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Abstract
In this paper, we investigate the existence of solutions for a class of second-order
impulsive neutral functional differential inclusions in Banach spaces. Sufficient
conditions for the existence are derived with the help of the fixed point theorem for
multivalued maps due to Dhage.
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1 Introduction
In this paper, we shall study a class of initial value problems for second-order impulsive
neutral functional differential inclusions in Banach spaces described in the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d
dt [y′(t) – g(t, yt)] ∈ F(t, yt), a.e. t ∈ J = [, T], t �= tk , k = , . . . , tm,
�y|t=tk = Ik(y(t–

k )), k = , . . . , m,
�y′|t=tk = Ik(y(t–

k )), k = , . . . , m,
y(t) = φ(t), t ∈ [–r, ], y′() = η,

(.)

where F : J × D → P(E) is a multivalued map, g : J × D → E is a given function, D =
{ψ : [–r, ] → E | ψ is continuous everywhere except for a finite number of points s at
which ψ(s) and the right limit ψ(s+) exist and ψ(s–) = ψ(s)}, φ ∈ D ( < r < ∞), P(E) is
the family of all subsets of E,  = t < t < · · · < tm < tm+ = T , Ik : E → E (k = , , . . . , m),
Ik : E → E, and η ∈ E, �y|t=tk = y(t+

k ) – y(t–
k ); y(t–

k ) and y(t+
k ) represent the left and right

limits of y(t), t = tk , respectively, and E a real separable Banach space with norm ‖ · ‖.
For any continuous function y defined on [–r, T]\{t, t, . . . , tm} and t ∈ J , we denote by

yt the element of D defined by yt(θ ) = y(t + θ ), θ ∈ [–r, ]. Here yt(·) represents the history
of the state from time t – r, up to the present time t.

In recent years, the theory of impulsive differential equations or inclusions has become
an active area of investigation due to their applications in the fields of mechanics, elec-
trical engineering, medicine biology, ecology, and so on. It has attracted great interest of
researchers. For example, with the aid of Schaefer’s theorem, an existence result for first-
and second-order impulsive neutral functional differential equations in Banach spaces has
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been given by the authors in []. By means of a fixed point theorem for condensing mul-
tivalued map, solvability of impulsive neutral evolution differential inclusions with state-
dependent delay has been given by the authors in []. There are many other methods such
as in [, ] that have been for various initial and boundary value problems for impulsive dif-
ferential inclusions. However, recently much attention has been paid to using a fixed point
theorem for multivalued maps due to Dhage to solve the problem for impulsive differential
inclusions. One can refer to [, ] and the references therein. Motivated by the previous
mentioned paper, we will study the existence of solutions for a class of second-order im-
pulsive neutral functional differential inclusions in Banach spaces. Sufficient conditions
for the existence are given by means of the fixed point theorem for multivalued maps due
to Dhage []. For the IVP (.) we refer to [].

2 Preliminaries
In this section, we shall introduce some basic definitions and lemmas which are used
throughout this paper.

For ψ ∈D, the norm of ψ is defined by ‖ψ‖D = sup{‖ψ(θ )‖ : –r ≤ θ ≤ }.
ACi(J , E) is the space of i-times differentiable functions y : J → E, whose ith derivative,

yi, is absolutely continuous.
� := �([–r, T]) = {y : [–r, T] → E : yk ∈ C(Jk , E), k = , . . . , m and there exist y(t–

k ) and
y(t+

k ), k = , . . . , m, with y(t–
k ) = y(tk)}, which is a Banach space with the norm

‖y‖� = sup
{∥
∥yk(t)

∥
∥ : t ∈ [–r, T]

}
.

Let P(X) denote the class of all nonempty subsets of X. Let Pbd,cl(X), Pcp,cv(X), Pbd,cl,cv(X),
and Pcd(X) denote, respectively, the family of all nonempty bounded-closed, compact-
convex, bounded-closed-convex and compact-acyclic (see []) subset of X. For x ∈ X and
Y , Z ∈ Pbd,cl(X), we define D(x, Y ) = inf{‖x – y‖ : y ∈ Y }, ρ(Y , Z) = supa∈Y D(a, Z), and the
Hausdorff metric H : Pbd,cl(X) × Pbd,cl(X) → R+ by H(A, B) = max{ρ(A, B),ρ(B, A)}.

