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Abstract
This paper is concerned with a stage-structured predator-prey system with Holling-II
functional response and two delays. Choosing a possible combination of the two
delays as the bifurcation parameter, the existence of the Hopf bifurcation of the
system is discussed. Furthermore, the properties of the Hopf bifurcation such as the
direction and the stability are determined by using the normal form method and
center manifold theorem. Finally, some numerical simulations are presented to justify
the theoretical results.
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1 Introduction
It is well known that there are many species whose individual members have a life history
that takes them through an immature stage and a mature stage. Based on this fact, stage-
structured predator-prey systems have been investigated by many authors in recent years
[–]. In [], Xu considered the global stability and permanence of a predator-prey system
with a stage structure for the predator:

⎧
⎪⎨

⎪⎩

dx(t)
dt = rx(t) – ax(t) – ax(t)y(t)

+mx(t) ,
dy(t)

dt = ax(t–τ )y(t–τ )
+mx(t–τ ) – ry(t) – Dy(t),

dy(t)
dt = Dy(t) – ry(t),

()

where x(t) represents the density of the prey at time t. y(t) and y(t) represent the densities
of the immature predator and the mature predator at time t, respectively. In [], Li and Li
investigated the Hopf bifurcation problem of a predator-prey system with stage structure
for the prey:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dx(t)
dt = ax(t) – rx(t) – bx(t),

dx(t)
dt = bx(t) – rx(t) – bx

(t) – ax
(t)y(t)

+mx
(t) ,

dy(t)
dt = ax

(t–τ )y(t–τ )
+mx

(t–τ ) – ry(t),

()

where x(t) and x(t) represent the densities of the immature prey and the mature prey at
time t, respectively. y(t) represents the density of the predator at time t.
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Obviously, all the above researchers consider predator-prey systems with stage structure
only for the predator or the prey. Since both predator and prey have a life history that
takes them through an immature stage and a mature stage, it is reasonable to consider
the predator-prey system with a stage structure for both the predator and the prey. Based
on this consideration, Wang and Feng [] proposed a predator-prey system with a stage
structure for both the predator and the prey:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dx(t)
dt = rx(t) – rx(t) – dx(t),

dx(t)
dt = rx(t) – dx(t) – ax

(t) – ax(t)y(t)
+mx(t) ,

dy(t)
dt = ax(t)y(t)

+mx(t) – ry(t) – dy(t),
dy(t)

dt = ry(t) – dy(t),

()

where x(t) and x(t) represent the densities of the immature prey and the mature prey at
time t, respectively. y(t) and y(t) represent the densities of the immature predator and
the mature predator at time t, respectively. a is the intra-specific competition rate among
the mature prey; a is the predation rate of the mature predator; a is the conversion factor
from the mature prey to the immature predator; d, d, d, and d are the death rates of
the immature prey, mature prey, immature predator, and mature predator, respectively.
r (r) is the transformation rate from the immature prey (predator) to the mature prey
(predator). r is the birth rate of the immature prey and m is the half saturation rate of the
mature predator. Wang and Feng [] studied the local and global stability of system ().

As is well known, it is necessary to incorporate time delay into dynamical systems in
order to reflect the dynamics of the systems depending on the past history of the sys-
tems. Dynamical systems with time delay have been investigated by many authors [–
]. Ferrara et al. [] investigated the properties of the Hopf bifurcation of a delayed
continuous-time growth model with a special mound-shaped production function. Bianca
et al. [] studied the existence and properties of Hopf bifurcations in a delayed-energy-
based model of capital accumulation. There are also some dynamical systems with two
or multiple delays that have been studied by some scholars [–]. In [], Bianca et al.
studied the Hopf bifurcation of an economic growth model with two delays. In [], Cui
and Yan investigated a three-species Lotka-Volterra food chain system with two delays
by taking the sum of the two delays as the bifurcation parameter and showed the effects
of the two delays on the dynamical behaviors of the system. In [], Meng et al. consid-
ered a two-competitor, one-prey system with two feedback delays and they investigated
the Hopf bifurcation problem by choosing the possible combination of the two delays as
the bifurcation parameter. They also discussed the direction of the Hopf bifurcation and
stability of the bifurcating periodic solutions by using a center manifold theorem and the
normal form method. To the best of our knowledge, there are few papers on the effect of
time delays on system (). Based on this and motivated by the work above, in the present
paper, we incorporate the feedback delay of the mature prey and the time delay due to the
gestation of the mature predator into system () and investigate the Hopf bifurcation of
the following delayed system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dx(t)
dt = rx(t) – rx(t) – dx(t),

dx(t)
dt = rx(t) – dx(t) – ax(t)x(t – τ) – ax(t)y(t)

+mx(t) ,
dy(t)

dt = ax(t–τ)y(t–τ)
+mx(t–τ) – ry(t) – dy(t),

dy(t)
dt = ry(t) – dy(t),

()
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where τ is the feedback delay of the mature prey and τ is the time delay due to the ges-
tation of the mature predator.

This paper is organized as follows. In Section , we discuss the local stability of the
positive equilibrium and the existence of local Hopf bifurcation of system (). In Section ,
the properties of the Hopf bifurcation such as the direction and stability are determined by
using the normal form method and center manifold theorem. Some numerical simulations
are performed to illustrate the theoretical results in Section . In Section , we derive some
concluding remarks concerning the whole analysis.

2 Local stability of positive equilibrium and existence of Hopf bifurcation
It is easy to show that if ar > md(r + d) and rr

r+d
> d + ad(r+d)

ar–md(r+d) , then system ()
has a unique positive equilibrium E∗(x∗

 , x∗
, y∗

 , y∗
), where

x∗
 =

rx∗


r + d
, x∗

 =
d(r + d)

ar – md(r + d)
,

y∗
 =

dy∗


r
, y∗

 =
( + mx∗

)(rx∗
 – dx∗

 – a(x∗
))

ax∗


.

