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Abstract
This paper deals with almost periodicity of a host-macroparasite model on time
scales. By applying the contraction mapping fixed point theorem and exponential
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periodic positive solution. Moreover, we investigate global exponential stability of the
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1 Introduction
The dynamical behavior of biological systems has become a very important and hot re-
search topic. As we know, many human diseases, particularly in tropical and subtropical
regions, arise from infection by macroparasites or metazoan organisms. These organisms
tend to have much larger generation times and more complex life cycles than micropar-
asites. In life cycles there are two or more obligatory host species together with the final
host (humans). Macroparasitic infections are generally chronic in form and they are more
a cause of morbidity than mortality and tend to be persistent in character in areas where
they are endemic. The final hosts of parasites are usually humans (the hosts in which the
parasite attains reproductive maturity) and they gain entry to the definitive host as a con-
sequence of developmental changes which normally occur before the organism arrives at
its preferred site and attains reproductive maturity. In [], Kostitzin constructed a model
of the flow of hosts among a series of classes denoting different infection states defined by
the number of parasites harbored. For further research in this direction, see Hairston [],
Tallis and Leyton [], and Leyton [].

In the study of transmission dynamics of the macroparasite model, there exist two vari-
ables M(t) and L(t), where M(t) is the number of sexually mature worms in the human
community and L(t) is the number of infective larvae in the habitat. In [], May and
Anderson focused on the dynamics of the adult worms M(t), they proposed the host-
macroparasite model

M′(t) = –βM(t) +
αM(t)

[ + δM(t – τ )]N+ . (.)
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For more details on the derivation of model (.), we refer the reader to [] by May and
Anderson. In [], Elabbasy et al. studied the oscillation of solutions of model (.).

As we know, in the real world, some processes vary continuously while others vary dis-
cretely. These processes can be modeled by differential equations and difference equa-
tions, respectively. However, there are also many processes that vary both continuously
and discretely. Thus an interesting and challenging problem arises: How can we model
these mixed processes? The theory of time scale calculus and dynamic equations on time
scales provides us with a powerful tool for attacking such mixed processes. For example,
time scales are believed to provide a good way to understand and control the West Nile
virus since time scale calculus and dynamic equations on time scales can bridge the divide
between discrete and continuous aspects of the West Nile virus []. The calculus on time
scales (see [, ] and the references cited therein) was initiated by Hilger [] in order to
unify continuous and discrete analysis, and it has a tremendous potential for applications
and has recently received great attention. The two main features of the calculus on time
scales are unification and extension.

The existence and stability of periodic solutions or almost periodic solutions for dif-
ferential equations and difference equations are very basic and important problems. It is
natural to ask whether we can explore such existence and stability problems in a unified
way and offer more general conclusions. The study of dynamic equations on time scales
can unify and extend the fields of differential and difference equations.

Motivated by the above facts, in this paper, we investigate the following nonautonomous
almost periodic host-macroparasite dynamic equation on time scales:

x�(t) = –a(t)x(t) +
m∑

i=

bi(t)x(t – τi(t))
[ + x(t – τi(t))]Ni+ . (.)

Almost periodicity is more practical and closer to the reality in biological systems [,
]. However, to our knowledge, no papers deal with the existence and global exponential
stability of a unique almost periodic positive solution for the above model (.) on time
scales.

In this paper, we aim to establish sufficient conditions that guarantee the existence of
a unique almost periodic positive solution of model (.) on time scales by applying the
contraction mapping fixed point theorem and exponential dichotomy. We also investigate
the global exponential stability of the almost periodic positive solution by means of the
Gronwall inequality. The results of this paper are new and more valuable in applications,
which complement and extend the previously obtained results in [, ]. Our study reveals
that, for the existence and stability of almost periodic solutions of differential equations
and difference equations, it is unnecessary to prove results for differential equations and
separately again for difference equations. We can unify such existence and stability prob-
lems in the frame of dynamic equations on time scales.

