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Abstract

In this paper, the formula of general solution for nonlinear systems with
Caputo-Hadamard fractional derivatives and impulsive effect is found by analysis of
the limit case (as impulse tends to zero), and it shows that the deviation caused by
impulse for the fractional-order nonlinear systems is undetermined. Next, an example
is given to illustrate the result.
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1 Introduction
Fractional calculus was utilized as a powerful tool to reveal the hidden aspects of the dy-
namics of complex or hypercomplex systems [1-3]. And the subject of fractional differen-
tial equations is gaining much attention [4—11].

The Hadamard approach to fractional integral was based on the generalization of the
nth integral [12],

x4 st Sp—1 d Y 1 x q-1 d
N[0 [T - [(0F) 0

and the works in [13-15] were important to develop the fractional calculus within the
frame of the Hadamard fractional derivative. Recently, Klimek investigated existence and
uniqueness of the solution of sequential fractional differential equations with Hadamard
derivative by using the contraction principle in [16]. Ahmad and Ntouyas studied two-
dimensional fractional differential systems with Hadamard derivative in [17]. Thiramanus
et al. studied existence and uniqueness of solutions for a kind of Hadamard-type fractional
differential equations with nonlocal fractional integral boundary conditions in [18].
Next, Jarad et al. suggested a Caputo-type modification of the Hadamard fractional
derivative in [12] (by the Caputo-Hadamard fractional derivative, we refer to this mod-
ified fractional derivative) and presented the fundamental theorem of fractional calculus
in the Caputo-Hadamard setting in [12, 19].
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Furthermore, impulsive effects exist widely in many processes in which their states can
be described by impulsive differential equations. There have appeared a number of papers
to research the subject of impulsive differential equations with Caputo fractional deriva-
tive [20-25], and impulsive fractional partial differential equations were considered in
[26-31].

Recently, we found the formula of general solution for impulsive systems with Caputo
fractional derivatives of order g € (0,1) in [32]. Motivated by the above-mentioned works,
we will consider the following system with Caputo-Hadamard fractional derivative and
impulsive effect:

C_HDZ+ ult) =f(t,u(®), te(@Tlandt#t (k=1,2,...,m),
Aulpey = u(t]) —u(ty) = M(u(ty)) € C, k=1,2,...,m, (1.1)

ula) =u,, u,cC,

where g € C and 9i(g) € (0,1), c-uD?, denotes the left-sided Caputo-Hadamard fractional
derivative of order g with the low limita (>0),a=ty <ty < - <ty <ty =T, f:(a, T] x
C — C is an appropriate continuous function. Here u(t;) = lim,_, o+ u(t + ¢) and u(t;) =
lim,_, o- u(t + €) represent the right and left limits of u(t) at ¢ = #, respectively.

The rest of this paper is organized as follows. In Section 2, some preliminaries are pre-
sented. In Section 3, we give the formula of general solution for impulsive differential equa-
tions with Caputo-Hadamard fractional derivatives. In Section 4, an example is provided

to expound the main result in this paper.

2 Preliminaries
In this section, we shall introduce some basic definitions, notations and lemmas which are
used throughout this paper.

Definition 2.1 ([2], p.110) Let 0 < a < b < oo be finite or infinite interval of the half-
axis R*. The left-sided Hadamard fractional integral of order o € C of function ¢(x) is
defined by

1 *ox\* ds
ot =— In— — ,
(Hju go)(x) F(a)/u <HS> go(s)s (@a<x<b)
where I'(-) is the gamma function.

Definition 2.2 ([2], p.110) The left-sided Hadamard fractional derivative of order o € C
with R(a) > 0 on (4, b) is defined by

d n 1 x n-a-1 d
R N C =y A CH R

(a<x<b),
where 7 = [f(«)] + 1 and differential operator § = x%, 8%(x) = y(x).

Lemma 2.3 ([2], pp.114-116) Let o, B € C such that R(a) > R(B) >0. For 0 <a<b < oo, if
¢ e IP(a,b) (1 < p < o0), then Dy T% ¢ = u T 0 and n T u Tl 0 = n T .



