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Abstract

In this paper, we apply asymptotic behavior on Mittag-Leffler functions E () and
Eq o (2) for z > 0 to discuss exp-type Ulam-Hyers stability of <D¥x(t) = Ax(t) + f(t, x(1))
for the case A > 0 on a finite time interval [0, 1] and an unbounded interval (1, 00).
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1 Introduction
Since SM Ulam raised the famous question on the stability of functional equations, more
and more researchers generalize, improve, and extend Ulam’s type stability problems of
differential equations. For more contributions on such area, one can refer to [1-6] and the
references therein.

Recently, the authors [7] discussed Ulam’s type stability of fractional differential equa-
tions

DY x(t) = ax(t) +f (6, %(8)), a€(0,1),t€],1<0, (1)

on finite time interval /, where °Df is the Caputo fractional derivative of order « €
(0,1) with the lower limit zero (see Definition 2.1). The main tools and techniques are

k
based on the estimation on Mittag-Leffler functions E,(z) := > 7, r(szu) and E, 4 (z) :=

Y o l'(ocszﬂx) for z < 0 (see Lemma 2 in [8]) and a singular Gronwall type integral inequal-
ity (see Theorem 1 in [9]).

The classical concept of Ulam-Hyers stability (see [10]) has applicable significance since
it means that if we are dealing with Ulam-Hyers stable system then one does not seek the
exact solution. All what is required is to find a function which satisfies a suitable approxi-
mation inequality. In other words, Ulam-Hyers stability can guarantee that there exists a
close exact solution. This approach is quite useful in many applications such as numerical
analysis and optimization, where seeking the exact solution is impossible.

In this paper, we are interested in discussing exp-type Ulam-Hyers stability (see Defi-
nition 1.1), a special Ulam-Hyers-Rassias stability, of equation (1) for the case » >0, on a
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finite time interval J = [0,1] and an unbounded interval J = (1, 00), i.e.,
Dfx(t) = ax(t) +f (6,%(t)), «€(0,1),6€],1>0. 2)

Lete >0,f:] x R — R be a continuous function. Consider equation (2) and the follow-

ing inequality:
|CD(tly(t)_)“y(t) _f(try(t))| <€ oe (0)1)!t€]y)\4>0« (3)

Definition 1.1 Let C(J,R) be the set of all continuous functions from J into R. Equation
(2) is exp-type Ulam-Hyers stable if there exists ¢ > 0 such that for each € > 0 and for each
solution y € C(J,R) of inequality (3) there exists a solution x € C(J, R) of equation (2) with

1
(&) —x(t)| < cee*™*, ae(0,1),t€],1>0.

Concerning the issues in [7], the authors widely use certain estimation: E,(z) < 1,
Eue(z) < ﬁ for z < 0, which are reported in [8]. However, concerning our current is-
sues, we need more explicit asymptotic behavior on Mittag-Leffler functions E,(z) and

Ey . (2) for z > 0. Following Theorem 2.3 in [11], for z > 0, E, 4 (z) can be formulated by

]Ea,a (Z) =

Q| M

1 o0
lao &
za &° +/ K, o (r,z)dr,
0

where

1 1o L rsin(m(l-a))
Kyo(r,z2) = —ra e’ .
wa(r2) To r2 = 2rzcos(mwa) + 22

It is remarkable that Cong et al. [12] apply the above formula to obtain explicit asymptotic
behavior on Mittag-Leffler functions E,(z) and E,4(z) for z > 0 (see Lemma 2.2). These
explicit asymptotic properties are helpful to solve our problems.

In Section 2, we introduce notations, definitions, and preliminary facts. In Section 3, we
mainly prove exp-type Ulam-Hyers stability results for equation (2) on a compact interval
[0,1]. In Section 4, we mainly prove exp-type Ulam-Hyers stability result for equation (2)
on an unbounded interval (1, 00). Finally, examples are given to illustrate our theoretical
results.

2 Preliminaries
Let C(J,R) be the Banach space of all continuous functions from J into R with the AE-

1
norm [|y||, 1 = sup,e; e™“Iy(0)].

Definition 2.1 (see [13]) The Caputo derivative of order y for a function f: [0,00) - R

can be written as

n-1

CD]t/f(t):LDf(f(t)—Z% (k)(0)>, t>0,n-1<y<n,



Gao et al. Advances in Difference Equations (2015) 2015:238 Page 3 of 10

where "D} f denotes the Riemann-Liouville derivative of order y with the lower limit zero

for a function f, which is given by

1 d [t fGs)
LpY tzi—/ —————ds, t>0,n-1 .
O = o i |, Gy s 1> 0m-ly<n

We need asymptotic behavior of Mittag-Leffler functions E, (z) and E, 4 (z) for z > 0.