2 Preliminaries
In this section, we present some basic definitions and preliminary results from the calculus
on time scales and almost periodic functions. For more details, see [, , , ].
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The symbol T denotes a time scale, which is a nonempty closed subset of R. Some ex-
amples of such time scales are

R, Z,
⋃

k∈Z
[k, k + ],

⋃

k∈Z

⋃

n∈N

{
k +


n

}
.

Definition  The forward and backward jump operators σ ,ρ : T → T and the graininess
μ : T →R

+ are defined, respectively, by

σ (t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, μ(t) = σ (t) – t.

A point t ∈ T is called left-dense if t > infT and ρ(t) = t, left-scattered if ρ(t) < t, right-
dense if t < supT and σ (t) = t, and right-scattered if σ (t) > t.

If T has a left-scattered maximum m, define T
k = T – {m}; otherwise, set Tk = T.

If T has a right-scattered minimum m, define Tk = T – {m}; otherwise, set Tk = T.

Definition  A function f : T → R is right-dense continuous provided it is continuous
at right-dense points in T and its left-side limits exist (finite) at left-dense points in T. If
f is continuous at each right-dense point and each left-dense point, then f is said to be a
continuous function on T.

Definition  For f : T → R, we define f �(t) to be the number (if it exists) with the prop-
erty that for any given ε > , there exists a neighborhood U of t such that

∣∣(f
(
σ (t)

)
– f (s)

)
– f �(t)

(
σ (t) – s

)∣∣ < ε
∣∣σ (t) – s

∣∣ for all s ∈ U .

We call f �(t) the delta (or Hilger) derivative of f at t.
If F�(t) = f (t), then we define the delta integral by

∫ t

r
f (s)�s = F(t) – F(r) for t, r ∈ T.

Definition  A function p : T → R is called regressive provided  + μ(t)p(t) �=  for all
t ∈ T.

The set of all regressive and rd-continuous functions p : T → R will be denoted by � =
�(T,R).

We define the set �+ = �+(T,R) = {p ∈ � :  + μ(t)p(t) > ,∀t ∈ T}.

Definition  If p is a regressive function, then the generalized exponential function ep is
defined as the unique solution of the initial value problem y� = p(t)y, y(s) = , where s ∈ T.

An explicit formula for ep(t, s) is given by

ep(t, s) = exp

{∫ t

s
ξμ(τ )

(
p(τ )

)
�τ

}
for all s, t ∈ T,

where

ξh(z) =

{
Log(+hz)

h , if h �= ,
z, if h = .
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Definition  Let p, q : T→R be two regressive functions, define

p ⊕ q = p + q + μpq, 	p = –
p

 + μp
, p 	 q = p ⊕ (	q).

Lemma  Assume that p, q : T→R are two regressive functions, then
(i) e(t, s) ≡ , ep(t, t) ≡ ;

(ii) ep(σ (t), s) = ( + μ(t)p(t))ep(t, s);
(iii) 

ep(t,s) = e	p(t, s), ep(t, s) = 
ep(s,t) = e	p(s, t);

(iv) ep(t, s)ep(s, r) = ep(t, r), ep(t, s)eq(t, s) = ep⊕q(t, s);
(v) (ep(t, s))� = pep(t, s);

(vi) If a, b, c ∈ T, then
∫ b

a p(s)ep(c,σ (s))�s = ep(c, a) – ep(c, b).

Definition  [] Let � be a collection of sets which is constructed by subsets of R. A time
scale T is called an almost periodic time scale with respect to � if

�∗ =
{
±τ ∈

⋂

�∈�

� : t ± τ ∈ T,∀t ∈ T

}
�= ∅

and �∗ is called the smallest almost periodic set of T.