Zhang Advances in Difference Equations (2015) 2015:215 Page 3 of 16

In [12], the left-sided Caputo-Hadamard fractional derivative is suggested and defined
by

n-1

8k ¢
c- D% p(x) = DS [m) -y ‘zf“) (1n 2) ](x),

k=0

here () > 0, n = [N(x)] +1, 0 < a < b < 0o, differential operator § = x%, 8%(x) = y(x) and
n (n-1) d
ox) € AC{[a,b] = ¢ :[a,b] > C:8 (p(x)eAC[a,b],ézxa .

For left-sided Caputo-Hadamard fractional derivatives, the following conclusions were
given in [12].

Theorem 2.4 ([12], p.4) Let N(a) > 0, n = [N(a)] + 1 and ¢ € AC{[a,b], 0 <a < b < oco.

Then c_n DS, ¢(x) exist everywhere on [a, b] and
(@) ifa ¢ N,

O 1 * x roect n ds n—o Qn
C—HDa+(P(x) = m/a <1n ;) ) QD(S)? :Hja+ 8"p(x),
(b) if e =ne Ny,
c-uDGp(x) = 8" p(x).

In particular, c_y D%, (%) = p(x).

Lemma 2.5 ([12], p.5) Let W(«) > 0, n = [N(a)] + 1 and ¢ € Cla,b]. If R(a) #0 or « € N,
then

c-uD% (T go)(x) = p(x).

Lemma 2.6 ([12], p.6) Let ¢ € AC§|a,b] or C{[a,b] and o € C, then

(. o o@ [ x\*
1T (c-uD% 0) () = @) = > <ln—> :

k=0

3 Main result

For system (1.1), we have

C—HDZ+ M(t) :f(tr M(t));
te(a,Tlandt ¥t (k=1,2,...,m),
AL )= 0 B Wt~ 0 | Att]yeg, = u(ty) —u(ty) = Ar(u(t)) €C, k=1,2,...,m,

ula*)y=u, u,eC

C—HDZ+ M(t) :f(t’ l/l(t)), le (61, T]’

(3.1)
ula*)=u, u,eC.
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That is,

lim {the solution of system (1.1)}
Al(u(tl’))—>0 ..... A (u(ty;))—0
= {the solution of system (3.1)}. (3.2)

Thus, the definition of solution for system (1.1) is provided.

Definition 3.1 A function z(¢) : [a, T] — Cis said to be a solution of the fractional Cauchy
problem (1.1) if z(a) = u,, the equation condition C_HDZ+z(t) = f(t,z(¢)) for each t € (a, T]
is verified, the impulsive conditions Az|;—y, = Ax(z(£;)) (here k =1,2,...,m) are satisfied,
the restriction of z(-) to the interval (¢, tx1] (here k = 0,1,2,...,m) is continuous, and
condition (3.2) holds.

A piecewise function is defined by

d.
) - / ( ) flsus)

for t € (g, txs1] (Where k=0,1,2,...,m).
By Theorem 2.4, we have

[c-uDg (®)] e e

[ [ (n8) " o (et

o (o) 2]
o [0 T2 o]
b [ 2 frommer) 2]
- m/Qt) 4 S

- (12) oy an]) < o

=f (&, u(®)) lre@otn)-

It shows that the piecewise function #(t) satisfies the condition of fractional derivative in
system (1.1). Thus, we assume that the piecewise function z(t) is an approximate solution
of (1.1).

Theorem 3.2 Let 0 < N(q) <1 and h be a constant. A function u(t) : [a, T] — C is a general
solution of system (1.1) if and only if u(t) satisfies the fraction integral equation
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Ug + #q)f;(ln )1 (s, u(s))”’s fort € (a,t1],
ta+ iy M) + iy [ 172G u(s) &
u(t) = Zl l{hA (ut ) [ftl( L q—lf (s, u(s ))ds (3.3)
+ [, in ) 1fs W) [ Y1115, u(5) 1)
fort € (b, tk], k=1,2,...,m,

provided that the integral in (3.3) exists.

