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Abstract

In this paper, we consider a single population system with impulsively unilateral
diffusion and impulsive input toxins in a polluted environment. All solutions of the
investigated system are proved to be uniformly bounded. By mathematical analysis
methods and the theory of impulsive differential equations, the condition of the glob-
ally asymptotically stable population-extinction solution of the investigated system is
obtained. The permanent condition of the investigated system is also obtained. Finally,
numerical analysis is carried out to illustrate our results. Our results provide a reliable
theory basis for exploring biological resource management in a polluted environment.

Keywords: population system; impulsively unilateral diffusion; polluted
environment; extinction; permanence

1 Introduction
Dispersal is a ubiquitous phenomenon in the natural world. It is important for us to under-
stand the ecological and evolutionary dynamics of populations mirrored by the large num-
ber of mathematical models devoting to it in the scientific literature [1-5]. In recent years,
the analysis of these models focus on the coexistence of population and local (or global)
stability of equilibria [6, 7]. Spatial factors play a fundamental role on the persistence and
stability of the population, and the complete results have not yet been obtained even in
the simplest one-species case. Most previous papers focused on the population dynamical
system modeled by the ordinary differential equations. But in practice, it is often the case
that diffusion occurs in regular pulses. For example, when winter comes, birds will migrate
between patches in search for a better environment, whereas they do not diffuse in other
seasons, and the excursion of foliage seeds to occur at fixed periods of time every year, thus
impulsive diffusion provides a more natural description. Jiao et al. [8] presented a delayed
predator-prey model with impulsive diffusion between two patches. They obtained the
permanent condition of the system by the theory of impulsive delay differential equation.
The most threatening problem to society is the change in both terrestrial and aquatic
environment caused by the different kinds of stresses (temperature, toxicants/pollutants,
etc.) affecting the long term survival of species, human life, and biodiversity of the habi-
© 2015 Cai et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-

vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.


http://dx.doi.org/10.1186/s13662-015-0600-x
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-015-0600-x&domain=pdf
mailto:jiaojianjun05@126.com

Cai et al. Advances in Difference Equations (2015) 2015:308 Page 2 of 15

tat [9-11]. The presence of a toxicant in the environments decreases the growth rate of
species and its carrying capacity. In recent years, some investigations have been carried out
to study the effect of toxicant on a single species population [12—15], and a lot of scholars
have adopted a mathematical modeling approach to study the influence of environmental
pollution on the surviving of a biological population [16, 17]. Most of the previous work
assumed that input of toxicant was continuous. The toxicants, however, are often emitted
to the environment with regular pulse [18]. A lot of data have indicated that the use of
agriculture chemicals may cause potential harm to the health of both human beings and
other living beings. If the spraying of agriculture chemicals can be regarded as time pulse
discharge, modeling by the continuous input of toxin can be regarded as obsolete and
should be replaced by impulsive perturbations. In this case, though the discharge of toxin
is transient, the influence of the toxin will last long. Therefore, it is very important how to
control the pulse input cycle of toxin to protect the population’s persistent existence.

Theories of impulsive differential equations have been introduced into population dy-
namics lately [19-24]. Impulsive equations are found in almost every domain of applied
science and have been studied in many investigations [19-33], they generally describe
phenomena which are subject to steep or instantaneous changes. Especially, Jiao et al.
[24] suggested releasing pesticides is combined with transmitting infective pests into an
SI model. This may be accomplished by avoiding periods when the infective pests would
be exposed or placing the pesticides in a location where the transmitting infective pests
would not contact it. So we address an impulsive differential equation modeling the pro-
cess of releasing infective pests and spraying pesticides at different fixed moments.

The organization of this paper is as follows. In the next section, we introduce the model
and background concepts. In Section 3, some important lemmas are presented. In Sec-
tion 4, we give the globally asymptotically stable condition of population-extinction solu-
tion of system (2.1) and the population permanent condition of system (2.1). In Section 5,

a numerical analysis and a brief discussion are given.