Let x̄(t) = x(t) – x∗
 , x̄(t) = x(t) – x∗

, ȳ(t) = y(t) – y∗
 , ȳ(t) = y(t) – y∗

. Dropping the
bars for convenience, system () gets the following form:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dx(t)
dt = ax(t) + ax(t),

dx(t)
dt = ax(t) + ax(t) + ay(t) + bx(t – τ) + f,

dy(t)
dt = ay(t) + cx(t – τ) + cy(t – τ) + f,

dy(t)
dt = ay(t) + ay(t),

()

where

a = –(d + r), a = r, a = r, a = –d – ax∗
 –

ay∗


( + mx∗
) ,

a = –
ax∗


 + mx∗


, a = –(d + r), a = r, a = –d,

b = –ax∗
, c =

ay∗


( + mx∗
) , c =

ax∗


 + mx∗


,

and

f = ax
(t) + ax(t)y(t) + ax(t)x(t – τ)

+ ax
(t)y(t) + ax

(t) + · · · ,

f = ax
(t – τ) + ax(t – τ)y(t – τ)

+ ax
(t – τ)y(t – τ) + ax

(t – τ) + · · · ,

with

a =
may∗


( + mx∗

) , a = –
a

( + mx∗
) , a = –a,
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a =
ma

( + mx∗
) , a = –

may∗


( + mx∗
) ,

a = –
may∗


( + mx∗

) , a =
a

( + mx∗
) ,

a = –
ma

( + mx∗
) , a =

may∗


( + mx∗
) .

The linearized system of () is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dx(t)
dt = ax(t) + ax(t),

dx(t)
dt = ax(t) + ax(t) + ay(t) + bx(t – τ),

dy(t)
dt = ay(t) + cx(t – τ) + cy(t – τ),

dy(t)
dt = ay(t) + ay(t).

()

The characteristic equation of system () at the positive equilibrium E∗ is of the form

λ + Aλ
 + Aλ

 + Aλ + A +
(
Bλ

 + Bλ
 + Bλ + B

)
e–λτ

+
(
Cλ

 + Cλ + C
)
e–λτ + (Dλ + D)e–λ(τ+τ) = , ()

where

A = (aa – aa)aa,

A = (aa – aa)(a + a) – aa(a + a),

A = aa + aa – aa + (a + a)(a + a),

A = –(a + a + a + a),

B = aaab, B = –(aa + aa + aa)b,

B = (a + a + a)b, B = –b,

C = (aa – aa)ac + aaac,

C = ac(a + a) – aac, C = –ac,

D = –aabc, D = abc.

Case . τ = τ = . Equation () becomes

λ + Aλ
 + Aλ

 + Aλ + A = , ()

where

A = A + B + C + D,

A = A + B + C + D,

A = A + B + C, A = A + B.
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Obviously, det = A = d + d + d + d + r + r + ax∗
 + ay∗


(+mx∗

) > . Thus, all roots of
() have negative real parts if the condition (H): () is satisfied. We have

det =

∣
∣
∣
∣
∣

A 
A A

∣
∣
∣
∣
∣

> , det =

∣
∣
∣
∣
∣
∣
∣

A  
A A A

 A A

∣
∣
∣
∣
∣
∣
∣

> ,

det =

∣
∣
∣
∣
∣
∣
∣
∣
∣

A   
A A A 
 A A A

   A

∣
∣
∣
∣
∣
∣
∣
∣
∣

> .

()

Thus, the positive equilibrium of system () without delay is locally asymptotically stable
under the condition (H): () holds.

Case . τ > , τ = .
When τ = , () becomes

λ + Aλ
 + Aλ

 + Aλ + A +
(
Bλ

 + Bλ
 + Bλ + B

)
e–λτ = , ()

where

A = A + C, A = A + C, A = A + C, A = A,

B = B, B = B, B = B + D, B = B + D.

Let λ = iω (ω > ) be a root of (). Then

{
(Bω – Bω


 ) sinωτ + (B – Bω


 ) cosωτ = Aω


 – ω

 – A,
(Bω – Bω


 ) cosωτ – (B – Bω


 ) sinωτ = Aω


 – Aω,

from which it follows that

ω
 + eω


 + eω


 + eω


 + e = , ()

where

e = A
 – B

, e = A
 – B

 – AA + BB,

e = A
 – B

 + A – AA + BB, e = A
 – B

 – A.

Let ω
 = v, then () becomes

v
 + ev

 + ev
 + ev + e = . ()

Discussion of the roots of () is similar to that in []. Denote

f(v) = v
 + ev

 + ev
 + ev + e. ()
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Clearly, if e < , then () has at least one positive root. From (), one can get

f ′
 (v) = v

 + ev
 + ev + e.

Set

v
 + ev

 + ev + e = . ()

Let y = v + e
 . Then () becomes

y
 + py + q = ,

where

p =
e


–




e
, q =

e



–

ee


+ e.

Define

α =
(

q



)

+
(

p



)

, β =
– +

√
i


,

y = 

√

–
q


+

√
α + 

√

–
q


–

√
α,

y = 

√

–
q


+

√
αβ + 

√

–
q


–

√
αβ


 ,

y = 

√

–
q


+

√
αβ


 + 

√

–
q


–

√
αβ,

vi = yi –
e


, i = , , .

Then we have the following results according to the Lemma . in [].

Lemma  For (),
(i) if e ≥  and α ≥ , then () has positive roots if and only if v >  and f(v) < ;

(ii) if e ≥  and α < , then () has positive roots if and only if there exists at least one
v∗ ∈ {v, v, v}, such that v∗ >  and f(v∗) ≤ .

In what follows, we assume that we have (H): the coefficients in f(v) satisfy one of
the following conditions in (α)-(γ ): (α) e < ; (β) e ≥ , α ≥ , v > , and f(v) < ;
(γ ) e ≥ , α < , and there exists at least one v∗ ∈ {v, v, v}, such that v∗ >  and
f(v∗) ≤ .