Proof ‘Necessity, it will be verified that Eq. (3.3) satisfies the conditions of system (1.1).
Taking the Caputo-Hadamard fractional derivative to the both sides of Eq. (3.3), for
t € (a, t1], we have

DL u(t)|rean)

_—— (u ‘o t(ln E)qlf(s, u(s) é)

cat (g [ () )

: m/ () " Bg(f () ) J

“war | () g g rmema(n))]5

(v
—fas(ln %)qf’(n,u(n)) dn)]%

A CH I
[ (02) sty an) | =

_ m f t(ln£>l_q_l|: ln§>q_lf(a,u(a))

% <- (m 2)qf(a, u(a))

=f (& u(®)).

For t € (¢, tys1] (Where k =1,2,...,m), we get

S RAENT [ 8\ ds [t/ t\7" d
c-uD1, (Z( FZZ) |:/a <1n ;) f(s,u(s))?s+/ti <1n ;) f(s,u(s))?s

1

[ )

€(tpotis1]
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k

hA; (u(t )

2w

k

-2

> |
)

ST hAuE))

22

A RNCEIINC)
tro e\t g
—/; (11’1 ;) S£

(&) (f (&

u(t; ))
ra-¢qrig

g(
q-1

f(’l: u(n))

Thus,

c-HD u(t) ey te,)

k
= cuDl, {uu + Z Ai(u(t;
i=1
. i(m(u(t;))
'\ T

t t q—
+/t,» <ln;)
_ a (1 t( f)
{C‘”D“*<r<q)/a g

1

o[ (o) e o)
6 et
|

([
(L 03)

u(t))le=, —f(t» u(t))|tza)]|te(tk,tk+1] =0.

[ (1“
(s u(s))% _ / t(mé)

q-1

q-1 ds

fs u(s))— S

J.
A

te(tpotin]

q-1 d

n £l u) 2

)

D]

n te(trtisl

A N -1 d
D s (mr) s )T

q-1

S (n,u(n))

)

&bt ]

/( > s,u(s ds
g-1

f(s,

L

ds
) )5

ds
(s, u(s)) ?:D }
5]
te(trtysnl

q-1
f

te(toties]

f(s,u(s))

N

= {f(t’u(t))hz"}m(tk:fk 1] f(t u(t ))fE (trotres1]”

So, Eq. (3.3) satisfies the condition of fractional derivative in system (1.1).

Next, by (3.3), for each #; (here k =

u(t) -

u(t;) = lim 2(¢) — u(ty)

k

=u; + Z Ai(u(tl.’

i=1

7% t
+ / In=
t; N

I'(q)

)

RAu(5])

q-1

f

1,2,...,m), we have

tx -1 ds

“) ou)

S N

) + %q) /a § <ln
INCHRCCE
(> u(s))? - /atk (1“ ts_k> f(s u(S))?D
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k-1

tr q-1 d
—u, - Z Ai(u(t))) + Tq)/a <lnt;k> f(s u(s))?s

i=1

k-1 RAENT [\ s
_Z<WU (1“;) Slou9) -

AN d AN d
+ f (ln —k> f(s, u(s)) @ / (ln —k> f(s, u(s))—S:|>
4 s s p s s
= Ac(u(t)).
Therefore, Eq. (3.3) satisfies the impulsive condition of (1.1).
Finally, it can be easily verified that Eq. (3.3) satisfies condition (3.2).

‘Sufficiency, we will prove that the solutions of system (1.1) satisfy Eq. (3.3) by using the
inductive method. For ¢ € (a, t;], we obtain the following equation by Lemma 2.6:

t -1
u(t) = u, + %q) /a (ln é)q f(s,u(s))? fort e (a,t1). (3.4)
Using (3.4), we have
u(t) = u(ey) + Ar(u(t)))
q-1

1[4/ ¢ d
-+ () o | (m 5) )
Then the approximate solution is given by

t q-1
u(t) =u(tf) + %q)/t <ln E) f(s M(S))?

t q-1
:ua+A1(u(t1_))+ %q)[/ (ln %) f(s,u(s))%
t -1
+ /tl (ln E)q f(s, u(s)) %:| for t € (t1, 15 ]. (3.5)

