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Abstract
In this paper, we studied the following Caputo fractional difference boundary value
problem (FBVP):�ν

Cy(t) = –f (t + ν – 1, y(t + ν – 1)), y(ν – 3) = �y(b + ν) =�2y(ν – 3) = 0,
where 2 < ν ≤ 3 is a real number, �ν

Cy(t) is the standard Caputo difference. By means
of cone theoretic fixed point theorems, some results on the existence of one or more
positive solutions for the above Caputo fractional boundary value problems are
obtained.
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1 Introduction
In this paper, we discuss the following Caputo fractional difference boundary value prob-
lem (FBVP):

{
�ν

Cy(t) = –f (t + ν – , y(t + ν – )),
y(ν – ) = �y(b + ν) = �y(ν – ) = ,

()

where t ∈ [, b + ]N , b ≥  is an integer. f : [ν – ,ν – , . . . , b +ν]Nν– × [, +∞) → [, +∞)
is continuous and f is not identically zero,  < ν ≤ , and �ν

Cy(t) is the standard Caputo
difference.

Fractional difference equations appear in useful biological models []. Influenced by the
results of [–], the existence of one or two positive solutions for fractional difference
equations has been studied (see [–]). Among them, in [, ], the authors introduced the
fractional sum and difference operators, studied their behavior and developed a complete
theory governing their compositions. In [], Atici and Eloe studied the following two-point
boundary value problem for fractional difference equation:

{
–�νy(t) = f (t + ν – , y(t + ν – )),
y(ν – ) = , y(b + ν + ) = ,

()

where  < ν ≤ . They obtained the existence of positive solutions by means of the Kras-
nosel’skĭı fixed point theorem. Goodrich gave some new existence results for () in [].
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Goodrich [] also considered the following fractional boundary value problem with non-
local conditions:

{
–�νy(t) = f (t + ν – , y(t + ν – )),
y(ν – ) = g(y), y(b + ν + ) = ,

()

where  < ν ≤ . He showed a uniqueness theorem by means of the contraction and an
existence theorem by means of the Brouwer theorem for (). He also presented the exis-
tence of at least one positive solution to () by using the Krasnosel’skĭı theorem. In [–
], the authors deduced the existence of one or more positive solutions for fractional
difference equations. Recently, Wu and Baleanu introduced some applications of the Ca-
puto fractional difference to discrete chaotic maps in [, ]. However, to the best of our
knowledge, few papers can be found in the literature dealing with the Caputo fractional
difference equation boundary value problems. Motivated by [], we make some attempt
to fill this gap in the existing literature in this paper. We consider the existence of one or
more positive solutions for the boundary value problem of the Caputo fractional difference
equation ().

The article is structured as follows. In Section , we deduce the Green’s function of the
FBVP (). Then we prove that Green’s function satisfies the useful properties. In Section ,
we present and prove our main results. In Section , we give some examples to illustrate
our results.

2 The Green’s function
We first review some basic results about fractional sums and differences. For any t ∈ [,
b + ]N and ν > , we define

tν =
�(t + )

�(t +  – ν)
,

for which the right-hand side is defined. We appeal to the convention that if t +  – ν is a
pole of the Gamma function and t +  is not a pole, then tν = .

The νth fractional sum of a function f is defined by

�–ν f (t) =


�(ν)

t–ν∑
s=a

(t – s – )ν–f (s),

for ν >  and t ∈ {a + ν, a + ν + , . . .} = Na+ν . We also define the νth Caputo fractional
difference for ν >  by

�ν
Cf (t) = �–(n–ν)�nf (t) =


�(n – ν)

t–(n–ν)∑
s=a

(t – s – )n–ν–�n
af (s),

where n –  < ν ≤ n.
First, we give the following two lemmas, they can be found in the recent papers (see, e.g.,

[, ]).
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Lemma . [] Assume that ν >  and f is defined on domains Na, then

�–ν
a+(n–ν)�ν

Cf (t) = f (t) –
n–∑
k=

ck(t – a)k ,

where ck ∈ R, k = , , . . . n – , and n –  < ν ≤ n.

Lemma . [] Let f : Na+ν ×Na →R be given. Then

�
( t–ν∑

s=a
f (t, s)

)
=

t–ν∑
s=a

�t f (t, s) + f (t + , t +  – ν), for t ∈Na+ν .

In order to get our main results, we first give an important lemmas. This lemma will give
a representation for the solution of (), provided that the solution exists.