2 The model
In this work, we consider a single population system with impulsively unilateral diffusion
and impulsive input toxins in a polluted environment,

0~ x(t)(a — ba(t)) - Beo(Ox(2),

% = _dy(t)r

400 ~fo0) - g+ ),
d%r) = —he,(2),
Ax(t) =0,

Ly(t) =0,

Acy(t) =0, t=nt,n=12,..., 1)
Ace(t) = p,
Ax(t) = =Dx(t),
Ay(t) = Dx(¢),

t#nt,t#(n+1r,

t=(n+Dt,m=12,...,

Aco(t) = 0;
ACe(t) = 07
x(0%) >0, (0%) >0, ¢, (0%) >0, c.(0") >0,
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where we suppose that system (2.1) is composed of two patches connected by diffusion.
Patch 1 is occupied by population x(¢). Patch 2 is occupied by population y(¢). x(£) rep-
resents the density of the population at patch 1, and y(¢) represents the density of the
population at patch 2. Patch 1 is polluted periodically. There is no pollution in patch 2.
¢,(t) represents the concentration of toxicant in the organism of the population at time ¢
in patch 1. ¢.(¢) represents the concentration of the toxicant in the system environment of
patch 1. The intrinsic rate of natural increase and density dependence rate of the popula-
tion in the first habitat are denoted by 4, b, respectively. a/b denotes the carrying capacity
of population in the patch 1. d > 0 represents the death rate of the population in patch 2.
fee(t) is the organism’s net uptake of toxicant from the system environment at time £ in
patch 1. —gco(t) and —micy(t) represent the elimination and depuration rates of toxicant in
the organism at time ¢ in patch 1, respectively. —hc,(t) represents the totality of losses from
the system environment including processes such as biological transformation, chemical
hydrolysis, volatilization, microbial degradation, and photosynthetic degradation at time ¢
in patch1,and / > f is assumed in this paper. 8 > 0 represents the depletion rate coefficient
of the normal population during to the environment pollutant concentration of patch 1.
The impulsive inputting toxicant occurs every t period (7 is a positive constant)in patch 1.
Ace(t) = co(t*) — c.(t). 1 > 0 represents the amount of the pulse input of toxicant concen-
tration at t = (n + [)t, 0 </ <1, n € Z, in patch 1. D is the dispersal rate between the two
patches. It is assumed that the net exchange from patch 1 to patch 2 is proportional to the
pollution degree of patch 1. The pulse diffusion occurs every 7 period (7 is a positive con-
stant), the system evolves from its initial state without being further affected by diffusion
until the next pulse appears, where Ax(nt) = x(nt*) —x(nt). x(nt*) represents the density
of the population in patch 1 immediately after the nth diffusion pulse at time ¢ = nt, while
x(nt) represents the density of the population in patch 1 before the nth diffusion pulse at
timet=nt,n=0,1,2,....

In this paper, we always assume that

(Al) the population diffuses periodically from patch 1 to patch 2 for dodging polluted

environment in patch 1;
(A2) the toxicants are emitted to the environment with regular pulse in patch 1, and
patch 2 has no pollution.

3 Preliminary lemmas
Before discussing the main results, we will give some definitions, notations, and lemmas.
Denote by f = (f1,f2,f3,/f2) the map defined by the right hand of system (2.1). The solution
of system (2.1), denoted by z(t) = (x(£), ¥(£), ¢, (£), c.(t))7, is a piecewise continuous function
z: R, — R* where R, = [0,00), R? = {z € R* : z > 0}. z(¢) is continuous on (17, (1 +{)7] and
(n+D)r,(n+1)t] (n € Z,,0 <1 <1). According to [21], the global existence and uniqueness
of solutions of system (2.1) is guaranteed by the smoothness properties of f, which denotes
the mapping defined by the right-hand side of system (2.1).
Let V:R, x R* — R,, then V is said to belong to class Vj, if
(i) V is continuous in (nt,(n +)t] x R* and ((n + )7, (n +1)7] x R%, for each z € R,
n e Z, imy s (ueiyerz V(e u) = V(n+ )t*,2), and
limy ) ((n+1)et,2) V(& 1) = V((n + 1)T7, 2) exist;
(i) V islocally Lipschitzian in z.
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Definition 3.1 If V € V;, then for (¢,2) € (nt,(n + ))t] x R and ((n + I)7,(n + 1)7] x RY,
the upper right derivative of V/(¢,z) with respect to the impulsive differential system (2.1)
is defined as