Let e;(¢) = u(t) — u(t), for t € (£, £,]. Due to

1 tro\1 ds
li t) = —_— In - s —
Al(u(lt?})ﬁou( )= ta C'(g) /ﬂ (n s) f(s u(s)) s

for t € (f1, 1], we get

lim e(#)= lim u(t) — u(t)
A (u(t]))—0 Al(u(tl_))—>0{ }

il () i [ () i
() o]

Then we assume
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el(t):a(Al(u(tl_))) lim e (¢)

Aq(u(t))—0

AT [, £\ d b ot d
= %[/ﬂ (ln;) f(s, u(s))?s —/a <1n ?1) f(s,u(s))?s
t q-1 d
_ /tl <ln g) f(s, u(s)) ?Si|,
where the function o (-) is an undetermined function with ¢ (0) = 1. Therefore,
B B 1 [t/ e\ d
)= 0) + a(®) = g+ M (u(8)) + 5 / <ln ;> £(s u(s))f
1—o (M) [ [, 0\ d Lro\TT d
+ %q;{l[/a <ln f) f(s u(s));s +‘/ﬁ <ln;> f(s u(s))?s
t -1
_ / (m Z)q f(s,u(s))?] for ¢ € (t,15)]. (3.6)
By (3.6), we get
u(t3) = u(ty) + 2 (u(5))
1 (2 £\ d
=ua+ A (u(t))) + Ao (u(53)) + ﬂ/ (ln ;2) f(s u(s))?s
— 51 ty -1
D [ ()
2 15 ds
—/ﬂ (ln ;) f(s,u(s))?].
Therefore, the approximate solution is provided by
t2 +—/( ) su(s)is
ty q-1 ds

i+ A (u(E) + Ao (u(85)) + W)[ / <ln;) Flou)
t -1
+/ (ln£>q f(S’u(S))?}
— f -1 ty -1
+%1;7(t1)))|:/ <lni—1>q f(s,u(s))?+/t (ln%)q f(s,u(s))?
ty -1
_/ <lnt:2)q f(s,u(s))?} for t € (£, t3]. (3.7)

Let ex(2) = u(t) — u(t), for t € (t,, £3]. For the exact solution u(t) of system (1.1), we have

£\11

1 t ds
lim u(t) =u, + —— In - s,u(s))— fort e (ty, t3],
A (u(t]))—0,A2(u(t;))—>0 ( ) F(q) v/a < S) f< ( )) N ( > 3]

t q-1 d
lim  u(t) = u, + Ag(u(tz_)) + %61)/“ (ln g) f(s, u(s))?s

A (u(t]))—0
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- t B
L () e

I'(q)

+ /t:<ln§)q_lf(s,u(s))?— f t(ln;—:)q_lf(s,u(s))?}

fort e (tz tg]
Az(,}(ig})»ou(t) U, + A1 / ( > s, u(s) ais
q-1 d
[

+ /ﬁ t(ln£>q1f(s,u(s))%— / t(ln§>qlf(s,u(s))?:|

forte (tz, tg].

Thus,
lim e(t)= lim u(t) — u(t)
A1 (u(t]))—0, A1(u(t1_))—>0,{ }
Ao (ult))—0 Ao (ulty)—0

1 t £\ 91 d " el .
L), () e T [[(0F) s

t q-1 d
_ft2<ln§> / (S’”(S))?S}’ (3.8)

- t -1
lim  ey(f) = hn} {u(t) - ﬁ(t)} = wb;(tl))) [/ﬂ <ln g)q f(s,u(s))?

Ag(ulty )0 Ag(u(5))—0 I'(q)

(o) o) ]

B B p q-1 d
o) [(n3) reun

['(q)
gq-1

ty q-1 d t d
- /tl (ln i—2> f(s, u(s))?s - /tz (ln é) f(s, u(s)):s], (3.9)

lim e(t)= lim u(t) — u(t
A (u(t]))—0 2 Al(u(tl_))—>0{ ( ( )}

— t gq-1 d
S UL () seerd
ty -1 t -1
_/ <1n fs_2>q f(s,u(s))?—/ <1n§)‘7 f(s,u(s))?]. (3.10)
By (3.8)-(3.10), we obtain