F is called upper semicontinuous (for brevity: u.s.c.) on X, if for each x∗ ∈ X, the F(x∗)
is nonempty, closed subset of X, and if, for each open of V of X containing F(x∗), there
exists an open neighborhood N of x∗ such that F(N) ⊆ V . F is said to be complete if F(N)
is relatively compact, for every bounded subset V ⊆ X.

If the multivalued map F is completely continuous with nonempty compact values, then
F is u.s.c. if and only if F has a closed graph (i.e. xn → x∗, yn → y∗, yn ∈ F(xn) imply y∗ ∈
F(x∗).

A point x ∈ X is called a fixed point of the multivalued map G if x ∈ F(x). For more
details of the multivalued maps, see the books of Deimling [].

Definition . Let F : X → Pbd,cl(X) be a multivalued map. Then F is called a multivalued
contraction if there exists a constant k ∈ (, ) such that for each x, y ∈ X we have

H
(
F(x), F(y)

) ≤ k‖x – y‖.

The constant k is called a contraction constant of F .

Lemma . Let E be a Banach space. Let F : J × E → Pcp,cv(E) be an L-Carathéodory
multivalued map with SF ,y := {f ∈ L(J , E) : f (t) ∈ F(t, y(t)) for a.e. t ∈ J} �= ∅ and let � be
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a linear continuous mapping from L(J , E) to C(J , E), then the operator � ◦ SF : C(J , E) →
Pcp,cv(C(J , E)), y → (� ◦ SF )(y) := �(SF ,y) is a closed graph operator in C(J , E) × C(J , E).

Theorem . Let E be a Banach space, 	 : E → Pbd,cl,cv(E) and 	 : E → Pcp,cv(E) be two
multivalued maps satisfying:

(i) 	 is a contraction with a contraction constant k, and
(ii) 	 is completely continuous.
Then either
() the operator inclusion x ∈ 	x + 	x has a solution, or
() the set G = {x ∈ E : x ∈ λ	x + λ	x} is unbounded for λ ∈ (, ).

Definition . The multivalued map F : J × E → P(E) is said to be L-Carathéodory if
(i) t → F(t, u) is measurable for each u ∈ E;

(ii) u → F(t, u) is upper semicontinuous on E for all t ∈ J ;
(iii) for each ρ > , there exists ϕρ ∈ L(J , R+) such that

∥
∥F(t, u)

∥
∥

P(E) = sup
{|v| : v ∈ F(t, u)

} ≤ ϕρ(t), ∀‖u‖ ≤ ρ and for a.e. t ∈ J .

3 Main result
Definition . A function y ∈ � ∩ AC((tk , tk+), E), k = , . . . , m, is said to be a solution of
(.) if y satisfies the differential inclusion d

dt [y′(t)–g(t, yt)] ∈ F(t, yt) a.e. on J\{t, t, . . . , tm},
the conditions �y|t=tk = Ik(y(t–

k )), �y′|t=tk = Ik(y(t–
k )), k = , . . . , m, y(t) = φ(t), t ∈ [–r, ],

and y′() = η.

Theorem . Assume the following.

(H) ‖g(t, u) – g(t, u)‖ ≤ p‖u – u‖, for each u, u ∈D, where p is a nonnegative constant.
(H) ‖Ik(y) – Ik(y)‖ ≤ ck‖y – y‖, for each y, y ∈ E, k = , . . . , m, where ck are nonnegative

constants, and there exist constants c′
k such that |Ik(y)| ≤ c′

k , k = , . . . , m, for each y ∈ E.
(H) ‖Ik(y) – Ik(y)‖ ≤ dk‖y – y‖, for each y, y ∈ E, k = , . . . , m, where dk are nonnegative

constants, and there exist constants d′
k such that |Ik(y)| ≤ d′

k , k = , . . . , m, for each
y ∈ E.

(H) The function g is completely continuous and there exist constants  ≤ c∗
 ≤  and c∗

 ≥ 
such that |g(t, u)| ≤ c∗

‖u‖ + c∗
 , t ∈ J , u ∈D are satisfied.