D*V(t,z) = I}H)I(l) sup %[V(t +hz+hf(t,2)) - V(5,2)].

Now, we show that all solutions of system (2.1) are uniformly ultimately bounded.

Lemma 3.2 There exists a constant M > 0 such that x(t) < M, y(t) < M and c,(t) < M,
c(t) < M for each solution (x(t), y(t), c,(£), c.(£)) of system (2.1) with all t large enough.

Proof Define V/(£) = x(£) + y(t) + ¢, (t) + ce(£), and choose A = min{d, g+ m, h—f}, then t # nt,

we have

D'V() + AV (2)
<x(t)[(@+ 1) = bx(£)] - (d - M)y(t) = (g + m = M)co(t) — (h = f = A)ce(t)

a+ M\ (@+A)? (a+1)?
<=b| x(t) - + < .
( ® 2b ) 4b 4b
For convenience, we denote ¢ = %.

When ¢t = (n+ )7,
V((n+D)7*) = x((n+ D1) +y((n+ D7) + o (1 + D7) +ce((n+ D7) + 0 < V(12 + D7) + .
When £ = (n+1)7,
V(n+1)t*) =x((n+1)7) + y((n + D7) + o (1 + 1)7) + co((n + 1)7) — Dax(t) + Dx(2)
=V((n+1r).
From Lemma 2.2 [22], page 23, for ¢ € (n, (n + /)] and ((n + )7, (1 + 1), we have

; e—d(t—r) edr é— edr

_dt _dt
V() <V(0%)e +E(1—e )+M1_eid1 +$edf—1 R A v

, ast— oo.

So V/(¢) is uniformly ultimately bounded. Hence, by the definition of V (£), there exists a
constant M > 0 such that x(¢£) <M, y(t) < M, ¢,(t) < M, and c.(t) < M for ¢t large enough.
The proof is complete. d

The subsystem of (2.1) is

deoll) = e (£) — (g + m)co(t), Cmenez
deo(t) - —he (t) » +
dt © e\t h (3.1)
Ac,(t) =0,
t=nt,nez,.
ACe(t) =W

Then we give an important property of system (3.1) as follows.
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Lemma 3.3 [33] System (3.1) has a unique positive t-periodic solution (c;z;), CZZ)), which
is globally asymptotically stable, where

e~ (g+m)(t=n7) _o—h(t-n7))
(h—g—m)(1—el17) ’

C:E) = c;(\(/))g*(gw)(t—m) +

(t) Jt (t-nt)

ce(t) = H

¢, (0) = e ) (32)
’ —g m)(1-e~E@*+mT)(1—¢-hr)’
(0) = 1- e—hr

Remark 3.4 From Lemma 3.3, we can obtain m, — ¢ < ¢,(t) < M, + £ and m, —

uf (e @HmT_g=ht) i
(h—g—m)(e@+m)T _ 1)(1_6,;1,) >0, M, =

>0, me—"_eh >0 and M, = 45 > 0 for a suf-

& < c(t) < M, + ¢ for t large enough, where m, =
ple ety uf
(h-g—m)(1-e~@MT)(1—¢=h7) " |h—g—m|(1-e77)

ficiently small € > 0.

4 The dynamics

In this section, we firstly prove that system (2.1) is permanent. For system (2.1) obviously
exists a population-extinction boundary periodic solution (0, 0, CRZ) C:ZZ)) Then we prove
that the population-extinction boundary periodic solution (0, 0, co(t) ce( )) of system (2.1)
is globally asymptotically stable.