Lemma . Let  < ν ≤  and g : [ν – ,ν – , . . . , b +ν]Nν– →R be given. Then the solution
of the FBVP

{
�ν

Cy(t) = –g(t + ν – ),
y(ν – ) = �y(b + ν) = �y(ν – ) = 

()

is given by

y(t) =
b+∑
s=

G(t, s)g(s + ν – ),

where the Green’s function G : [ν – ,ν – , . . . , b + ν]Nν– × [, b + ]N →R is defined by

G(t, s) =


�(ν)

⎧⎪⎨
⎪⎩

(ν – )(t – ν + )(b + ν – s – )ν– – (t – s – )ν–,
 ≤ s < t – ν +  ≤ b + ,

(ν – )(t – ν + )(b + ν – s – )ν–,  ≤ t – ν +  ≤ s ≤ b + .

Proof We apply Lemma . to reduce () to an equivalent summation equation

y(t) = –


�(ν)

t–ν∑
s=

(t – s – )ν–g(s + ν – ) + c + ct + ct

for some ci ∈R, i = , , . By Lemma ., we have

�y(t) = –


�(ν)

t+–ν∑
s=

(ν – )(t – s – )ν–g(s + ν – ) + c + ct,

�y(t) = –


�(ν)

t+–ν∑
s=

(ν – )(ν – )(t – s – )ν–g(s + ν – ) + c.

From (), we get

c = –
ν – 

�(ν – )

b+∑
s=

(b + ν – s – )ν–g(s + ν – ),
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c =


�(ν – )

b+∑
s=

(b + ν – s – )ν–g(s + ν – ), c = .

Therefore, the solution of the FBVP () is

y(t) = –


�(ν)

t–ν∑
s=

(t – s – )ν–g(s + ν – ) –
ν – 

�(ν – )

b+∑
s=

(b + ν – s – )ν–g(s + ν – )

+
t

�(ν – )

b+∑
s=

(b + ν – s – )ν–g(s + ν – )

=


�(ν)

t–ν∑
s=

[
(ν – )(t – ν + )(b + ν – s – )ν– – (t – s – )ν–]g(s + ν – )

+


�(ν – )

b+∑
s=t–ν+

(t – ν + )(b + ν – s – )ν–g(s + ν – )

=
b+∑
s=

G(t, s)g(s + ν – ). �

Remark Notice that G(ν – , s) = , G(t, b + ) = . G could be extended to [ν – ,
b + ν]Nν– × [, b + ]N , so we only discuss (t, s) ∈ [ν – , b + ν]Nν– × [, b + ]N .

Lemma . The Green’s function G has the following properties:
(i) G(t, s) > , (t, s) ∈ [ν – , b + ν]Nν– × [, b + ]N .

(ii) maxt∈[ν–,b+ν]Nν–
G(t, s) = G(b + ν, s), s ∈ [, b + ]N .

(iii) min b+ν
 ≤t≤ (b+ν)


G(t, s) ≥ 

 maxt∈[ν–,b+ν]Nν–
G(t, s) = 

 G(b + ν, s), s ∈ [, b + ]N .

Proof (i) From a representation of G(t, s), it is clear that G(t, s) > .
(ii) By a representation of G(t, s), we have �tG(t, s) >  for  ≤ t – ν +  ≤ s ≤ b +  or

 ≤ s < t – ν +  ≤ b + . Hence G(t, s) is increasing to t for s ∈ [, b + ]N . From this we
may conclude that

max
t∈[ν–,ν+b]Nν–

G(t, s) = G(b + ν, s), s ∈ [, b + ]N .

(iii) Since

G(t, s)
G(b + ν, s)

=

⎧⎨
⎩

(ν–)(t–ν+)(b+ν–s–)ν––(t–s–)ν–

(ν–)(b+)(b+ν–s–)ν––(b+ν–s–)ν– ,  ≤ s < t – ν +  ≤ b + ,
(ν–)(t–ν+)(b+ν–s–)ν–

(ν–)(b+)(b+ν–s–)ν––(b+ν–s–)ν– ,  ≤ t – ν +  ≤ s ≤ b + ,

for t – ν +  ≤ s and b+ν
 ≤ t ≤ (b+ν)

 , we get

G(t, s)
G(b + ν, s)

≥ (ν – )(t – ν + )(b + ν – s – )ν–

(ν – )(b + )(b + ν – s – )ν– ≥ 


.

For s < t – ν +  and b+ν
 ≤ t ≤ (b+ν)

 , we have

min
b+ν

 ≤t≤ (b+ν)


G(t, s)
G(b + ν, s)

=
(ν – )( b+ν

 – ν + )(b + ν – s – )ν– – ( b+ν
 – s – )ν–

(ν – )(b + )(b + ν – s – )ν– – (b + ν – s – )ν– .
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Now, we want to get

(ν – )( b+ν
 – ν + )(b + ν – s – )ν– – ( b+ν

 – s – )ν–

(ν – )(b + )(b + ν – s – )ν– – (b + ν – s – )ν– ≥ 


, ()

that is,

(ν – )
(

b + ν


– ν + 

)
(b + ν – s – )ν– –

(
b + ν


– s – 

)ν–

≥ 


(ν – )(b + )(b + ν – s – )ν– –



(b + ν – s – )ν–.