Definition  [] Let T be an almost periodic time scale with respect to �. A function
f (t) ∈ C(T,Rn) is called almost periodic if for any given ε > , the set E(f , ε) = {τ ∈ �∗ :
|f (t + τ ) – f (t)| < ε,∀t ∈ T} is relatively dense in T; that is, for any given ε > , there exists a
real number l = l(ε) >  such that each interval of length l contains at least one τ = τ (ε) ∈
E(f , ε) satisfying |f (t + τ ) – f (t)| < ε, ∀t ∈ T.

The set E(f , ε) is called ε-translation set of f (t), τ is called ε-translation number of f (t),
and l(ε) is said to contain interval length of E(f , ε).

Remark If � = {R} and T = R, then �∗ = R, in this case, Definition  is equivalent to the
definition of almost periodic function in []. If � = {Z} and T = Z, then �∗ = Z, in this
case, Definition  is equivalent to the definition of almost periodic sequence in [].

Definition  [, ] Let Q(t) be an n × n rd-continuous matrix function on T.
The linear system

x�(t) = Q(t)x(t), t ∈ T (.)

is said to admit an exponential dichotomy on T if there exist positive constants k, α, pro-
jection P and the fundamental solution matrix X(t) of (.) satisfying

∥∥X(t)PX–(σ (s)
)∥∥ ≤ ke	α

(
t,σ (s)

)
for t ≥ σ (s), s, t ∈ T,

∥∥X(t)(I – P)X–(σ (s)
)∥∥ ≤ ke	α

(
σ (s), t

)
for t ≤ σ (s), s, t ∈ T.

Consider the almost periodic system

x�(t) = Q(t)x(t) + g(t), t ∈ T, (.)



Yao Advances in Difference Equations  (2015) 2015:41 Page 5 of 12

where Q(t) is an almost periodic matrix function, g(t) is an almost periodic vector func-
tion.

Lemma  [, ] If the linear system (.) admits an exponential dichotomy, then the
almost periodic system (.) has a unique almost periodic solution x(t) as follows:

x(t) =
∫ t

–∞
X(t)PX–(σ (s)

)
g(s)�s –

∫ +∞

t
X(t)(I – P)X–(σ (s)

)
g(s)�s.

Lemma  [] Let Q(t) be a regressive n × n matrix-valued function on T. Let t ∈ T and
x ∈ R

n, then the initial value problem

x�(t) = Q(t)x(t), x(t) = x

has a unique solution x(t) as follows:

x(t) = eQ(t, t)x.

Lemma  [] Let ci(t) be an almost periodic function on T, where ci(t) > , –ci(t) ∈ �+,
∀t ∈ T and

min
≤i≤n

{
inf
t∈T

ci(t)
}

> .

Then the linear system

x�(t) = diag
(
–c(t), –c(t), . . . , –cn(t)

)
x(t)

admits an exponential dichotomy on T.

By Lemma , we can get the following.

Lemma  Let –C = diag(–c(t), –c(t), . . . , –cn(t)), then X(t) = e–C(t, t) is a fundamental
solution matrix of the linear system x�(t) = diag(–c(t), –c(t), . . . , –cn(t))x(t).

3 Existence of the unique almost periodic positive solution
In this paper, we use the notation: for any bounded function f (t), we denote f = supt∈T f (t),
f = inft∈T f (t).

Throughout this paper, we assume that the bounded almost periodic functions a(t), bi(t),
τi(t) satisfy  < a ≤ a(t) ≤ a,  < bi ≤ bi(t) ≤ bi,  < τi ≤ τi(t) ≤ τi, –a(t) ∈ �+ and Ni > 
(i = , , . . . , m).

Due to biological significance, we restrict our attention to positive solutions of equation
(.). The initial condition associated with equation (.) is given by

x(t;φ) = φ(t) >  for t ∈ [
–τ ∗, 

]
T

, τ ∗ = max
≤i≤m

{τi}.