Lemma 2.2 (see Lemma 3(i), (ii) and Lemma 5(ii); Lemma 6(ii) via their proofs in [12])
Let o« € (0,1) and 1 > 0 be arbitrary.

1
(i) Forallt>0, |Eq(rt?) - Le*!| < %, where

1 1
e g [ pae dr
fO fO } (4)

m(a, A) = max{ = ’
(@) {sm(na)rwtk sin(wo)mwoaA?

(ii) Forallt>0,

m(a, \)

-

1
o

Ae ¥ <

IS

t* " Eqo (M%) -

(iii) Forall t € [0,1],

Eao(d)  Ea(2)

t
/ (£ = 9 B (Mt = 9)7) = 1T Eq (M%) | ds <
0

A
(iv) Forallte (1,00),
¢ l1-o 1
/ |(t —5)" By (k(t - S)O‘) -1 E, ()»t“)e‘M s| ds
0

1 1 1 10,1 ,A

< m(a,k)(— + —) + By as1(A) + AT 4 mie, 1) = M(a, A).
o A o A

Remark 2.3 A function y € C(J,R) is a solution of inequality (3) if and only if there ex-
ists a function g € C(J,R) (which is not dependent on y) such that (i) |g(¢)| <€, t €],
(i) <D¢y(t) = Ay(t) +f(t,9(2) + g(t), t €.

Lemma 2.4 Let y € C([0,00),R) be a solution of inequality (3). Then y is a solution of the
following integral inequality:

’y(t) ~Eq (A7)y(0) - /0 (£ = 8)* " Equ (M- 9)*)f (5,5(5)) ds

1

t ’)\' Aot

5/ m(a )eds+e 6, t €[0,00).
0 (t—S)OH'l oA

Proof Indeed, by Remark 2.3, we have

DY y(t) = My(e) + £ (£,5(0)) +g(0),  t€[0,00).
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From pp.140-141, (3.1.32)-(3.1.34) in [13] we have
y(t) = E, (At”)y(O) + /(; (t—5)""Eyy (A(t - s)“)f(s,y(s)) ds
+ /t(t -5 Eye (A(t - s)")g(s) ds, tel0,00).
0

For t = 0, y(0) — E,(0)y(0) = 0 < €, where we use the fact E,(0) = 1.
For all oo > £ > 0, we have

’y(t) —E, (kt“)y(O) - fo (t—5)""Eqq (A(t - s)“)f(s,y(s)) ds

t
/ (t = 8)* " Eaqo (Mt —5))g(s) ds

0
t
<,
0
+/t 1,5 et

0|

t t
m(o, A 1l 1w ,2
56/ e, h) ds+ef AT g
o (t—s)**t 0 o

1
/t m(o, X)e e¥te €

lg(s)| ds

1 1,1
(t _ S)a_lEa,a ()»(t _ S)a) _ _AIT e)»" (t-s)
o

| g(s) | ds

ds + -—
o (t—s)x*l ar ar

" m(o, M)e et le
< ds + ,
o (t—s)xtl oA

where we use Lemma 2.2(ii). The decried result is obtained. O

Remark 2.5 Note that for some arbitrary fixed £, >0 and ¢y > § > 0,

to 1 to—o 1 1
/ —ds:lim/ ————ds=1lim — (87 - ;%) = o0.
o (to—s)* 5-0Jy  (to—s)** =00
So it is not possible to obtain some explicit estimation in this case.

Next, we divide our time interval [0, c0) into two subintervals [0,1] and (1, 00).

Remark 2.6 Let y € C([0,1],R) be a solution of inequality (3). Then y is a solution of the
following integral inequality:

|y(t) - E, (At"‘)y(O) - /0 (t—5)""Eqq ()»(t - s)"‘)f(s,y(s)) ds
< /t|(t—s)°‘_lEa,a()\(t—s)“) —A%Ea(kt"‘)e_’\%SHg(s)Ms
0
+/t‘)»lo;yEa(kt“)e_*éng(s)’ds
0
E

Eq o L 1
<—' @) >+e/ )LlTIEa(M“)e‘)‘”dS
0

o

.. o)

+
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B €<Ew<x> . Ea(w) TS P
o A A

< E<Ea,a(k) . ZEa()‘)), teo1], 5)
o A

where we use Remark 2.3, Lemma 2.2(iii) and the fact that |E, is an increasing function.