— — t -1
ex(t) = P E)) ;2’5“”“””*[ [ (mé)q ok

L) ot (o) ]
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L-o (A [, £\ ds  (2( £\7! Js
+ T[/ﬁ (ln ;) f(S, M(S))? _A (111 ?> f(s, M(S))?

t -1
- / <1nf)q f(s,u(s))é]. (3.11)
Hn\ S s

Therefore,

u(t) = u(t) + ex(z)

gq-1

1 [ ¢ d
:%+A¢wq»+AAA6»+F@5aQnJ flou09)
— 51 -1 ¢ -
() o )
t q-1 d
_L<m9 f@mmf}
- ty -1 t B
[ () i o)

t -1
_/ (111;)‘? f(s, u(s))?] (3.12)

Letting £, — t;, we have

lim
th—1

Autlpey, = u(ty) —u(ty) = A(u(t;)) € C, k=1,2, (3.13)

c-uDLou(t) = f(t,u(t)), te(ats]and s+t and £+,
ula*)=u, wu,eC

Autlp=gy = u(ty) — u(ty) + u(ty) — u(ty) = A(u(Ey)) + Do (u(ty)), (3.14)

D u(t) =f(t,u(t)), te(atz)andt+#t,
—
ula*)=u, u,€C.

Using (3.6) and (3.12) to systems (3.14) and (3.13), respectively, we get

Lo (Au(u(f)) + A2 () = 1 =0 (A (u(tr))) + 1= 0 (A2 (u(t))).

VAL(u(t)), A2 (u(t;)) € C.

Letting p(z) =1 - 0(z) (Vz € C), we have p(z + w) = p(z) + p(w) (Vz,w € C). Therefore

p(z) = hz, where h is a constant. So, we obtain the following two equations:
1 [t/ e\ d
u(t) = uq + Ay (u(t))) + ) /; (ln ;) f(s,u(s))?s

AA () (2, 6\T! ds L/ p\1L s
’ I'(g) [_/ﬂ <ln;> f(S,u(s))? +/t1 (ln ;) f(s,u(s))?

t -1
_/ (ln§>q f(S: u(s))?] for t € (1, t5] (3.15)
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and

gq-1

1 [ ¢t d.
0=+ 8 (0(6) + Bau(er)) + . [ (m;) Ok
— t -1 t -1
hAi_f(qu(;l)) |:/ <lnts—l>q f(s, u(S))? +/; <1n§)q f(s,u(s))?
t q-1 d
_/a (lnS) f(s,u(s))?s]

N[ (2, 6\ ds [t £\ ds
+ Tq)[/a <ln :) f(s u(s))? + /t; <ln;> f(s u(s))?

t -1
_ / (m Z)q f(s,u(s))?] for t € (&, £3]. (3.16)

For t € (¢, t441], suppose

- £\ ds

u(t) =u, + ; Ai(u(t)) F(q) / ( s) S (s u(s)— ;
" (At t A\ 71 d t -1 d
+ Z( Alf:l;;’ ) |:/ (ln t;) f(s u(s))?s +l <ln §> f(s u(s)):s

i=1

t -1
_ / <ln z)q f(s,u(s))?iD for ¢ € (tyy by (3.17)

By (3.17), we have

”(t;arl) = ”(tn+1) + An+1( (tn+1))

il tn+l q-1 d
=ug+ Y Ai(u(f)) + FL) f (ln tn:) f(s u(s))?s
i=1 a

(a

D (RAENT [\ ds
+Z< r(@) [/ <1“?> Slou@)s

i=1

L+l - q-1 d tnsl ths g-1 d
+fti (lntsl> f(s,u(s))?s—fﬂz <ln ;) f(s,u(s))?s:|>.