Let X = {w(t)|w ∈ C(T,R), w(t) is almost periodic function} with the norm ‖w‖ =
supt∈T |w(t)|, then X is a Banach space.
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For w ∈ X, we consider the equation

x�(t) = –a(t)x(t) +
m∑

i=

bi(t)w(t – τi(t))
[ + w(t – τi(t))]Ni+ . (.)

Since inft∈T a(t) = a > , then from Lemma  we know that the linear equation x�(t) =
–a(t)x(t) admits exponential dichotomy on T.

Hence, by Lemma , we know that equation (.) has exactly one almost periodic solu-
tion

xw(t) =
∫ t

–∞
e–a

(
t,σ (s)

) m∑

i=

bi(s)w(s – τi(s))
[ + w(s – τi(s))]Ni+ �s.

We define the operator A : X → X,

(Aw)(t) =
∫ t

–∞
e–a

(
t,σ (s)

) m∑

i=

bi(s)w(s – τi(s))
[ + w(s – τi(s))]Ni+ �s, w ∈ X.

Obviously, w(t) is the almost periodic solution of equation (.) if and only if w is the
fixed point of the operator A.

Let

Mi =


Ni( + 
Ni

)Ni+
(i = , , . . . , m).

We make the following assumptions:

(C) There exist two positive constants β > γ >  such that

β ≥ 
a

m∑

i=

biMi and max
≤i≤m

{


Ni

}
≤ γ ≤ 

a

m∑

i=

βbi

( + β)Ni+ .

(C)

a >
m∑

i=

bi.

Theorem  Assume that conditions (C) and (C) are satisfied, then equation (.) has a
unique almost periodic positive solution.

Proof Let � = {w|w ∈ X,γ ≤ w(t) ≤ β , t ∈ T}.
Firstly, we prove that A� ⊂ �.
For ∀w ∈ �, we have

(Aw)(t) =
∫ t

–∞
e–a

(
t,σ (s)

) m∑

i=

bi(s)w(s – τi(s))
[ + w(s – τi(s))]Ni+ �s

≤
∫ t

–∞
e–a

(
t,σ (s)

) m∑

i=

biw(s – τi(s))
[ + w(s – τi(s))]Ni+ �s. (.)

For the function fi(x) = x
(+x)Ni+ , Ni > , x ∈ [, +∞), it is easy to show f ′

i (x) = –Nix
(+x)Ni+ , which

implies that fi(x) is increasing on x ∈ [, 
Ni

] and decreasing on x ∈ [ 
Ni

, +∞) (i = , , . . . , m).
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So the function fi(x) = x
(+x)Ni+ , Ni > , x ∈ [, +∞) reaches its maximum

fi(max) =


Ni( + 
Ni

)Ni+
= Mi at x =


Ni

(i = , , . . . , m).

Hence we get

w(s – τi(s))
[ + w(s – τi(s))]Ni+ ≤ Mi.

It follows from (.) that

(Aw)(t) ≤
∫ t

–∞
e–a

(
t,σ (s)

) m∑

i=

biMi�s =
m∑

i=

biMi

∫ t

–∞
e–a

(
t,σ (s)

)
�s

≤
m∑

i=

biMi

∫ t

–∞
e–a

(
t,σ (s)

)
�s =


a

m∑

i=

biMi ≤ β . (.)

On the other hand, we have

(Aw)(t) =
∫ t

–∞
e–a

(
t,σ (s)

) m∑

i=

bi(s)w(s – τi(s))
[ + w(s – τi(s))]Ni+ �s

≥
∫ t

–∞
e–a

(
t,σ (s)

) m∑

i=

biw(s – τi(s))
[ + w(s – τi(s))]Ni+ �s. (.)

Note that

max
≤i≤m

{


Ni

}
≤ γ ≤ w(t) ≤ β for t ∈ T.