(H) F : J ×D → Pb,cp,cv(E) is an L-Carathéodory function.
(H) ‖F(t, u)‖ ≤ p(t)ψ(‖u‖D) for almost all t ∈ J and all u ∈ D, where p ∈ L(J , R+) and

ψ : R+ → (,∞) is continuous and increasing with

∫ T


M(s) ds <

∫ ∞

c

ds
s + ψ(s)

,

where c = ‖φ‖D + [‖η‖ + c∗
‖φ‖D + c∗

]T +
∑m

k=[c′
k + (T – tk)d′

k] and M(t) =
max{c∗

 , p(t)}.

If

pT +
m∑

k=

(
ck + (T – tk)dk

)
< , (.)

then the IVP (.) has at least one solution on [–r, T].
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Proof Consider the operator N : � → P(�) defined by

N(y) =

⎧
⎪⎨

⎪⎩

φ(t), t ∈ [–r, ],
φ() + [η – g(,φ())]t +

∫ t
 g(s, ys)ds +

∫ t

∫ s

 v(u) du ds
+

∑
<tk <t[Ik(y(tk)) + (t – tk)Ik(y(tk))], t ∈ J ,

where v ∈ SF ,y = {y ∈ L(J , E) : v(t) ∈ F(t, yt) for a.e. t ∈ J}. It is clear that the fixed points of
N are solutions of problem (.).

Let

N(y) =
[
η – g

(
,φ()

)]
t +

∫ t


g(s, ys)ds

+
∑

<tk <t

[
Ik

(
y(tk)

)
+ (t – tk)Ik

(
y(tk)

)]

and

N(y) = φ() +
∫ t



∫ s


v(u) du ds.

In the sequel, let Bq = {y ∈ � : ‖y‖ ≤ q}.
Step . N is a contraction.
Let y, y ∈ Bq. By the assumption, we have

∥
∥N(y) – N(y)

∥
∥ ≤

∫ t



∥
∥g(s, ys) – g(s, ys)

∥
∥ds +

∑

<tk <t

∥
∥Ik

(
y(tk)

)
– Ik

(
y(tk)

)∥
∥

+
∑

<tk <t

(T – tk)
∥
∥Ik

(
y(tk)

)
– Ik

(
y(tk)

)∥
∥

≤ p
∫ t


‖ys – ys‖ds +

m∑

k=

ck
∥
∥y(tk) – y(tk)

∥
∥

+
m∑

k=

(T – tk)dk
∥
∥y(tk) – y(tk)

∥
∥

≤
[

pT +
m∑

k=

(
ck + (T – tk)dk

)
]

‖y – y‖�.

Then

∥
∥N(y) – N(y)

∥
∥

�
≤

[

pT +
m∑

k=

(
ck + (T – tk)dk

)
]

‖y – y‖�.

From (.), we see that N is a contraction.
Step . N(y) is convex for each y ∈ �.
Indeed, if h, h ∈ N(y), then there exist v, v ∈ SF ,y such that

hi(t) = φ() +
∫ t



∫ s


vi(u) du ds, i = , , t ∈ J .
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Let λ ∈ [, ]. Then, for each t ∈ J , we have

(
λh + ( – λ)h

)
(t) = φ() +

∫ t



∫ s



[
λv(u) + ( – λ)v(u)

]
du ds.

Since SF ,y is convex (because F has convex values), λh + ( – λ)h ∈ N(y).
Step . N maps bounded sets into bounded sets in �.
Indeed, it is enough to show that there exists a positive constant � such that for each

h ∈ N(y), y ∈ Bq = {y ∈ � : ‖y‖ ≤ q}, one has ‖h‖ ≤ �. If h ∈ N(y), then there exists
v ∈ SF ,y such that for each t ∈ J , we have

h(t) = φ() +
∫ t



∫ s


v(u) du ds. (.)

By the assumption, for each t ∈ J , we have ‖h(t)‖ ≤ ‖φ‖D +
∫ T


∫ s

 ϕq du ds := �. Then, for
each h ∈ N(y), we have ‖h(t)‖ ≤ �.

