apxa(t) + frza(t)

h h
+sen(n () —yz(t)){—bz (2(8) ~ 32(0)) - </2 fﬁi?(t) -2 j;zz)(t)>

~ ( crz1 () _ 225 (t) )}
1+aoyi(t) + Brzi(t) 1+ agys(t) + Barzal(t)
+sgn(z1(t) - z2(2)) {—b3 (21(2) - 22(1))

N ( dlxl(t) _ dle(t) )
1+ axi(f) + rzi(t) 1+ axa(t) + frza(t)

s ( doyi(t) ~ daya(2) )”
1+ ooy (t) + Boza(t) 1+ anya(t) + Baza(t)
hyx1(2) B Mo (2) ‘
fi g fi+gya(t)

azi(t) ~ €125(2)
1+ axi(f) + Brzi(t) 1+ axa(t) + fiza(2)
hoy(t) : hoyo(t)
o+ @xi(t)  fo+ gxo(t)

< —b1E|x1(t) - xz(t)| +E

— byE|y1(£) - y2(t)| - E
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crz1(t) B 225 (t)
1+ ayi(t) + ozi(t) 1+ aays(t) + Barzal(t)
dix,(t) d1x, ()

- b3E|Zl(t) - Zz(t)| +E

L+ o () + frza(t)  1+axa(t) + fiza(d)

doyi (2) ~ doy(t)
1+ agyi(t) + fozi(t) 1+ apya(t) + Paza(t)

< b1E|x1(t) xg(t)|+h1<1+f>E|x1(t) ) t)|

hlgl

f —5-E|x1(2)|E|91(2) - 2(8)| + 2¢1E|z1(2) — 22(2) |
1
+ %Ekq(t X2 ‘ - b2E|yl yz(t)|

+ 2czE|zl(t) - Zg(t)’ + %qu(t) —yz(t)|

— b3E|z1(t) - ()| + 2, E|xa(8) - 22(0)|
Bad

d
P P Ela(t) - 220)] + 2E (0 20 + 20 - 200], (60)
dE[W h h
[dt(t” - —[bl - % ~2d - Ji2g2E|y1 |]E|x1(t) ~x(0)|
h Ing
- |:b2 - f—j - % - 2d, - T;Js|x1<t)|}fs|yl(t) - ()]
- |:b3 - 261 - 202 - ﬁl—dl - ﬁz—dZ]E|Zl(t) —Zz(t){. (61)
o [05))
By Lemma 2,
1 1 pl,2
Eln@)] =El<0| = {E£0]) < m+{941261 62)
1 1 r1,2
Ebn0] - ER0]* - 2DR]) < 202 (63)
1 L az+ By 12
Ela@)| =E|7 0] = {E[20])* = = P > (64)
Thus
dE[W h h rls2
[dt (®)] < —|:b1 —h - ]711 - % —2d; - zgz(ﬂzz‘;; : 0—2)]E’x1(t) —X2(t)|
hy o mgi(ay + Z-of)
- |:b2 —hy - ]722 - % —2d, - %}Eb’l t) - J’z(t)|
- |:b3—2C1 2 g—ﬁl—dl—ﬁz—dz]E}Zl(t)—Zz(t”
o Oy
< —AE|x1(£) — x(t)| - BE|y1(£) — 32(t)| - (65)
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where
h h + 212
Ambyoiy 1G9 g P&t 50 (66)
h B byf;
h h Elof
Bobyhy -2 0%, Ma@r 5on) (67)
) bifi
d d
C:b3—2C1—262—%—%. (68)
1 2

Integrating both sides, we get

E[W(t)] < E[W(0)]
- /0 [AE|x1(s) - xg(s)| + BE|y1(S) —y2(3)| + CE|zl(s) - 22(8)|] ds. (69)
Consequently,

W (t) +/ [AE|x1(s) —xz(s)| +BE|y1(s)—y2(s)| + CE|zl(s) —zz(s)|] ds < W(0) < c0. (70)
0

Recall that W(t) > 0and A >0, B> 0, C >0, yielding

|1 () —x2(6)| € L'0,+00),  |31(8) — 32(8)] € L'[0, +00), o
|21(2) — z2(2)| € L'[0, +00).
Then from Lemmas 4 and 5, we get the desired assertion. O

6 Numerical simulations
In this section, to substantiate the analytical results; the dynamics of system (4) with and
without environmental noises are illustrated by the Milstein method [20].