Since the function fi(x) = x
(+x)Ni+ (Ni > ) is increasing on x ∈ [, 

Ni
] and decreasing on

x ∈ [ 
Ni

, +∞), then we have fi(w(t)) ≥ fi(β) for t ∈ T.
That is,

w(t)
[ + w(t)]Ni+ ≥ β

( + β)Ni+ for t ∈ T.

So we get

w(s – τi(s))
[ + w(s – τi(s))]Ni+ ≥ β

( + β)Ni+ .

Thus by (.) we obtain

(Aw)(t) ≥
∫ t

–∞
e–a

(
t,σ (s)

) m∑

i=

βbi

( + β)Ni+ �s =
m∑

i=

βbi

( + β)Ni+

∫ t

–∞
e–a

(
t,σ (s)

)
�s

≥
m∑

i=

βbi

( + β)Ni+

∫ t

–∞
e–a

(
t,σ (s)

)
�s =


a

m∑

i=

βbi

( + β)Ni+ ≥ γ . (.)
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Hence (.) and (.) imply

γ ≤ (Aw)(t) ≤ β . (.)

In addition, ∀w ∈ �, we know that equation (.) has exactly one almost periodic solution

xw(t) =
∫ t

–∞
e–a

(
t,σ (s)

) m∑

i=

bi(s)w(s – τi(s))
[ + w(s – τi(s))]Ni+ �s.

Since xw(t) is almost periodic, then (Aw)(t) is almost periodic.
This, together with (.), implies Aw ∈ �. So we have A� ⊂ �.
Now, we prove that A is a contraction mapping on �.
For ∀u, w ∈ �, we have

‖Au – Aw‖
= sup

t∈T

∣∣(Au)(t) – (Aw)(t)
∣∣

= sup
t∈T

∣∣∣∣∣

∫ t

–∞
e–a

(
t,σ (s)

)
( m∑

i=

bi(s)u(s – τi(s))
[ + u(s – τi(s))]Ni+ –

m∑

i=

bi(s)w(s – τi(s))
[ + w(s – τi(s))]Ni+

)
�s

∣∣∣∣∣

= sup
t∈T

∣∣∣∣∣

∫ t

–∞
e–a

(
t,σ (s)

) m∑

i=

bi(s)
(

u(s – τi(s))
[ + u(s – τi(s))]Ni+ –

w(s – τi(s))
[ + w(s – τi(s))]Ni+

)
�s

∣∣∣∣∣

≤ sup
t∈T

∫ t

–∞
e–a

(
t,σ (s)

) m∑

i=

bi

∣∣∣∣
u(s – τi(s))

[ + u(s – τi(s))]Ni+ –
w(s – τi(s))

[ + w(s – τi(s))]Ni+

∣∣∣∣�s. (.)

By the mean value theorem, we have

∣∣∣∣
u(s – τi(s))

[ + u(s – τi(s))]Ni+ –
w(s – τi(s))

[ + w(s – τi(s))]Ni+

∣∣∣∣

=
∣∣f ′

i (ξ )
[
u
(
s – τi(s)

)
– w

(
s – τi(s)

)]∣∣

=
∣∣∣∣

 – Niξ

( + ξ )Ni+

∣∣∣∣
∣∣u

(
s – τi(s)

)
– w

(
s – τi(s)

)∣∣, (.)

in which ξ lies between u(s – τi(s)) and w(s – τi(s)).
Note that the function

gi(x) =
∣∣∣∣

 – Nix
( + x)Ni+

∣∣∣∣ ≤  for x ∈ [, +∞).

Thus we have
∣∣∣∣

 – Niξ

( + ξ )Ni+

∣∣∣∣ ≤ .