If the condition (H) holds, () has at least one positive root ω such that () has a
pair of purely imaginary roots ±iω and the corresponding critical value of the delay is

τk =


ω
arccos

{
(B – AB)ω

 + (AB + AB – AB – B)ω


(B – Bω

) + (Bω – Bω


)

+
(AB + AB – AB)ω

 – AB

(B – Bω

) + (Bω – Bω


)

}

+
kπ

ω
, k = , , , . . . .
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Differentiating the two sides of (), we can get

[
dλ

dτ

]–

= –
λ + Aλ

 + Aλ + A

λ(λ + Aλ + Aλ + Aλ + A)
+

Bλ
 + Bλ + B

λ(Bλ + Bλ + Bλ + B)
–

τ

λ
.

Thus,

Re

[
dλ

dτ

]–

τ=τ

=
f ′
 (v∗

 )
(B – Bω


) + (Bω – Bω


) ,

where v∗
 = ω

. Obviously, if the condition (H): f ′
 (v∗

 ) �=  holds, then Re[ dλ
dτ

]–
τ=τ �= .

In conclusion, we have the following results according to the Hopf bifurcation theorem in
[].

Theorem  Suppose that the conditions (H)-(H) hold. The positive equilibrium
E∗(x∗

 , x∗
, y∗

 , y∗
) of system () is asymptotically stable for τ ∈ [, τ) and system () un-

dergoes a Hopf bifurcation at E∗(x∗
 , x∗

, y∗
 , y∗

) when τ = τ.

Case . τ > , τ = .
Substitute τ =  into () and we have

λ + Aλ
 + Aλ

 + Aλ + A +
(
Bλ

 + Bλ + B
)
e–λτ = , ()

where

A = A + B, A = A + B, A = A + B,

A = A + B, B = C, B = C + D, B = C + D.

Let λ = iω (ω > ) be the root of (). Then

{
Bω sinωτ + (B – Bω


) cosωτ = Aω


 – ω

 – A,
Bω cosωτ – (B – Bω


) sinωτ = Aω


 – Aω,

from which it follows that

ω
 + eω


 + eω


 + eω + e = , ()

where

e = A
 – B

, e = A
 – B

 – AA + BB,

e = A
 – B

 + A – AA, e = A
 – A.

Let ω
 = v, then () becomes

v
 + ev

 + ev
 + ev + e = . ()
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Define

f(v) = v
 + ev

 + ev
 + ev + e.

Then

f ′
(v) = v

 + ev
 + ev + e.

Set

v
 + ev

 + ev + e = . ()

Let y = v + e
 . Then () becomes

y
 + py + q = ,

where

p =
e


–




e
, q =

e



–

ee


+ e.

Define

α =
(

q



)

+
(

p



)

, β =
– +

√
i


,

y = 

√

–
q


+

√
α + 

√

–
q


–

√
α,

y = 

√

–
q


+

√
αβ + 

√

–
q


–

√
αβ


 ,

y = 

√

–
q


+

√
αβ


 + 

√

–
q


–

√
αβ,

vi = yi –
e


, i = , , .

According to Lemma , we can conclude that if we may consider the condition (H):
the coefficients in f(v) satisfy one of the following conditions in (α′)-(γ ′): (α′) e < ;
(β ′) e ≥ , α ≥, v > , and f(v) < ; (γ ′) e ≥ , α < , and there exists at least one
v∗ ∈ {v, v, v}, such that v∗ >  and f(v∗) ≤ .

If the condition (H) holds, () has at least one positive root ω such that () has a
pair of purely imaginary roots ±iω and the corresponding critical value of the delay is

τk =


ω
arccos

{
Bω


 + (AB – AB – B)ω


B

ω

 + (B – Bω


)

+
(AB + AB – AB)ω

 – AB

B
ω


 + (B – Bω


)

}

+
kπ

ω
, k = , , , . . . .

Similar as in Case , if the condition (H): f ′
(v∗

) �=  holds, where v∗
 = ω

, then
Re[ dλ

dτ
]–
τ=τ �= . In conclusion, we have the following results according to the Hopf bifur-

cation theorem in [].
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Theorem  Suppose that the conditions (H)-(H) hold. The positive equilibrium
E∗(x∗

 , x∗
, y∗

 , y∗
) of system () is asymptotically stable for τ ∈ [, τ) and system () un-

dergoes a Hopf bifurcation at E∗E∗(x∗
 , x∗

, y∗
 , y∗

) when τ = τ.

Case . τ = τ = τ > .
Substitute τ = τ = τ into (); then () becomes

λ + Aλ
 + Aλ

 + Aλ + A +
(
Bλ

 + Bλ
 + Bλ + B

)
e–λτ

+ (Cλ + C)e–λτ = , ()

where

A = A, A = A, A = A, A = A,

B = B + C, B = B + C, B = B + C,

B = B, C = D, C = D.

Multiplying () by eλτ , then () becomes

Bλ
 + Bλ

 + Bλ + B +
(
λ + Aλ

 + Aλ
 + Aλ + A

)
eλτ

+ (Cλ + C)e–λτ = . ()

Let λ = iω (ω > ) be the root of (), then

{
(ω – Aω

 + A + C) cos τω + (Aω
 – Aω + Cω) sin τω = Bω

 – B,
(ω – Aω

 + A – C) sin τω – (Aω
 – Aω – Cω) cos τω = Bω

 – Bω,

from which it follows that

sin(τω) =
gω

 + gω
 + gω

 + gω

ω + hω + hω + hω + h
,

cos(τω) =
gω

 + gω
 + gω

 + g

ω + hω + hω + hω + h
,

where

g = (C – A)B, g = (A + C)B – (A + C),

g = AB + AB + BC – AB – BC,

g = AB + AB + BC – AB – AB – BC,

g = AB + AB – AB – BC – B,

g = AB – AB – B, g = B – AB, g = B,

h = A
 – C

, h = A
 – C

 – AA,

h = A
 + A – AA, h = A

 – A.
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Then we can obtain

ω + eω
 + eω

 + eω
 + eω

 + eω
 + eω

 + eω
 + e = , ()

where

e = h
 – g

, e = hh – gg – g
 ,

e = h
 – g

 + hh – gg – gg,

e = hh + hh – g
 – gg – gg – gg,

e = h
 + h + hh – g

 – gg – gg – gg,

e = h + hh – g
 – gg – gg,

e = h
 – g

 + h – gg, e = h – g
 .