4.1 The permanence of (2.1)
The subsystem of system (2.1) is obtained as follows:

A~ x(t)(a - ba(t)) - Beo()x (),

dy( ) o), } t#(n+1)r,

dt ) (4.1)
()Z_Dx(t)’ t=(l’l+1)t;n=1’2""'
Ay(t) = Dx(t),
Considering the first equation of system (4.1) and Remark 3.4, we have
dx(t)
x(O)a-BM, + ) - ba(t)] < — < x(t)[a - B(m, — &) — bx(1)]. (4.2)
Then we can obtain two comparative systems, referring to system (4.1),
dx)(t) — MO -b )
d;f( =x1(0)[a - M, + &) — bx, (1)] } t#(m+1)r,
A0 gy (), (4.3)
Axl( ) _Dxl(t) t=(71+1)1’:”1=1’2""’
Ayl(t) ( )
and
dx;( ) = xy(8)[a — B(moy — €) — by (2)],
dw } t#n+1)r,

sz(t) = —sz(t);

t=(n+1)t,n=12,....
Ayy(t) = Dxo (1), }

Page 5 of 15
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It is clear that

x1(2) < x(t) <o (),

(4.5)
91(8) = y(2) < y2(0).
We can easily obtain the analytic solution of system (4.3) between pulses, i.e.
_ aela—BMo+e))(t=(n+D)1) . (n+)t)
x(t) = (a-B(Mo+e))+blela-FMo+e)t (n1+l ) 1xy (n+D))’ (n+hr<t=@m+i+1)z, (4.6)
y1(t) = y1((m + D) T+)e e 0rdm), m+Dr<t<m+i+1r.

Considering the third and fourth equations of system (4.3), we have the stroboscopic
map of system (4.3),

a-PpMo+e))T . (n+D)T)
xl((n +1+ 1)1’*‘) = (1 D) Mg+£))+b[e“ B( Mgif))f Ny (n+D)T* ) (4 7)

ue(“ BMo+e)T . (n+l)t*) N
B se e P i ey € {01+ D).

y((m+l+1)t*)=D

The two fixed points of (4.7) are obtained as G1(0,0) and G, («},y;), where

(1-D)ae@PMo+e)T _[4_B(M,+¢)]

Xy = ble@PFOTo T 1) ’
(1 — D)ae@FMore)T 5 4 _ B(M, + €),
% _ De(a B(Mop+e)) *[(1-D)a e B(Mop+e))t —(a—B(My+e))] (48)
Y1 = T D)pe@ o o))t (gla Bl T _1)(1—e-d7)
(1 — D)ael@PMo+e))T 5 g _ B(M, + €).
Theorem 4.1
(i) If (1 - D)ae“PMoT < g — BM,, the fixed point G,(0,0) of (4.7) is globally
asymptotically stable.
(ii) If 1 — D)ael*PMo)® > q — BM,, the fixed point G, (x5, 97) of (4.7) is globally
asymptotically stable.

Proof For convenience, we denote (x*!,y7*!) = (x;(n+1)t*), y1((n + I)t*)). The linear form

of (4.7) can be written as

n+l+1 n+l
<;n+l+l> =M <;n+l) : (4-9)
Obviously, the near dynamics of G;(0,0) and G, (x7,y]) are determined by the linear sys-
tem (4.7). The stabilities of G;(0, 0) and G, (x}, y;) of (4.7) are determined by the eigenvalue

of M being less than 1. If M satisfies the Jury criteria [30], we can know the eigenvalue of
M less than 1, we have

1—trM +detM > 0. (4.10)

(i) If (1 — D)ae®#Mo)T < 4 — BM,, there must exist a sufficiently small & > 0 such that
(1-D)ael*PMo+elt « g B(M, +¢),and ¢ < % Then G;(0, 0) is the unique fixed point
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of system (4.7), we have
(1,D)ae(a—ﬁ(Mo+S))r 0
_ | aBOMere)
M = Daela-BMo+e))t i (4.11)
a—BMo+e) €
Then