It follows from (.) that

∣∣∣∣
u(s – τi(s))

[ + u(s – τi(s))]Ni+ –
w(s – τi(s))

[ + w(s – τi(s))]Ni+

∣∣∣∣ ≤ ∣∣u
(
s – τi(s)

)
– w

(
s – τi(s)

)∣∣. (.)
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Hence, from (.) and (.), we get

‖Au – Aw‖ ≤ sup
t∈T

{∫ t

–∞
e–a

(
t,σ (s)

) m∑

i=

bi
∣∣u

(
s – τi(s)

)
– w

(
s – τi(s)

)∣∣�s

}

≤ sup
t∈T

{∫ t

–∞
e–a

(
t,σ (s)

) m∑

i=

bi‖u – w‖�s

}

≤ sup
t∈T

{∫ t

–∞
e–a

(
t,σ (s)

) m∑

i=

bi‖u – w‖�s

}

= sup
t∈T

{
‖u – w‖

m∑

i=

bi

∫ t

–∞
e–a

(
t,σ (s)

)
�s

}

= sup
t∈T

{
‖u – w‖ 

a

m∑

i=

bi

}
=

(

a

m∑

i=

bi

)
‖u – w‖.

Since 
a
∑m

i= bi < , then we know that A is a contraction mapping. Thus, by the contraction
mapping fixed point theorem, the operator A has a unique fixed point w∗ in �. This means
that equation (.) has a unique almost periodic positive solution w∗(t), and γ ≤ w∗(t) ≤ β .
The proof of Theorem  is completed. �

4 Global exponential stability of an almost periodic positive solution
Theorem  Assume that conditions (C) and (C) are satisfied. Then equation (.) has a
unique globally exponentially stable almost periodic positive solution.

Proof Since (C) and (C) are satisfied, then by Theorem  we know that equation (.) has
a unique almost periodic positive solution w∗(t), and γ ≤ w∗(t) ≤ β . Let ψ(t) be the initial
function of w∗(t), w∗(t;ψ) = ψ(t) for t ∈ [–τ ∗, ]T. Now we prove that w∗(t) is globally
exponentially stable.

Suppose that x(t) is an arbitrary positive solution of equation (.) with the initial func-
tion x(t;φ) = φ(t) > , t ∈ [–τ ∗, ]T.

Let y(t) = x(t) – w∗(t), then we have

y�(t) =
(
x(t) – w∗(t)

)�

= –a(t)x(t) +
m∑

i=

bi(t)x(t – τi(t))
[ + x(t – τi(t))]Ni+

–

(
–a(t)w∗(t) +

m∑

i=

bi(t)w∗(t – τi(t))
[ + w∗(t – τi(t))]Ni+

)

= –a(t)
(
x(t) – w∗(t)

)
+

m∑

i=

bi(t)x(t – τi(t))
[ + x(t – τi(t))]Ni+

–
m∑

i=

bi(t)w∗(t – τi(t))
[ + w∗(t – τi(t))]Ni+ . (.)
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Let

h(t) =
m∑

i=

bi(t)x(t – τi(t))
[ + x(t – τi(t))]Ni+ –

m∑

i=

bi(t)w∗(t – τi(t))
[ + w∗(t – τi(t))]Ni+ ,

then it follows from (.) that

y�(t) = –a(t)y(t) + h(t). (.)

From (.), we know that y(t) can be expressed as follows:

y(t) = e–a(t, t)y(t) +
∫ t

t

e–a(t, s)h(s)�s (t ≥ t), t ∈ [
–τ ∗, 

]
T

. (.)

Thus, (.) implies that

y(t) = e–a(t, t)
(
φ(t) – ψ(t)

)
+

∫ t

t

e–a(t, s)h(s)�s. (.)

Note that

∣∣h(t)
∣∣ =

∣∣∣∣∣

m∑

i=

bi(t)
(

x(t – τi(t))
[ + x(t – τi(t))]Ni+ –

w∗(t – τi(t))
[ + w∗(t – τi(t))]Ni+

)∣∣∣∣∣

≤
m∑

i=

bi(t)
∣∣∣∣

x(t – τi(t))
[ + x(t – τi(t))]Ni+ –

w∗(t – τi(t))
[ + w∗(t – τi(t))]Ni+

∣∣∣∣. (.)