Let ω = v, then () becomes

v + ev + ev + ev + ev + ev + ev + ev + e = . ()

If the coefficients of system () are given, the roots of () can be obtained by the Matlab
software package. Therefore, we make the following assumption in order to get the main
results in this paper.

Suppose that (H): () has at least one positive root.
If the condition (H) holds, without loss of generality, we assume that () has eight

positive roots which are denoted by v, v, . . . , v, respectively. Then () has eight positive
roots ωk = √vk , k = , , . . . , . For every ωk , the corresponding critical value of the time
delay is

τ
(j)
k =


ωk

arccos
gω


k + gω


k + gω


k + g

ω
k + hω


k + hω


k + hω


k + h

+
jπ
ωk

, k = , , , . . . , ; j = , , , . . . .

Let

τ = min
{
τ

()
k

}
, k = , , . . . , ,ω = ωk|τ=τ .

Thus, when τ = τ, () has a pair of purely imaginary roots ±iω.
Differentiating both sides of () with respect to τ , we get

[
dλ

dτ

]–

= –
(λ + Aλ

 + Aλ + A)eλτ + Ce–λτ + Bλ
 + Bλ + B

λ[(λ + Aλ + Aλ + Aλ + A)eλτ – (Cλ + C)e–λτ ]
–

τ

λ
.

Then we have

Re

[
dλ

dτ

]–

τ=τ

=
PQ + PQ

Q
 + Q


,

where

P =
(
A + C – Aω



)

cos τω –
(
Aω – ω


)

sin τω – Bω

 + B,



Liu Advances in Difference Equations  (2015) 2015:208 Page 11 of 26

P =
(
A – C – Aω



)

sin τω +
(
Aω – ω


)

cos τω + Bω,

Q =
(
Aω


 – Aω


 – Cω



)

cos τω –
(
ω

 – Aω

 + Aω + Cω

)
sin τω,

Q =
(
Aω


 – Aω


 + Cω



)

sin τω +
(
ω

 – Aω

 + Aω – Cω

)
cos τω.

Obviously, if the condition (H): PQ + PQ �=  holds, then Re[ dλ
dτ

]–
τ=τ �= . Thus,

according to the Hopf bifurcation theorem in [], we have the following results.

Theorem  Suppose that the conditions (H)-(H) hold. The positive equilibrium
E∗(x∗

 , x∗
, y∗

 , y∗
) of system () is asymptotically stable for τ ∈ [, τ) and system () un-

dergoes a Hopf bifurcation at E∗(x∗
 , x∗

, y∗
 , y∗

) when τ = τ.

Case . τ >  and τ ∈ (, τ). We consider () with τ in its stable interval and τ is
considered as a parameter.

Let λ = iω′
 (ω′

 > ) be the root of (). Then we get

{
	 sin τω

′
 + 	 cos τω

′
 = 	,

	 cos τω
′
 – 	 sin τω

′
 = 	,

where

	 = Cω
′
 – D sin τω

′
 + Dω

′
 cos τω

′
,

	 = C – C
(
ω′


) + D cos τω

′
 + Dω

′
 sin τω

′
,

	 =
(
B

(
ω′


) – B

)
cos τω

′
 +

((
ω′


) – Bω

′

)

sin τω
′
 –

(
ω′


) + A

(
ω′


) – A,

	 =
(
B – B

(
ω′


))

sin τω
′
 +

((
ω′


) – Bω

′

)

cos τω
′
 + A

(
ω′


) – Aω

′
.

It follows that

e
(
ω′


)

+ e
(
ω′


)

cos τω
′
 + e

(
ω′


)

sin τω
′
 = , ()

where

e
(
ω′


)

=
(
ω′


) +

(
A

 + B
 – A

)(
ω′


)

+
(
A

 + B
 – C

 + A – AA – BB
)(

ω′

)

+
(
A

 + B
 – C

 – D
 – AA – BB + CC

)(
ω′


)

+ A
 + B

 – C
 – D

,

e
(
ω′


)

= (AB – B)
(
ω′


) + (AB + B – AB – AB)

(
ω′


)

+ (AB – AB – AB – CD + CD)
(
ω′


) + (AB – CD),

e
(
ω′


)

= –B
(
ω′


) + (AB – AB + B)

(
ω′


)

+ (AB + AB – AB – AB + CD)
(
ω′


)

+ (AB – AB + CqD – CD)ω∗
.
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Suppose that we have (H): () has at least finite positive roots. We denote the positive
roots of () as ω′

,ω′
, . . . ,ω′

k . Then, for every fixed ω′
i (i = , , . . . , k), the corresponding

critical value of time delay is

τ
(j)′
i =


ω′

i
arccos

{
		 + 		

	
 + 	



∣
∣
∣
ω′

=ω′
i

}

+
jπ
ω′

i
,

with i = , , . . . , k; j = , , , . . . .
Let τ ∗

 = min{τ ()′
i |i = , , . . . , k}. When τ = τ ∗

, () has a pair of purely imaginary roots
±iω∗

 for τ ∈ (, τ). Differentiating () with respect to τ, one can obtain

[
dλ

dτ

]–

=
p(λ) + p(λ)e–λτ + p(λ)e–λτ + p(λ)e–λ(τ+τ)

q(λ)e–λτ + q(λ)e–(λ+λ) –
τ

λ
,

with

p(λ) = λ + Aλ
 + Aλ + A,

p(λ) = –τBλ
 + (B – τB)λ + (B – τB)λ + B – τB,

p(λ) = Cλ + C, p(λ) = D,

q(λ) = Cλ
 + Cλ

 + Cλ, q(λ) = Dλ
 + Dλ.