Consider the discrete equations:

hlxk C1Zf
Xiee1 = Xk + Xk | a1 — brxx — - At
fi+r g 1+oaxg + Przk

1
+ oxeE At + Eaka(“g‘,f -1)At,

thk C2Zk
_ — boye — _ At
Vi+1 =Yk + Yk (612 2Vk fé + @ 1+ oo Xk + ﬁsz

(72)
1
+ ooV At + Eozzyk(n,z( -1)At,

d d
1%k + 2Vk At
1+ + Prze 1+ aoxy + Bozk

Ziksl = 2k + 2k (dg — b3z +
1
+ o3z OV AL + 50322,{(;,(2 -1)At,
where &, nx, and ¢ are Gaussian random variables that follow N (0, 1).

In Figure 1, we choose the initial value (x9,¥0,20) = (0.5,0.5,0.5) and all the parameters
satisfying the conditions of Theorem 3, the system (4) is stochastically permanent.
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Figure 1 Solutions of system (4) for (xo, yo,20) = (0.5, 1.3
0.5,0.5), a1 =2,a,=1,a3=1.5,by =2, b, =2,b3=3, ‘*sqrt(x2+y2+22)‘
C1=0.2,C2=0.1,d1=1,d2=1,(¥1=1,ﬂ1=0.5, 12 ]
0 =0.6,$,=0.8,h;=0.5h,=0.8,f=1,f=0.3,
g1=0.5,g; =1, 51 = 0.05, 03 = 0.05, 73 = 0.05. 11 NMWMMMWW”WWM
1
0.9 :
0 100 200
t
0.8 ‘ ‘ ‘ 0.8
o7k 0.7 IM’W"W/NWWWM'WWWAMMWMWWWM
08} [ OBl tumsrobuspypAl
0.5 Population x|| 0_5‘;L Population x||
‘ - - Population y - - Population y
- - -Population z - - -Population z
0.4 ‘ : : 0.4 ‘ : :
0 50 100 150 200 0 50 100 150 200
t t
(a) (b)
Figure 2 Solutions of system (4) for (xo, yo,20) = (0.5,0.5,0.4), a1 =2,a,=2,a3=1,b1 =2.5,b, = 2.5,
b; =2.6,¢1 =0.1,¢c2 =0.15, d1 =0.8, dz =0.8,a1=1, ﬂ1 =0.8,a;=1, ﬂz =0.8, h1 =0.25, hz =0.3,
fi=1,f,=0.8,g1 =0.5,g, =0.6, 31 =0.05, 02 = 0.05, 0, = 0.05.

2 1 ‘
| Population x
D 0.8 i - Populat@on vl
1_5:’/ ] - - -Population z
,"\ 0.6
1 ‘}‘
oall
0.5 Population x || ‘b\
-~ Populationy|| 0-2f ki b
0 -~ -Population z %w’}‘@ W,
0 5 10 15 20 0 5 10 15 20
t t
(a) (b)
Figure 3 Solutions of system (4) for (xo, ¥0,20) =(1.5,1.2,1.0),a; =1.1,a2=1.1,a3 =1, b1 = 0.8,
b;=0.9,b3=1.1,¢1=0.02,¢;=0.01,dy =1.2,d>=1,1 =0.8, f; =0.5, 2 =0.7, 8, =0.5, h =0.5,
hz =0.3, f1 =1, fz =0.5, g1 =0.5, g2 =0.6, o1 = 1.8, 0o = 1.8, 02 =2.
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In Figure 2, we choose the initial value (xo, y0,20) = (0.5,0.5,0.5) and all the parameters

satisfying conditions of Theorem 5. Using Matlab, we see that, under a small perturbation,

the solution of system (4) is fluctuating in a small neighborhood, at this time, the stochastic

system is getting more similar to the deterministic.

In Figure 3, suffering sufficiently large white noise, system (4) gets extinct, while none

of the species in the deterministic system die out.

7 Conclusion

In this paper, we studied a stochastic cooperative predator-prey system with Beddington-

DeAngelis functional response. We first demonstrate the existence and uniqueness of

global positive solution. We then investigate that the solution is stochastically bounded

and permanent. Under some specific conditions, the solution of this stochastic system is

globally asymptotically stable, which is useful to estimate the risk of extinction of species

in the system. Some interesting topics deserve further study. For example, we can try to

study three or more trophic levels, which simulates the actual situation better. Moreover,

we can consider the extinction of system (4).
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