By the mean value theorem, we have

∣∣∣∣
x(t – τi(t))

[ + x(t – τi(t))]Ni+ –
w∗(t – τi(t))

[ + w∗(t – τi(t))]Ni+

∣∣∣∣

=
∣∣f ′

i (η)
[
x
(
t – τi(t)

)
– w∗(t – τi(t)

)]∣∣

=
∣∣∣∣

 – Niη

( + η)Ni+

∣∣∣∣
∣∣x

(
t – τi(t)

)
– w∗(t – τi(t)

)∣∣, (.)

in which η lies between x(t – τi(t)) and w∗(t – τi(t)).
Note that the function

gi(x) =
∣∣∣∣

 – Nix
( + x)Ni+

∣∣∣∣ ≤  ∀x ∈ [, +∞) (i = , , . . . , m).

Thus we have
∣∣∣∣

 – Niη

( + η)Ni+

∣∣∣∣ ≤ .

From (.) we get

∣∣∣∣
x(t – τi(t))

[ + x(t – τi(t))]Ni+ –
w∗(t – τi(t))

[ + w∗(t – τi(t))]Ni+

∣∣∣∣ ≤ ∣∣x
(
t – τi(t)

)
– w∗(t – τi(t)

)∣∣. (.)
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Hence, by (.) and (.), we get

∣∣h(t)
∣∣ ≤

m∑

i=

bi(t)
∣∣x

(
t – τi(t)

)
– w∗(t – τi(t)

)∣∣ ≤ ∥∥x – w∗∥∥
m∑

i=

bi.

It follows that

∥∥h(t)
∥∥ ≤ ∥∥x – w∗∥∥

m∑

i=

bi = ‖y‖
m∑

i=

bi.

Taking the norm on both sides of (.), we obtain

∥∥y(t)
∥∥ ≤ e–a(t, t)‖φ – ψ‖ +

∫ t

t

e–a(t, s)
∥∥h(s)

∥∥�s

≤ e–a(t, t)‖φ – ψ‖ +
∫ t

t

e–a(t, s)‖y‖
m∑

i=

bi�s. (.)

From (.), we get

‖y(t)‖
e–a(t, t)

≤ ‖φ – ψ‖ +
∫ t

t

‖y‖
e–a(s, t)

m∑

i=

bi�s.

By the Gronwall inequality (see []), we obtain

‖y(t)‖
e–a(t, t)

≤ ‖φ – ψ‖eλ(t, t), here λ =
m∑

i=

bi.

Hence we get

∥∥y(t)
∥∥ ≤ ‖φ – ψ‖eλ(t, t)e–a(t, t)

≤ ‖φ – ψ‖eλ(t, t)e–a(t, t)

= ‖φ – ψ‖e–(a–λ)(t, t).

That is,

∥∥x(t) – w∗(t)
∥∥ ≤ ‖φ – ψ‖e–(a–λ)(t, t), here a > λ,

which means that w∗(t) is globally exponentially stable. The proof of Theorem  is com-
pleted. �

Remark If T = R and T = Z, then equation (.) reduces to

x′(t) = –a(t)x(t) +
m∑

i=

bi(t)x(t – τi(t))
[ + x(t – τi(t))]Ni+ , t ∈R
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and

x(k + ) – x(k) = –a(k)x(k) +
m∑

i=

bi(k)x(k – τi(k))
[ + x(k – τi(k))]Ni+ , k ∈ Z,

respectively.

Our study unifies differential equations and difference equations. The explorations in
this paper reveal that when we deal with the existence and stability of an almost periodic
solution for differential equations and difference equations, it is unnecessary to prove re-
sults for differential equations and separately again for their discrete analogues (difference
equations). We can unify such problems in the framework of dynamic equations on time
scales.
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