Hence,

Re

[
dλ

dτ

]–

τ=τ∗


= –
PQ – PQ

Q
 + Q


,

where

P =
(
Cω

∗
 – D sin τω

∗

)

sin τ ∗
ω

∗
 +

(
C + D cos τω

∗

)

cos τ ∗
ω

∗


+
(
τB

(
ω∗


) + (B – τB)ω∗


)

sin τω
∗


+
(
(τB – B)

(
ω∗


) + B – τB

)
cos τω

∗
 – A

(
ω∗


) + A,

P =
(
Cω

∗
 – D sin τω

∗

)

cos τ ∗
ω

∗
 –

(
C + D cos τω

∗

)

sin τ ∗
ω

∗


+
(
τB

(
ω∗


) + (B – τB)ω∗


)

cos τω
∗


–
(
(τB – B)

(
ω∗


) + B – τB

)
sin τω

∗
 – 

(
ω∗


) + Aω

∗
,

Q =
(
C

(
ω∗


) – Cω

∗
 – D

(
ω∗


)

sin τω
∗
 – Dω

∗
 cos τω

∗

)

sin τ ∗
ω

∗


+
(
C

(
ω∗


) + D

(
ω∗


)

cos τω
∗
 – Dω

∗
 sin τω

∗

)

cos τ ∗
ω

∗
,

Q =
(
C

(
ω∗


) – Cω

∗
 – D

(
ω∗


)

sin τω
∗
 – Dω

∗
 cos τω

∗

)

cos τ ∗
ω

∗


–
(
C

(
ω∗


) + D

(
ω∗


)

cos τω
∗
 – Dω

∗
 sin τω

∗

)

sin τ ∗
ω

∗
.

Obviously, if the condition (H): PQ �= PQ holds, then Re[ dλ
dτ

]–
τ=τ∗


�= . Namely,

if the condition (H) holds, the transversality condition is satisfied. Thus, according to
the Hopf bifurcation theorem in [], we have the following results.
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Theorem  If the conditions (H)-(H) hold and τ ∈ (, τ), then the positive equilib-
rium E∗(x∗

 , x∗
, y∗

 , y∗
) of system () is asymptotically stable for τ ∈ [, τ ∗

) and system ()
undergoes a Hopf bifurcation at E∗(x∗

 , x∗
, y∗

 , y∗
) when τ = τ ∗

.

3 Stability of bifurcating periodic solutions
In this section, we shall derive the explicit formulas determining the direction and stability
of the bifurcating periodic solutions with respect to τ for τ ∈ (, τ). Throughout this
section, we assume that τ∗ < τ ∗

 where τ∗ ∈ (, τ).
Let τ = μ + τ ∗

, u(t) = x(t) – x∗
 , u(t) = x(t) – x∗

, u(t) = y(t) – y∗
 , u(t) = y(t) – y∗

,
and rescale the time delay t → (t/τ), then system () can be rewritten as

u̇(t) = Lμut + F(μ, ut), ()

where

Lμφ =
(
τ ∗

 + μ
)
(

A′φ() + B′φ
(

–
τ∗
τ ∗



)

+ C′φ(–)
)

and

F(μ,φ) =
(
τ ∗

 + μ
)
(, F, F, )T ,

with

φ(θ ) =
(
φ(θ ),φ(θ ),φ(θ ),φ(θ )

)T ∈ C
(
[–, ], R),

A′ =

⎛

⎜
⎜
⎜
⎝

a a  
a a  a

  a 
  a a

⎞

⎟
⎟
⎟
⎠

, B′ =

⎛

⎜
⎜
⎜
⎝

   
 b  
   
   

⎞

⎟
⎟
⎟
⎠

,

C′ =

⎛

⎜
⎜
⎜
⎝

   
   
 c  c

   

⎞

⎟
⎟
⎟
⎠

,

F = aφ

 () + aφ()φ() + aφ()φ

(

–
τ∗
τ ∗



)

+ aφ

 ()φ() + aφ


 () + · · · ,

F = aφ

 (–) + aφ(–)φ(–) + aφ


 (–)φ(–) + aφ


(–) + · · · .

Therefore, according to the Riesz representation theorem, there exists a  ×  matrix
function η(θ ,μ) : [–, ] → R whose elements are of bounded variation such that

Lμφ =
∫ 

–
dη(θ ,μ)φ(θ ), φ ∈ C

(
[–, ], R).
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In fact, we choose

η(θ ,μ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(τ ∗
 + μ)(A′ + B′ + C′), θ = ,

(τ ∗
 + μ)(B′ + C′), θ ∈ [– τ∗

τ∗


, ),
(τ ∗

 + μ)C′, θ ∈ (–, – τ∗
τ∗


),

, θ = –.

For φ ∈ C([–, ], R), we define

A(μ)φ =

{
dφ(θ )

dθ
, – ≤ θ < ,

∫ 
– dη(θ ,μ)φ(θ ), θ = ,

and

R(μ)φ =

{
, – ≤ θ < ,
F(μ,φ), θ = .