So, the approximate solution is provided by

1! (. d
u(t) = ( n+1) + TQ)/; <ln§> f(s,u(s))f
n+l - d
B [ () e
b\ ult; )) ¢l d
IRCIREEHD G TR COREE
+ /tml (ln t";l) s, u(s) ftn+1( ml) s,u(s))?])

fort e (tn+1,tn+2]. (318)
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Let e,,1(¢) = u(t) — u(t), for t € (441, tus2]. For the exact solution u(t) of system (1.1), we
have

li ) ! ft In’ q_lf( ())ds for £ € (ty1, byes]
im ult) =u, + — n- s,u(s))— for , ,
AL = 0By (£, )0 ““Tg ). s s el P2

, . 1 [t/ e\ d
ol 0= Al g [ () sou) T

1<i<n+l q
and i#
hA(u(t))) ti t q-1 s
lfigznﬂ(Tq) |:/u (ln s f(su(s) "

and i7j
trop\4 ds t
+/ti (ln;) f(s,u(s))?—/a (

herel<j<mn+1.

In E)q_lf(s, u(s))%]),

lim €n+l (t)

= lim {u(e) - ()}

AU )= 0B ((E, 1)) —0

1 t £\ 91 d bl fhe g-1 d
) Tq)[/a (ln ;) f(s”"(s))?s —/u <ln sl) f(s u(s))?s
t -1
_/ <ln 2)” 16 u(S))?}, (3.19)

lim e, ()= lim u(t) — u(t
glmern(®) = lim | {ue) - 5(0)

1 h21<l<n+1 ( (t ))

_ and i# ¢ L a1 ds
- ) [ () s

tn+l - q-1 d £ -1 d
[ () ) [ () )]

RAENT (1, t\T ds
¥ (Y [/ (n5) o)

1<i<mn
and i7j
bl tus q-1 d. t t q-1 d
—/ <1n 1) f(s,u(s))—s —/ <ln —) f(s,u(s))—s]),
4 s s - s s
herel<j<mn+1. (3.20)

So, by (3.19) and (3.20), we obtain

en+1(t) F(q) f S, M(S)

) /ﬂtn+l <ln tn:)q 1 /tm <1n _> (S))%]

=D i Nil; ))[ < )"1
N




Zhang Advances in Difference Equations (2015) 2015:215 Page 13 of 16

A uENT (1, £\ ds
+Z( @) U (1“5) Sou)

1<i<n

tnsl - q-1 d t q-1 d
_/ti <]ntsl) f(s,u(s))?s—/M(lnf) f(s,u(s))?s]).

Thus,

u(t) = u(t) + e (£)

n+l

~ 1 trop\I! ds

=Uy; + ; Ai(lxl(ti )) + Wq)\/‘; <ln ;) f(S, M(S))?
A RA@EN (5, )\ ds [t £\ ds
+Z(7F(q) |:/; (ln;) f(s,u(s))?+£ <ln;> f(s,u(s))?

i=1
t -1
_ / <ln z)q f(s,u(s))?iD for ¢ € (tus1, tusa). (3.21)

So, the solution of system (1.1) satisfies Eq. (3.3).
By the proof of Sufficiency and Necessity, it is shown that system (1.1) is equivalent to
the integral equation (3.3). The proof is now completed. O

Remark 3.1 Due to uncertainty of the constant 7, the deviation caused by impulse for the

fractional order nonlinear systems is undetermined.

Next, we provide an analysis of the connection between impulsive Caputo-Hadamard
fractional differential equations and impulsive first-order differential equations. Letting

q — 1 for system (1.1), we have

c-nDu®) = f(6u(t), te(aTlandt b (k=1,2,...,m),
lim § Auley, = u(tl) —u(ty) = A(u(ty) € C, k=1,2,...,m,
q—1-
u(a) =u, u,eC
tS = f(La), te(@Tland et (k=12,...,m),
= 1 Autlpy = u(ty) —uty) = M(u(@t) €C, k=1,2,...,m, (3.22)
M(Il) =Ug, Ug € C.

On the other hand, by Theorem 3.2, the general solution of system (1.1) satisfies

limg - [u, + %q) f;(ln f)q‘lf(s, u(s))%] for t € (a,t1],
limg1-{iu + 3y M) + w15 fo (0 HT (s, u(s)) 2
)

+ U (g U n DT (s, () 2 + [ (In )57 (s, u(s) £
~ [{n YT (s, u(s)L1)} fort € (b il k=1,2,...,m

Uy + f;w ds forte(at],
=g+ Y0 Au(t) + [ L4 gs (3.23)
for t € (tx, tes1l, k=1,2,...,m.

lim u(f) =
g—1-
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Moreover, it is true that Eq. (3.23) is the solution of impulsive system (3.22) and indirectly
verifies the formula of general solution for nonlinear systems with Caputo-Hadamard frac-
tional derivatives and impulsive effect.