Step . N maps bounded sets into equicontinuous sets of �.
Let  < τ < τ ≤ T . Then we have, for each and y ∈ Bq and h ∈ N(y), the existence of

v ∈ SF ,y such that (.) hold. Therefore

∥
∥h(τ) – h(τ)

∥
∥ ≤

∫ τ

τ

∫ s


v(u) du ds.

The right-hand side of the above inequality tends to zero as τ → τ. Thus, the set {Ny :
y ∈ Bq} is equicontinuous.

Step . Ny is a compact multivalued map.
From the above claims, we see that NBq is a uniformly bounded and equicontinuous

collection. Therefore, it suffices to show by the Arzelá-Ascoli theorem that N maps Bq

into a precompact set into �. That is, for each fixed t ∈ J , the set V (t) = {h(t) : h ∈ Bq} is
precompact in E.

Obviously, V () = {N()}. Let t >  be fixed and for  < ε < t, define

hε(t) = φ() +
∫ t–ε



∫ s


v(u) du ds.

Since v ∈ SF ,y, the set Vε(t) = {hε(t) : h ∈ N(Bq)} is precompact in � for every ε,  < ε < t.
Moreover, for every h ∈ N(Bq),

∥
∥h(t) – hε(t)

∥
∥ ≤

∥
∥
∥
∥

∫ t

t–ε

∫ s


v(u) du ds

∥
∥
∥
∥ ≤ Tψ(q)

∫ t

t–ε

p(s) ds.

Therefore, ‖h(t) – hε(t)‖ → , as ε → +, and there are precompact sets arbitrary close to
the set {h(t) : y ∈ N(Bq)}. Hence, the Arzelá-Ascoli theorem shows that N is a compact
multivalued map.

Step . N has a closed graph.
Let yn → y∗, hn ∈ N(yn), and hn → h∗. We will prove that h∗ ∈ Ny∗. Indeed, hn ∈ N(yn)

means that there exists vn ∈ SF ,yn such that

hn(t) = φ() +
∫ t



∫ s


vn(u) du ds, t ∈ J .
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We must prove that there exists v∗ ∈ SF ,y∗ such that h∗(t) = φ() +
∫ t


∫ s

 v∗(u) du ds,
t ∈ J .

We have ‖[hn(t) – φ()] – [h∗(t) – φ()]‖� → , as n → ∞. Consider the linear con-
tinuous operator � : L(J , E) → C(J , E), v → �(v)(t) =

∫ t

∫ s

 v(u) du ds. From Lemma ., it
follows that � ◦ SF is a closed graph operator. Moreover, we have (hn(t) – φ()) ∈ �(SF ,yn ).

Since yn → y∗, it follows from Lemma . that (h∗(t)–φ()) ∈ �(SF ,y∗ ), that is, there must
exist a v∗ ∈ SF ,y∗ , such that

h∗(t) – φ() =
∫ t



∫ s


v∗(u) du ds.

Therefore, N is a completely continuous multivalued map, u.s.c. with convex closed, com-
pact values.

Step . A priori estimate.
Now it remains to show that the set G = {y ∈ � : y ∈ λNy + λNy for some  < λ < } is

bounded. Let y ∈ G, then there exists v ∈ SF ,y such that

y(t) = λφ() + λ
[
η – g

(
,φ()

)]
t + λ

∫ t


g(s, ys) ds + λ

∫ t



∫ s


v(u) du ds

+ λ
∑

<tk <t

[
Ik

(
y(tk)

)
+ (t – tk)Ik

(
y(tk)

)]

for some  < λ < . Then, by the assumptions, we have

∥
∥y(t)

∥
∥ ≤ ‖φ‖D + T

(|η| + c∗
‖φ‖D + c∗


)

+
∫ t


c∗

‖ys‖D ds

+
∫ t


p(s)

∫ s


ψ

(‖yu‖D
)

du ds +
m∑

k=

[
c′

k + (T – tk)d′
k
]
.

We consider the function μ defined by μ(t) := sup{|y(s)| : –r ≤ s ≤ t},  ≤ t ≤ T . Let
t∗ ∈ [–r, t] be such that μ(t) = |y(t∗)|.