Then system () can be transformed into the following operator equation:

u̇(t) = A(μ)ut + R(μ)ut , ()

where ut = u(t + θ ) = (u(t + θ ), u(t + θ ), u(t + θ ), u(t + θ )) for θ ∈ [–, ].
For ϕ ∈ C([, ], (R)∗), where (R)∗ is the -dimensional space of row vectors, we define

the adjoint operator A∗ of A:

A∗(ϕ) =

{
– dϕ(s)

ds ,  < s ≤ ,
∫ 

– dηT (s, )ϕ(–s), s = ,

and a bilinear inner product:

〈
ϕ(s),φ(θ )

〉
= ϕ̄()φ() –

∫ 

θ=–

∫ θ

ξ=
ϕ̄(ξ – θ ) dη(θ )φ(ξ ) dξ , ()

where η(θ ) = η(θ , ).
Let q(θ ) = (, q, q, q)T eiω∗

τ∗
θ be the eigenvectors of A() corresponding to the eigen-

value +iω∗
τ

∗
 and q∗(s) = D(, q∗

, q∗
, q∗

)eiω∗
τ∗

 s be the eigenvectors of A∗() corresponding
to the eigenvalue –iω∗

τ
∗
. It is not difficult to verify that

q =
iω∗

 – a

a
, q =

cq + cq

(iω∗
 – a)eiω∗

τ∗


,

q =
(iω∗

 – a)(iω∗
 – a – be–iω∗

τ∗ ) – aa

aa
,

q∗
 = –

iω∗
 + a

a
, q∗

 =
aq∗

 + ceiω∗
τ∗



iω∗
 + a

,

q∗
 =

(iω∗
 + a)(a + beiω∗

τ∗ ) – aa

a(iω∗
 + ceiω∗

τ∗
 )

.
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Figure 1 The track of the states x1, x2, y1, and y2 for τ1 = 1.3500 < 1.3785 = τ10.

Figure 2 The phase plot of the states x2, y1, and y2 for τ1 = 1.3500 < 1.3785 = τ10.

From (), we choose

D̄ =
[
 + qq̄∗

 + qq̄∗
 + qq̄∗

 + q
(
τ∗bq̄∗

e–iω∗
τ∗ + τ ∗

cq̄∗
e–iω∗

τ
)

+ τ ∗
cqq̄∗

e–iω∗
τ∗


]–,

such that 〈q∗, q〉 = , 〈q∗, q̄〉 = .
In the remainder of this section, we obtain the coefficients that can determine direction

of the Hopf bifurcation and stability of the bifurcating periodic solutions by using the
algorithms given in [] and using the computation process which is similar to that in []:

g = τ ∗
D̄

[

q̄∗


(

a
(
q()()

) + aq()()q()() + aq()()q()
(

–
τ∗
τ ∗



))

+ q̄∗

(
a

(
q()(–)

) + aq()(–)q()(–)
)
]

,
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Figure 3 The track of the states x1, x2, y1, and y2 for τ1 = 1.3865 > 1.3785 = τ10.

Figure 4 The phase plot of the states x2, y1, and y2 for τ1 = 1.3865 > 1.3785 = τ10.

g = τ ∗
D̄

[

q̄∗


(

aq()()q̄()() + a
(
q()()q̄()() + q̄()()q()()

)

+ a

(

q()()q̄()
(

–
τ∗
τ ∗



)

+ q̄()()q()
(

–
τ∗
τ ∗



)))

+ q̄∗

(
aq()(–)q̄()(–)

+ a
(
q()(–)q̄()(–) + q̄()(–)q()(–)

))
]

,

g = τ ∗
D̄

[

q̄∗


(

a
(
q̄()()

) + aq̄()()q̄()() + aq̄()()q̄()
(

–
τ∗
τ ∗



))

+ q̄∗

(
a

(
q̄()(–)

) + aq̄()(–)q̄()(–)
)
]

,

g = τ ∗
D̄

[

q̄∗
(a

(
W ()

 () + W ()
 ()q̄()()

)
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Figure 5 The bifurcation diagram with respect to τ1.

Figure 6 The track of the states x1, x2, y1, and y2 for τ2 = 7.7750 < 8.7835 = τ20.

+ a

(

W ()
 ()q()() +




W ()
 ()q̄()() + W ()

 ()q()()

+



W ()
 ()q̄()()

)

+ a

(

W ()
 ()q()

(

–
τ∗
τ ∗



)

+



W ()
 ()q̄()

(

–
τ∗
τ ∗



)

+ W ()


(

–
τ∗
τ ∗



)

q()() + W ()


(

–
τ∗
τ ∗



)

q̄()()
)

+ a
((

q()()
)q̄()()

+ q()()q()()q̄()()
)

+ a
(
q()()

)q̄()())

+ q̄∗
(a

(
W ()

 (–)q()(–) + W ()
 (–)q̄()(–)

)
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Figure 7 The phase plot of the states x2, y1, and y2 for τ2 = 7.7750 < 8.7835 = τ20.

Figure 8 The track of the states x1, x2, y1, and y2 for τ2 = 12.8050 > 8.7835 = τ20.

+ a

(

W ()
 (–)q()(–) +




W ()
 (–)q̄()(–) + W ()

 (–)q()(–)

+



W ()
 (–)q̄()(–)

)

+ a
((

q()(–)
)q̄()(–)

+ q()(–)q()(–)q̄()(–)
)

+ a
(
q()(–)

)q̄()(–))
]

,

with

W(θ ) =
igq()
ω∗

τ
∗


eiω∗
τ∗

θ +
iḡq̄()
ω∗

τ
∗


e–iω∗
τ∗

θ + Eeiω∗
τ∗

θ ,

W(θ ) = –
igq()
ω∗

τ
∗


eiω∗
τ∗

θ +
iḡq̄()
ω∗

τ
∗


e–iω∗
τ∗

θ + E,
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Figure 9 The phase plot of the states x2, y1, and y2 for τ2 = 12.8050 > 8.7835 = τ20.

Figure 10 The bifurcation diagram with respect to τ2.

where E and E can be computed as the following equations, respectively:

⎛

⎜
⎜
⎜
⎝

iω∗
 – a –a  

–a iω∗
 – a – be–iω∗

τ∗  –a

 –ce–iω∗
τ∗

 iω∗
 – a –ce–iω∗

τ∗


  –a iω∗
 – a

⎞

⎟
⎟
⎟
⎠

E = 

⎛

⎜
⎜
⎜
⎝


E()



E()




⎞

⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎝

a a  
a a + b  a

 c a c

  a a

⎞

⎟
⎟
⎟
⎠

E = –

⎛

⎜
⎜
⎜
⎝


E()



E()




⎞

⎟
⎟
⎟
⎠

,
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Figure 11 The track of the states x1, x2, y1, and y2 for τ = 1.3820 < 1.4126 = τ0.