4 Example

In this section, an example is given to illustrate the usefulness of the result in this paper.

Example 1 Let us consider the general solution of the impulsive fractional system

1

c-uD{u(t) =Int, te(1,3]andt#2,

Au|=u2*)-u27) = A, (4.1)
u(l*) = uy.

By Theorem 3.2, after some elementary computation, the general solution is obtained

as follows:
1
U + #%) ff(lnﬁ)?’l lns% fort € (1,2],
- 1 [ftia ty3-11, od BA 7 (2(1h 2Y5-111 o @
u(t)=3u + A+ T%)lfl (In%)2"'ns< +1T%)[f1 (In2)27 ns% (4.2)
+ f;(ln )21 lns% - flt(ln £t lns%] for t € (2,3].
That is,
U + %#%)(lnt)% fort € (1,2],
3 3 3
ult)=du + A+ %F#%)(lnt)i le=1 + j(—g)[g(mz)f +($(nf)2 (4.2a)
+2(In %)% In2)|;s0 - %(lnt)% l;=1] forte(2,3].

Next, it is verified that Eq. (4.2a) satisfies the condition of system (4.1).
Taking the Caputo-Hadamard fractional derivative to the both sides of Eq. (4.2a), after

some elementary computation, we have
(i) for t € (1,2],

1 1 troN\l g 4 1 5ds
D (D) :{7/ (m-) (s—>|:u +——(lns)7:|—}
c-HD; te(1,2] F(l—%) 1 p 7 1 3F(%) .

1 ¢ t 1-3-1 1,ds
= - l - l —
{F(l—%)l"(%)[ (ns) [2(n9)] s }te(l,Z]

= Intle)s

(ii) for t € (2,3],

1
DL u(®)|re23)

1 tro\" g 4 1
ST ACH I CII TR T
hA [ 4 3 4 s : s :

+ —1|:—(1n2)2 + (—(ln —) +2(1n —) ln2)

rd)ls 3\ 2 2

jwe

t>1

4 3
— Z(Ins)?
3(HS)

t>2

ds
1] s

te(2,3]
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t 1-11 X o
At [ () ens? -2name
2 2

hA trop\ e s\ 2 s\72\ ds
+ﬁ/ <ln—> (2(111—) +ln2(ln—> )—}
r@-3r@) Jz s 2 2 $ Jie@a)
t
= {lnt|t21 —hAInt|1 + hA((ln 5) +1n2>

=1Intlie@a)-

=2 }te(2,3]

So, Eq. (4.2a) satisfies the Hadamard fractional derivative condition of system (4.1).
By Eq. (4.2a), we have

3

4 1 hAA [ 4 4 t\?2
u(2+) - u(Z’) = limqu; + A+ = (In t)% + —(lnz)% +{=(In-
t—2* 3T(3) =1 T(3)[3 3\ 2

£\? 41 .
+2({In=) In2 —u; — - —-(In2)2
2 21 3T()

=A.

4 3
— Z(np?
3(n)

t>2

That is, Eq. (4.2a) satisfies the impulsive condition in system (4.1).
Finally, it is obvious that Eq. (4.2a) satisfies the following limit case:

1
c-uD{u(t) =Int, te(1,3]andt+#2,
liino Autlper = u2Y) —u(27) = A €R,
ull)=u; eR

1
— C—HD12+u(t) =Int, te (1: 3],
u(l*) = eR.

(4.3)

So, Eq. (4.2a) is the general solution of system (4.1).

5 Conclusion

For the first-order impulsive differential equations, the solution is determined by initial
value. However, Caputo-Hadamard fractional differential equations with impulsive effect
have a general solution and need more conditions to decide the constant / than the first-
order impulsive ones. Moreover, due to the non-uniqueness of solution for the impulsive
fractional-order nonlinear system, it means that there appear new problems on impulsive
control of the fractional-order nonlinear systems.
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