Remark 2.7 Lety € C((1,00),R) be a solution of inequality (3). Then ¥ is a solution of the
following integral inequality:

‘y(t) — Eq (A2%)y(0) - /0 (t = 8)* " Eaa (Mt —5)*)f (s, ¥(5)) ds
< [ B =) -3 5B, () )
0
t)"l?Ta]Ea A o —)\és d
+ [ R et

t o 1
<eM(a,A) + € / )\lTEa(At"‘)e’“Sds
0

1 .1 S A
<eM(a,A) + e(—e’\‘” + ma, )

- o ) t € (1,00), 6)

where we use Remark 2.3, Lemma 2.2(iv) and apply Lemma 2.2(i) to derive the following
fact:

t
/ A%Ea(kt"‘)e"\‘%sds = AT Eq (M%) (1 - e"’\‘%t)

0
1 1
< A—l(lexutJr m(“’)‘)>(1_e—xat)
o t*

1,4, ma,))

< ettt
ra ALY

3 Exp-type Ulam-Hyers stability results on J =[0, 1]
Next, we introduce the following assumptions:

(H1) f:J x R — Risjointly continuous.
(Hy) There exists L > 0 such that

[f(t,x) —f(t,y)| <Llx-y| foreachte]andallx,yeR.

(Hs) o :=1-1(Bee®) | BBy _ 75555, (1) > 0.

o

Theorem 3.1 Assume that (H;), (Hy), and (Hs) are satisfied. Then equation (2) is exp-type
Ulam-Hyers stable on ] = [0,1].

Proof Let y € C(J,R) be a solution of inequality (3). Denote by x the unique solution of
the Cauchy problem

Dx(t) = x(t) + f(t,x(2)), te],
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that is,
x(t) = Eo (1£%)y(0) + / (t = 8)* " Eau (Mt —5)*)f (s, %(5)) ds.
0
By using Lemma 2.2(iii) and (5), we have

|y(8) —x(t)|

< ‘y(t) —E, ()»t“)y(O) - /0 (t—5)""Eqpq (A(t - s)“)f(s,x(s)) ds

=

y(2) — Eq (At")y(O) - /0 (t—5)""Eqq (A(t - s)"‘)f(s,y(s)) ds

+

[ (€= (pe =) (500 s

- /t(t —5)" By ()L(t - s)"‘)f(s,x(s)) ds
0

e <1Ew (A) A ZEu(k))
o A

+L t (t—5)" By (At —5)* —)»ITTa]Ea At* e’“ls y(s) —x(s)| ds
[ (he=59%) =2 B (1) 569 - 209)|

t
+L/ |A%Ea(kt“)e_*és||y(s) —x(s)| ds
0

Eoo(A) 2E4( Eoo(A) Eu(r Pt
§6<A + A) +L(A + L)ek fla =yl 1
o A o A A

+LOE By (A7) e =y

1
o

Eoo(d) 2E.(A L (Eqa(d) Eqor
SE(A_FA) + Le f(ﬁ_k L)Hx—yll 1
o A o A ra

l-a
+ LT E -l

which yields that

Euuld)  2Eg()) o (Eaall)  Eot)
)+L(—+ )nx—ynxg_,

x— <e| —+—— E—
I ym_( - . - -

1-o
+ LA EL () -l

Thus,

+

, Eua(t) 2B (3)
lx-yll 56( .

o A
This yields that
Eyo(d) 2E,(x L
|J/(t)—x(t)|fi(¥+ ( )>eA totel.
o' o A

The proof is completed.

Page 6 of 10
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Remark 3.2 Under the assumptions of Theorem 3.1, consider

{ Dx(t) = Ax(t) + f(L,x(2)), tE€],A>0, &)

x(0) = xg.

Define P: C(J,R) — C(J,R) as follows:

t
(Px)(t) = E, (At")xo + / (t—5)""Eqq ()»(t - s)")f(s,x(s)) ds.
0
Then take ¢t € J and x,y € C(J,R), one can obtain

1Px =Pyl 1 < (1-0)le=yl 1 <le=yl 1.

1
o

In view of the contraction mapping principle, that P has a unique fixed point. Thus, prob-
lem (7) has a unique solution.

4 Exp-type Ulam-Hyers stability result on J = (1, 00)
Denote L'([0, 00), R*) by all integrable functions from [0, c0) into R*. Denote C*([0, c0),
R*) by all continuous functions from [0, o) into R* with [|y]lcc = Sup;c(g,00) 17(£)]-

Next, we introduce the following assumptions:

(H)) There exists L(-) € L}([0,00),R*) N C*([0, 00), R*) such that
[f(t,x) —f(t,y)| <L(t)lx—y| foreachteJandallx,yeR.