If t∗ ∈ J , by the above inequality, we have, for t ∈ [, T],

μ(t) ≤ ‖φ‖D + T
(|η| + c∗

‖φ‖D + c∗

)

+
∫ t


M(s)μ(s) ds

+
∫ t


M(s)

∫ s


ψ

(
μ(u)

)
du ds +

m∑

k=

[
c′

k + (T – tk)d′
k
]
.

If t∗ ∈ [–r, ], then μ = ‖φ‖D and the above inequality holds.
Let us take the right-hand side of the above inequality as θ (t). Then we have

c = v() = ‖φ‖D + T
(|η| + c∗

‖φ‖D + c∗

)

+
m∑

k=

[
c′

k + (T – tk)d′
k
]
, μ(t) ≤ θ (t),

θ ′(t) = M(t)μ(t) + M(t)
∫ t


ψ

(
μ(s)

)
ds, t ∈ [, T].

Using the nondecreasing character of ψ , we get θ ′(t) ≤ M(t)[θ (t) +
∫ t

 ψ(θ (s)) ds]. Put
w(t) = θ (t) +

∫ t
 ψ(θ (s)) ds, t ∈ [, T]. Then w() = θ (), θ (t) ≤ w(t), t ∈ [, T], and w′(t) =
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θ ′(t)+ψ(θ (t)) ≤ M(t)[w(t)+ψ(w(t))], t ∈ [, T]. This inequality implies, for each t ∈ [, T],

∫ w(t)

w()

ds
s + ψ(s)

≤
∫ T


M(s) ds <

∫ ∞

c

ds
s + ψ(s)

.

This inequality implies that there exists a constant b such that w(t) ≤ b, t ∈ [, T],
and hence μ(t) ≤ b, t ∈ [, T]. Since for every t ∈ [, T], ‖yt‖D ≤ μ(t), we have ‖y‖ ≤
max{‖φ‖D , b}. Here b depends only on T and on the function p and ψ . This indicates
that the set G is bounded.

As a consequence of Theorem ., we deduce that N + N has a fixed point which is the
mild solution of the problem (.). �

4 Example
As an application of Theorem ., we consider second-order impulsive neutral functional
differential inclusions of the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t v(t, x) ∈ ∂
∂t g(t, v(t – h), x) + [f(t, v(t – h), x), f(t, v(t – h), x)],

x ∈ [,π ], t ∈ J , t �= tk ,
v(t+

k , x) – v(t–
k , x) = Ik(v(t–

k , x)), k = , . . . , m,
v′(t+

k , x) – v′(t–
k , x) = Ik(v(t–

k , x)), k = , . . . , m,
v(t, ) = v(t,π ) = , t ∈ J ,
v(t, x) = φ(t, x), ∂

∂t v(, x) = η(x), t ∈ [–∞, ), x ∈ [,π ],

(.)

where J = [, T], k = , . . . , m, v(t+
k , x) = lims→+ v(tk + s, x), v(t–

k , x) = lims→– v(tk + s, x),
f, f : J × R → R are two given functions. We assume that Ik , Ik are all continuous; as-
sume that for each t ∈ J , f(t, ·) is lower semicontinuous and for each t ∈ J , f(t, ·) is super
semicontinuous. It is clear that F = [f, f] is compact and convex valued, and it is super
semicontinuous. Hence, let

φ(θ )(x) = φ(θ , x), (θ , x) ∈ (–∞, ] × [,π ], v(t)(x) = v(t, x),

Ik
(
y
(
t–
k
))

(x) = Ik
(
v
(
t–
k , x

))
, Ik

(
y
(
t–
k
))

(x) = Ik
(
v
(
t–
k , x

))
, x ∈ [,π ], k = , . . . , m,

g(t,φ)(x) = g
(
t,φ(θ , x)

)

and

F(t,φ)(x) =
[
f
(
t,φ(θ , x)

)
, f

(
t,φ(θ , x)

)]
, –∞ < θ ≤ , x ∈ [,π ].

Hence, (.) can be rewritten as the abstract form as the system (.). We can define g , f,
f to satisfy the assumptions stated in Theorem .. We omit it here. Therefore, the system
(.) has at least one mild solution on J .
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