1 — D)gela-BMore) 1 — D)gela-BMo+e)r
1-trM+detM=1- ( Jae re T4 ( Jae x e
61—,3(M0+8) a_,B(Mo+8)
1 — D)ela-BMo)e
_[ Q=D 1| x (e -1)
a— ﬁ(Mn + 8)

_ (a-BMo)Tt _ (, _
_ [u D)e (a=pWM, + 8”] X (% ~1) 0.
a-BM,+e¢)

From the Jury criteria, G;(0, 0) is locally stable, then it is globally asymptotically stable.
(ii) If (1 — D)ael*PMo)® 5 g — BM,, there must exist a sufficiently small & > 0 such that
(1 - D)ael@FMo+e))T 5 4 _ B(M, + ¢), Then G;(0, 0) is unstable. G (x}, y}) exists, and

(-D)AB
M= | B+Cx*)?
- (% E>’ (412)

(B+Cx*)2

where A = ge@FMo*e)T B =g _ B(M, +¢), C = b[e®PMore)T _1] E =9 and1<E<1.
Then

[ (1-D)AB :| (1-D)AB
1-trM+detM=1- +E X
(B + Cx*)? (B + Cx*)?
(1-D)AB
= [7@ TR 1:| x (E-1)

a-BM, +¢e) — (1 — D)ael@FMore)
(1 — D)aela-FMote))T x(E-1)>0

and from the Jury criteria, Gy (x],y7) is locally stable, and then it is globally asymptotically
stable. This completes the proof. 0

Similarly to the methods in [32], the following lemma can easily be proved.

Theorem 4.2
@ 1If

(1 - D)ael* M)t « 4 — BM,,

the triviality periodic solution (0,0) of system (4.3) is globally asymptotically stable.
(i) Zf

(1 - D)ael* M)t 5 4 — BM,,

Page 7 of 15
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the periodic solution (x?(?), yzz;)) of system (4.3) is globally asymptotically stable,

where
~ aela—BMo+e)(t=(n+))7) \x
x1(8) = (a_ﬁ(Mo+£))+b[e(a,ﬁ(MoH))(Hnﬂz)r)_Hxi‘, m+Dr<t<(m+I1+17, (413)
)/,l\(-t/) = yredt=01+Dr), m+Dr<t<m+l+1Dr1,

where X and yi are determined as in (4.8).
From Theorem 4.2, we can obtain the following.

Remark 4.3 If (1 — D)ael*#M)® 5 g — BM,, for any sufficiently small &; > 0, there exists a
T; such that x1(t) > x1(¢) — &1 and y1(t) > y1(t) — &1 for ¢t > T7.
We can also obtain the analytic solution of system (4.4) between pulses, i.e.

_ ael@=Plmo=e)(t=(n+1)7) ) (41)7+)
%2(0) = b P Gy DT <t el (4.14)

y2(8) = ya((n + D) T+)edlt=lmd)), m+Dr<t<m+I+1r.

Considering the third and fourth equations of system (4.3), we have the stroboscopic map

of system (4.3),
o a0V 3 (+1))
x((m+1+1)t*)=(1-D) (@B (mg—z))+be@ Flro -0t _1]xy (1)) %)’ (4.15)
+) _ ael@=P0mo—eNTy, (n+l)tt) —dt + .
P2+ L+ )77) = D S e o iy ey * € 201+ D7),

The two fixed points of (4.7) are obtained as G;(0,0) and G,(x},}), where

% _ (1=D)ae @ Pmo=oNT _[a—p(mo—e)]

27 b(ela—Blmo—e))T _1) ’
(1 — D)ae@Pmo=aDt 5 g B(m, —¢),

% _ Dela=Bmo=e)T[(1_D)gela=Bmo=)T _(4_B(my—e))]
Y2 = T (Dbl Flmo-eNt (gaBlmo eVt _1)(1—e-d7) ’

(1 — D)ae@Pmo=a7 5 g _ B(m, — ¢).