(H3) Set ||IL|loo = SUP,c[o,) IL(2)] and

t o]
ki = sup / L(s)ds:/ L(s)ds < 0o
)J0 0

te[0,00

1o
o

such that ” =1 — ||L||coM(a, 1) — kg1 é > 0.

Theorem 4.1 Assume that (H,), (H,), and (Hy) are satisfied. Then equation (2) is exp-type
Ulam-Hyers stable on ] = (1,00).

Proof To achieve our aim, we apply Lemma 2.2(i), (vi), and (6) to obtain

ly(®) - x(2)]

1 .1 S A
§eM(a,)\)+e<—e”‘+ G )>
Ao

ALY

+ ||L||OO/(; |(t . e (k(t —s)“) - A%Ea (M"‘)e‘k%ﬂ }y(s) —x(s)| ds

+ /tL(s)i)LlaaEa (At")e‘*éﬂ |¥(s) — x(s)| ds
0

m(c, \)
)

1 .1
< eM(a, ) + e(—e“” +
Aa
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& * o (1,4, ma, )
+ ”L”oce)\ tM(Ol,)»)Hx—yH)L% +/0\ L(S)ds)\. o <Ee)L t+t—a>”x_‘y”)hi

1 .1 S A
<eM(o,\) +e| —e**t + e, 2)
Aa ALY

1 1 (1,1, m(a, )
+ I Llloce™™ ‘Mo, Mllx =yl 1 +kid (—e* t+—>|lx—yll 1,
o o tot ra

which yields that

1 1o 1
le =yl 1 <e—+ | ILllcoM(ct, A) + kid @ — Jllx =yl 1.
A ra o Lo

o

This implies that

€

//
W ||xX— < .
=y, 3 < —

Finally,

1
e’ te].

O -20)] = —

Thus, the proof is finished. 0

Remark 4.2 Under the assumptions of Theorem 4.1, problem (7) also has a unique solu-
tion. The uniqueness result can be shown in a similar way as in Remark 3.2. So we omit
the details here.

5 Examples
Now we give some examples to illustrate our theoretical results.

Example 5.1 Let o = % and A = i. We consider the fractional order differential equation
1 1 1 .
D} x(t) = Ex(t) + 7 sinx(¢t), te][0,1],/>0, (8)
and the inequality
1 1 1 .
D/y(t) = 7y(0) = 7siny(®)| <€, t€[0.1]. )
Let y € C([0,1],R) be a solution of inequality (9). Then there exists a function g(¢) =
1
ee™t € C([0,1],R) such that |g(¢)| <€, t € [0,1], and D y(¢t) = iy(t) + % siny(¢) + g(¢), t €
[0,1].

Define f(¢,x(2)) =
we choose [ = 2[(2E

sinx(¢) for t € [0,1] and set L = % Then (H;) and (H,) hold. Moreover,
(1) +4E1 () + 1E; (§)], then

1
l
1
2

1
2

1 1 1 1 1 1
w=1- —[(2E1 1 (—) +4E1(—>> +-E1 <—)] ==>0,
l 22\ 4 2\ 4 4 2\4 2

which implies that (Hs) holds.
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By Theorem 3.1, we have

y(t) — ()] < 2<2]E%'% G) +8E, G))eefet, te[0,1].

Thus, equation (8) is exp-type Ulam-Hyers stable on [0, 1] with ¢ = 4(E

11
272

Example 5.2 Let o = 5, A = 1. We consider the fractional order differential equation

1
2
|x(®)|

1
CDf — _ ,
e x(E) = x(0) + let 1+ |x(t)]

te(l,00),l>0, (10)

and the inequality

1 @l <t

CD?y(t)—y(t)—k71+|y(t)| <ee', te(l,00). (11)

Let y be a solution of (11). Then there exists a function g(¢) = ee!~* € C((1, 00), R) such that
1

()] < €, ¢ €[0,1], and D () = y(¢) + 7 2y +8(), £ € (1,00).

Define f (¢, x(t)) = ;% {20 for ¢ € (1,00) and set L(¢) = ;%, ¢ € (1,00). Then (H;) and (Hj)

Tt 1+]x(2)]
hold. Moreover, |L|s = % and k; = fooo L(s)ds = % < 00. Now, choose [ = 2(M(%,1) +2),
1
where M(3,1) = < +E, 5 (1) + 2¢. Then " =1~ 22 - 2 = 1 which implies that (Hj)
holds.

By Theorem 4.1, we have

y(0) - x(2)| < dee’, e (1,00).

Thus, equation (10) is exp-type Ulam-Hyers stable on (1, oo) with ¢ = 4.
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