Figure 12 The phase plot of the states x2, y1, and y2 for τ = 1.3820 < 1.4126 = τ0.

with

E()
 = a

(
q()()

) + aq()()q()() + aq()()q()
(

–
τ∗
τ ∗



)

,

E()
 = a

(
q()(–)

) + aq()(–)q()(–),

E()
 = aq()() + a

(
q()()q̄()() + q̄()()q()()

)

+ a

(

q()()q̄()
(

–
τ∗
τ ∗



)

+ q̄()()q()
(

–
τ∗
τ ∗



))

,

E()
 = aq()(–)q̄()(–) + a

(
q()(–)q̄()(–) + q̄()(–)q()(–)

)
.
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Figure 13 The track of the states x1, x2, y1, and y2 for τ = 1.4375 > 1.4126 = τ0.

Figure 14 The phase plot of the states x2, y1, and y2 for τ = 1.4375 > 1.4126 = τ0.

Therefore, we can calculate the following values:

C() =
i

ω∗
τ

∗


(

gg – |g| –
|g|



)

+
g


, μ = –

Re{C()}
Re{λ′(τ ∗

)} ,

β = Re
{

C()
}

, T = –
Im{C()} + μ Im{λ′(τ ∗

)}
ω∗

τ
∗


.
()

Based on the discussion above, we can obtain the following results.

Theorem  For system (), if μ >  (μ < ), then the Hopf bifurcation is supercritical
(subcritical); if β <  (β > ), then the bifurcating periodic solutions are stable (unstable);
if T >  (T < ), then the period of the bifurcating periodic solutions increases (decreases).
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Figure 15 The bifurcation diagram with respect to τ .

Figure 16 The track of the states x1, x2, y1, y2 for τ2 = 8.7325 < τ ∗
2 = 10.3472 and τ1∗ = 1.05 ∈ (0,τ10).

4 Numerical example
In this section, we give a numerical example to support the theoretical results in Section 
and Section . We consider the following system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dx(t)
dt = x(t) – x(t) – x(t),

dx(t)
dt = x(t) – .x(t) – xx(t – τ) – .x(t)y(t)

+.x(t) ,
dy(t)

dt = .x(t–τ)y(t–τ)
+.x(t–τ) – .y(t) – .y(t),

dy(t)
dt = .y(t) – .y(t),

()
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Figure 17 The phase plot of the states x2, y1, and y2 x1, x2, y1, y2 for τ2 = 8.7325 < τ ∗
2 = 10.3472 and

τ1∗ = 1.05 ∈ (0,τ10).

Figure 18 The track of the states x1, x2, y1, y2 for τ2 = 12.3642 > τ ∗
2 = 10.3472 and τ1∗ = 1.05 ∈ (0,τ10).

which has a unique positive equilibrium E∗(., ., .,
.).

We have τ > , τ = . By some complex computations, we obtain ω = ., τ =
.. Further, we have f ′

 (v∗
 ) = . > . Thus, the conditions (H) and (H) hold.

According to Theorem , the positive equilibrium E∗ of system () is asymptotically sta-
ble when τ < τ. This property can be illustrated by Figures  and . However, once τ

passes through the critical value τ, the positive equilibrium E∗ of system () will lose its
stability and a Hopf bifurcation occurs and a family of periodic solutions bifurcate from
the positive equilibrium E∗ of system (), which can be shown as in Figures  and . This
property can also be seen from the bifurcation diagram with respect to τ in Figure . Sim-
ilarly, we have ω = ., τ = . for τ = , τ > . The corresponding waveforms,
phase plots and bifurcation diagram are shown in Figures -.



Liu Advances in Difference Equations  (2015) 2015:208 Page 24 of 26

Figure 19 The phase plot of the states x2, y1, and y2 x1, x2, y1, y2 for τ2 = 12.3642 > τ ∗
2 = 10.3472 and

τ1∗ = 1.05 ∈ (0,τ10).

Figure 20 The bifurcation diagram with respect to τ2 and τ1 = 1.05.

We have τ = τ = τ > . We can obtain ω = . and then we get τ = ..
From Theorem , we can conclude that when τ increases from zero to τ the positive
equilibrium E∗ of system () is asymptotically stable, then it will lose its stability and
a Hopf bifurcation occurs once τ > τ. As can be seen from Figures  and , when
τ = . ∈ (, .), the positive equilibrium E∗ of system () is asymptotically sta-
ble. However, if we let τ = . > τ = ., the positive equilibrium E∗ of system ()
loses its stability and a Hopf bifurcation occurs, which can be shown as in Figures , 
and .
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We have τ >  and τ = . ∈ (, τ). We can obtain ω∗
 = ., τ ∗

 = .. By
Theorem , the positive equilibrium E∗ of system () is asymptotically stable when τ ∈
[, τ ∗

) and the positive equilibrium E∗ of system () becomes unstable when τ > τ ∗


and a family of periodic solutions bifurcate from the positive equilibrium E∗, which can
be illustrated by Figures -.

Finally, by complex computations, we obtain C() = –. – .i, λ′(τ ∗
) =

. – .i. Further, we can obtain μ = . > , β = –. < , T =
. > . According to Theorem , we know that the Hopf bifurcation of system ()
with respect to τ with τ = . ∈ (, τ) is supercritical, the bifurcating periodic solutions
are stable and increase.

5 Conclusion
In this paper, by incorporating the feedback delay of the mature prey and the time delay
due to the gestation of the mature predator into the system considered in the literature
[], we get a delayed predator-prey system with stage structure for both the predator and
the prey, which is an extension of the literature []. Compared with the literature [], we
mainly consider the effects of the two delays on the predator-prey system.