(4.16)

Similarly to system (4.3), we have some theorems as regards system (4.4).

Theorem 4.4
@ 1If

(1 - D)ae“ Pt 4 B(m, - &),

the fixed point G;(0,0) of (4.15) is globally asymptotically stable.
(ii) If

(1 - D)ael® Pt 5 4 _ B(m, - ¢),
the fixed point G5(x5,3) of (4.15) is globally asymptotically stable.

Theorem 4.5
(i) If (1 - D)ae @ Pimo=lt « g _ B(m, — &), the triviality periodic solution (0, 0) of system
(4.4) is globally asymptotically stable.
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(ii) If 1 — D)ae'*Ptmo=eDT 5 g4 _ B(m, — &) the periodic solution (x;(if),y;(:‘)) of system
(4.4) is globally asymptotically stable, where

—~ ﬂe(afﬁ(mafS))(tf(ml)r)xi I )
x2(8) = TS WA T e T e n+hr<t<(n+l+1r1, @17
ya(t) = yped-lmho), m+Dt<t<(m+1+1)r.

Here x5 and ys are determined as in (4.16).

Remark 4.6 If (1 — D)ae @ Pmo=2)t <« g — B(m, — ¢), for any sufficiently small &, > 0, there
exists a T, such that x,(t) < &; and y,(¢) < &, for £ > T.

From Theorem 4.2, Remark 4.3, Theorem 4.5, and Remark 4.6, we present an important
theorem in this paper.

Theorem 4.7
@ 1If

(1 - D)ael* P < 4 — Bm,

holds, the population of system (2.1) will go extinct.
(i) If

(1 - D)ael*PMo)® 5 4 BM,
holds, the population of system (2.1) is permanent.

Proof (i) According to the impulsive comparative theorem [18] and the condition (1 —
D)ael*Pm)t < g— Bm,, there exists a sufficiently small & > 0 such that (1—D)ae(@#(mo-)7 <
a— B(m, — ¢), and, from Remark 4.6, for any sufficiently small ¢; > 0, there existsa T, > 0
such that x(¢) < x,(¢) < &, and y(£) < y,(t) < &, for t > T,. That is to say, for any sufficiently
small g5 > 0, there exists a T, > 0 such that x(t) < &, and y(¢) < ¢, for t > T5. These show
that the population of system (2.1) will go extinct.

(ii) According to the impulsive comparative theorem [18] and the condition (1 —
D)ae@PMo)T 5 g BM,,, there exists a sufficiently small & > 0 such that (1—D)ae@#Mo+e)T
a— B(M, + ¢), and from Remark 4.3, for any sufficiently small &; > 0, there existsa 77 > 0
such that x(¢) > x1(£) > 1(2) — &1 > xje" @M _ g, 2y and y(t) > y1(8) = 3(0) — &1 >
yie Bt — g £ my for ¢ > Ty, where x and y} are determined as (4.8). From Lemma 3.2,
there exist M > 0 and T > 0 such that x(¢) < M and y(¢) < M for ¢t > T. From the above
discussion, we know m1; < x(t) < M and my < y(¢) < M for t > max{T, T1}. That is to say, the
population of system (2.1) is permanent. d

From Lemma 3.2, Remark 3.4, and Theorem 4.7, we have the following.

Theorem 4.8 If
(1 - D)ae" M 5 g — BM,,

system (2.1) is permanent.
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4.2 The globally asymptotical stability of population-extinction boundary
periodic solution of (2.1)
Theorem 4.9 If

1 - D)ae'* P < 4 — Bm,,

holds, the population-extinction boundary periodic solution (0,0, c,(t), c?(?)) of system (2.1)
is globally asymptotically stable, where m, is defined as Remark 3.4.

Proof Firstly, we prove the local stability. Define x(¢) = x(t), ¥(¢) = y(t), z1(£) = co(t) — c:ﬁ),

25(t) = c.(t) — c.(t), we have the following linearly similar system of system (2.1):

—_~

% a-Bc(t) O 0 0 x(t)
291 0 -d 0 ol
= 0 0 —@g+m f||a0
420 0 0 0 -h) \z()

It is easy to obtain the fundamental solution matrix

exp(fot(a — Bco(s)) ds) 0 0 0
o) = 0 exp[—dt] 0 0
0 0 exp[—(g + m)t] T

0 0 0 exp(—ht)

There is no need to calculate the exact form of 1 as it is not required in the analysis that
follows. The linearization of the 5th, 6th, 18th, and 9th equations of system (2.1) is

x(nt*) 1 0 0 O x(nt)
y(nt*) 01 0 O y(nt)
zi(nt*) o o 1 0 z1(nt)
z(ntt) 0 0 0 1 25(nt)

The linearization of the 9th, 10th, 11th, and 12th equations of system (2.1) is

x((n+0)t") 1-D 0 0 O x((n+1)7)
yn+Dr*) | | D 1 0 0 y((n+1)7)
a(+De) | | o 0o 1 of|alm+do)
zo((m+D)t*) 0 0 0 1 zo((n + 0)T)

~ o~

The stability of the population-extinction periodic solution (0, 0, ¢, (t), c.(¢)) is determined

by the eigenvalues of

1 0 0 O 1-D 0 0 O
01 0 O D 1 0 O
M= d(7),
0 0 1 O 0 0 1 0
0 0 0 1 0 0 0 1
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Figure 1 Globally asymptotically stable population-extinction periodic solution of system (2.1) with
x(0) =1, y(0)=0.5, ¢,(0) =0.5, c.(0)=0.5,a=0.4,b=1,d=0.1, =0.05, . =2,f=0.1,m=0.1,
g=0.1,/=0.25,D=0.1, T = 1. (a) Time-series of x(t); (b) time-series of y(t); (c) time-series of ¢,(t);
(d) time-series of c,(t).

which are

A=(1 —D)exp[/ot(a - ﬂcf\(g)) ds],

)\.2 = e‘dT <1,

A3 = exp[—(g + m)r] <1,
and
ra=e <1

According the condition, we easily find (1 — D)e“#")® < 1. Then, from Remark 3.4, we
have (1 — D) exp(for (a - ﬂcfo\(g))ds) < 1, then X; < 1. From the Floquet theory [18], the
population-extinction (0,0, c:(;), c:(E)) is locally stable.

The following task is to prove the global attraction. Then we have subsystem (3.1) of
system (2.1). From Lemma 3.3, we know that the 7 -periodic solution (C:(Z), c:(z)) of system
(2.1) has globally asymptotical stability, and

o) = c;(v?) —e=m, ¢, (4.18)
Ce(t) > co(t) — &,

Page 11 of 15
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Figure 2 The permanence of system (2.1) with x(0) = 1, y(0) = 0.5, ¢,(0) = 0.5, c.(0) =0.5,a=0.4,b=1,
d=0.1,8=0.05p¢=1,f=0.1,m=0.1,g=0.1,/=0.25,D=0.1, T = 1. (e) Time-series of x(1);
(f) time-series of y(1); (g) time-series of ¢, (t); (h) time-series of ce(t).

for all ¢ large enough. For convenience, we may assume (4.2) holds for all £ > 0. From (2.1)
and (4.2), we get

dZ(t) <x(t)[a ﬂ(ma—g)—bx(t)],} t#m+1)1

DO = —dy(),
Ax(t) = —Dx(t),
Ay(E) = Dx(2),

(4.19)
=(n+)Tt,n=12,...,

and its comparable equation is system (4.4). From Remark 4.6, for any sufficiently small
&y > 0, there exists a T, such that x(£) < x,(£) < &3 and y(£) < y,(t) < &, for t > T,. That s,

as t — 00, we have

x(t) — 0, (4.20)
y(¢£) — 0. .