By regarding the possible combination of the two delays as the bifurcation parameter,
and analyzing the characteristic equation of the linearized system at the positive equilib-
rium, the sufficient conditions for the local stability of the positive equilibrium and the
existence of a Hopf bifurcation are established. It has been shown that when the value
of the delay is below the corresponding critical value, the system is asymptotically sta-
ble. However, once the value of the delay is greater than the corresponding critical value,
there will be a Hopf bifurcation at the positive equilibrium of the system and a family of
periodic solutions occur. For the further investigation, formulas are derived to determine
direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions by
using the normal form theory and center manifold theorem. From the numerical simula-
tions, one can conclude that the species in system () could coexist in an oscillatory mode
with some available delays of the mature prey and the mature predator under some certain
conditions. This is valuable from the point of view of ecology.

Competing interests
The author declares that they have no competing interests.

Author’s contributions
The author read and approved the final manuscript.

Acknowledgements
The author would like to thank the editor and the anonymous referees for their work on the paper. This work was
supported by Anhui Provincial Natural Science Foundation under Grant (No. 1508085QA13).

Received: 27 December 2014 Accepted: 9 June 2015

References
1. Xu, R, Chaplain, MAJ, Davidson, FA: Persistence and global stability of a ratio-dependent predator-prey mode with

stage structure. Appl. Math. Comput. 158, 729-744 (2004)
2. Liu, SQ, Beretta, E: A stage-structured predator-prey model of Beddington-DeAngelis type. SIAM J. Appl. Math. 66,

1101-1129 (2006)
3. Kar, TK, Pahari, UK: Modelling and analysis of a prey-predator system with stage-structure and harvesting. Nonlinear

Anal., Real World Appl. 8, 601-609 (2007)
4. Liu, SQ, Zhang, JH: Coexistence and stability of predator-prey model with Beddington-DeAngelis functional response

and stage structure. J. Math. Anal. Appl. 342, 446-460 (2008)
5. Xu, R: Global stability and Hopf bifurcation of a predator-prey model with stage structure and delayed predator

response. Nonlinear Dyn. 67, 1683-1693 (2012)



Liu Advances in Difference Equations  (2015) 2015:208 Page 26 of 26

6. Chakraborty, K, Jana, S, Kar, TK: Global dynamics and bifurcation in a stage structured prey-predator fishery model
with harvesting. Appl. Math. Comput. 218, 9271-9290 (2012)

7. Li, F, Li, HW: Hopf bifurcation of a predator-prey model with time delay and stage structure for the prey. Math.
Comput. Model. 55, 672-679 (2012)

8. Liu, M, Wang, K: Global stability of stage-structured predator-prey models with Beddington-DeAngelis functional
response. Commun. Nonlinear Sci. Numer. Simul. 16, 3792-3797 (2011)

9. Wang, LS, Feng, GH: Global dynamics of a predator-prey model with stage structure and Holling type-II functional
response. Math. Appl. 26, 765-773 (2013)

10. Ferrara, M, Guerrini, L, Bisci, GM: Center manifold reduction and perturbation method in a delayed model with a
mound-shaped Cobb-Douglas production function. Abstr. Appl. Anal. 2013, Article ID 738460 (2013)

11. Dong, T, Liao, XF, Li, HQ: Stability and Hopf bifurcation in a computer virus model with multistate antivirus. Abstr.
Appl. Anal. 2012, Article ID 841987 (2012)

12. Bianca, C, Ferrara, M, Guerrini, L: Hopf bifurcations of a delayed-energy-based model of capital accumulation. Appl.
Math. Inf. Sci. 7, 139-143 (2013)

13. Zhang, JF: Bifurcation analysis of a modified Holling-Tanner predator-prey model with time delay. Appl. Math. Model.
36, 1219-1231 (2012)

14. Bianca, C, Ferrara, M, Guerrini, L: The Cai model with time delay: existence of periodic solutions and asymptotic
analysis. Appl. Math. Inf. Sci. 7, 21-27 (2013)

15. Meng, XY, Huo, HF, Xiang, H: Hopf bifurcation in a three-species system with delays. J. Appl. Math. Comput. 35,
635-661 (2011)

16. Cui, GH, Yan, XP: Stability and bifurcation analysis on a three-species food chain system with two delays. Commun.
Nonlinear Sci. Numer. Simul. 16, 3704-3720 (2011)

17. Meng, XY, Huo, HF, Zhang, XB, Xiang, H: Stability and Hopf bifurcation in a three-species system with feedback delays.
Nonlinear Dyn. 64, 349-364 (2011)

18. Xu, CJ, Tang, XH, Liao, MX: Stability and bifurcation analysis on a ring of five neurons with discrete delays. J. Dyn.
Control Syst. 19, 237-275 (2013)

19. Xu, CJ, Tang, XH, Liao, MX: Stability and bifurcation analysis of a six-neuron BAM neural network model with discrete
delays. Neurocomputing 74, 689-707 (2011)

20. Zhao, M: Hopf bifurcation analysis for a semiratio-dependent predator-prey system with two delays. Abstr. Appl. Anal.
2013, Article ID 495072 (2013)

21. Zhang, ZZ, Yang, HZ, Fu, M: Hopf bifurcation in a predator-prey system with Holling type III functional response and
time delays. J. Appl. Math. Comput. 44, 337-356 (2014)

22. Li, XL, Wei, JJ: On the zeros of a fourth degree exponential polynomial with applications to a neural network model
with delays. Chaos Solitons Fractals 26, 519-526 (2005)

23. Hassard, BD, Kazarinoff, ND, Wan, YH: Theory and Applications of Hopf Bifurcation. Cambridge University Press,
Cambridge (1981)


	Bifurcation analysis of a delayed predator-prey system with stage structure and Holling-II functional response
	Abstract
	Keywords

	Introduction
	Local stability of positive equilibrium and existence of Hopf bifurcation
	Stability of bifurcating periodic solutions
	Numerical example
	Conclusion
	Competing interests
	Author's contributions
	Acknowledgements
	References