This completes the proof. d

5 Discussion

In this work, we consider a single population system with impulsively unilateral diffusion
and impulsive input toxins in a polluted environment. We prove that all solutions of sys-
tem (2.1) are uniformly ultimately bounded. The condition of the globally asymptotically
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Figure 3 Globally asymptotically stable population-extinction periodic solution of system (2.1) with
x(0)=1,y(0)=0.5, c,(0) =0.5, c.(0)=0.5,a=0.4,b=1,d=0.1, =0.05, . =1,f=0.1,m=0.1,
g=0.1,1=0.25,D=0.95, T = 1. (a’) Time-series of x(t); (b") time-series of y(t); (') time-series of ¢, (t);

(d") time-series of ¢.(t).

stable population-extinction solution of system (2.1) is obtained, and the condition of the
population permanence of system (2.1) is also obtained.

5.1 The simulation of system (2.1) affected by parameter p

If it is assumed that x(0) = 1, y(0) = 0.5, ¢,(0) = 0.5, ¢,(0) =0.5,2=0.4,b=1,d =0.1, 8 =
0.05,4=2,f=0.1,m=0.1,g=0.1,/=0.25,D = 0.1, 7 = 1, then the population-extinction
periodic solution of system (2.1) is globally asymptotically stable (see Figure 1). If it is also
assumed that x(0) =1, y(0) = 0.5, ¢,(0) = 0.5, ¢.(0) =0.5,a=0.4,b=1,d =0.1, 8 = 0.05,
nw=1f=01,m=0.1,¢g=0.1,/=0.25D=0.1, t =1, then system (2.1) is permanent (see
Figure 2).

From the simulation experiments, the parameters p obviously affect the dynamical
behaviors of system (2.1). If all parameters of system (2.1) are fixed, when p = 2, the
population of system (2.1) will go extinct, when p = 1, system (2.1) is permanent. From
Theorem 4.7, we can easily deduce that there must exist a threshold p*. If u > u*, the
population-extinction periodic solution of system (2.1) is globally asymptotically stable. If
< p*, system (2.1) is permanent.

5.2 The simulation of system (2.1) affected by parameter D
If it is assumed that x(0) = 1, y(0) = 0.5, ¢,(0) = 0.5, ¢.(0) = 0.5, a=0.4,b=1,d = 0.1,
p=005pu=1f=01,m=01,¢=0117=0.25 D =0.95, t =1, then the population-
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Figure 4 The permanence of system (2.1) with x(0) = 1, y(0) = 0.5, ¢,(0) = 0.5, ¢.(0) =0.5,a=0.4,b =1,
d=0.1,8=0.05px=1,f=0.1,m=0.1,9g=0.1,/=0.25,D=0.1, T = 1. (/) Time-series of x(1);
(f') time-series of y(t); (g’) time-series of ¢,(t); (h’) time-series of c.(t).

extinction periodic solution of system (2.1) is globally asymptotically stable (see Figure 3).
If it is also assumed that x(0) = 1, y(0) = 0.5, ¢,(0) = 0.5, ¢.(0) =0.5,a=04,b=1,d =
01,8=005pu=1f=01m=0.1,g¢g=0.1,/=0.25 D =0.1, t =1, then system (2.1) is
permanent (see Figure 4).

From the simulation experiments, the parameters D obviously affect the dynamical be-
haviors of system (2.1). If all parameters of system (2.1) are fixed, when D = 0.95, the pop-
ulation of system (2.1) will go extinct, when D = 0.1, system (2.1) is permanent. From
Theorem 4.7, we can easily deduce that there must exist a threshold D*. If D > D*, the
population-extinction periodic solution of system (2.1) is globally asymptotically stable. If
D < D*, system (2.1) is permanent.

From the simulations of system (2.1), the diffusing parameter D of the population plays
an important role in system (2.1). The environmental pollution will also reduce the bi-
ological diversity of the nature world. Our results also provide a reliable tactic basis for

practical biological resource management.
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