In fact

b + ν


– ν +  ≥ b + 


,


 (b + ν – s – )ν–

( b+ν
 – s – )ν–

≥ .

So () holds, which completes the proof. �

Lemma . If f : [ν – ,ν – , . . . , b + ν]Nν– × [, +∞) → [,∞) is a continuous function.
Then the solutions y of the FBVP () satisfy

min
b+ν

 ≤t≤ (b+ν)


y(t) ≥ 


max
[ν–,b+ν]Nν–

∣∣y(t)
∣∣.

Proof Taking into account Lemma ., we have

min
b+ν

 ≤t≤ (b+ν)


∣∣y(t)
∣∣ ≥ 



b+∑
s=

G(b + ν, s)f
(
s + ν – , y(s + ν – )

)

≥ 


max
t∈[ν–,b+ν]Nν–

b+∑
s=

G(t, s)f
(
s + ν – , y(s + ν – )

)

=



max
[ν–,b+ν]Nν–

∣∣y(t)
∣∣. �

The following fixed point theorem will play a major role in our main results.

Lemma . [] Let B a Banach space and let K ⊆ B be a cone. Assume that � and �

are bounded open sets contained in B such that  ∈ � and � ⊆ �. Further, assume that
T : K ∩ (�\�) →K is a completely continuous operator. If either

(i) ‖Ty‖ ≤ ‖y‖ for y ∈K ∩ ∂� and ‖Ty‖ ≥ ‖y‖ for y ∈K ∩ ∂�; or
(ii) ‖Ty‖ ≥ ‖y‖ for y ∈K ∩ ∂� and ‖Ty‖ ≤ ‖y‖ for y ∈K ∩ ∂�.

Then the operator T has at least one fixed point in K ∩ (�\�).

3 Main results
For the sake of convenience, we denote

f = lim inf
y→

min
t∈[ν–,b+ν]Nν–

f (t, y)
y

, f  = lim sup
y→

max
t∈[ν–,b+ν]Nν–

f (t, y)
y

,
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f∞ = lim inf
y→+∞ min

t∈[ν–,b+ν]Nν–

f (t, y)
y

, f ∞ = lim sup
y→+∞

max
t∈[ν–,b+ν]Nν–

f (t, y)
y

,


A

=
b+∑
s=

G(b + ν, s),

B

=



[ (b+ν)
 –ν+]∑

s=[ b+ν
 –ν+]

G
([

b – ν



]
+ ν, s

)
.

We use Lemma . to establish the existence of positive solutions to the FBVP (). To
this end, one or several of the following conditions will be needed.

(H) f : [ν – ,ν – , . . . , b + ν]Nν– × [, +∞) → [, +∞) is continuous.
(H) There is a number p >  such that f (t, y) < Ap for  ≤ y ≤ p and ν –  ≤ t ≤ b + ν .
(H) There is a number p >  such that f (t, y) > Bp for 

 p ≤ y ≤ p and b+ν
 ≤ t ≤ (b+ν)

 .
(H) f > B, f∞ > B.
(H) f  < A, f ∞ < A.
(H) f > B, f ∞ < A.
(H) f  < A, f∞ > B.
(H∗

) f = +∞, f∞ = +∞.
(H∗

) f  = , f ∞ = .

Let

B =
{

y : [ν – , b + ν]Nν– →R, y(ν – ) = �y(b + ν) = �y(ν – ) = 
}

.

Then B is a Banach space with respect to the norm ‖y‖ = maxt∈[ν–,b+ν]Nν–
|y(t)|. We define

a cone in B by

K =
{

y ∈ B : y(t) ≥ , min
b+ν

 ≤t≤ (b+ν)


y(t) ≥ 


‖y‖
}

.

Now consider the operator T defined by

(Ty)(t) =
b+∑
s=

G(t, s)f
(
s + ν – , y(s + ν – )

)
. ()

It is easy to see that y = y(t) is a solution of the FBVP () if and only if y = y(t) is a fixed
point of T . We shall obtain sufficient conditions for the existence of fixed points of T .
First, we notice that T is a summation operator on a discrete finite set. Hence, T is trivially
completely continuous. From (), then

min
b+ν

 ≤t≤ (b+ν)


(Ty)(t) ≥ 


b+∑
s=

G(b + ν, s)f
(
s + ν – , y(s + ν – )

)

≥ 


max
t∈[ν–,b+ν]Nν–

b+∑
s=

G(t, s)f
(
s + ν – , y(s + ν – )

)

=



‖Ty‖,

hence TK ⊂K.
In the sequel, let �λ = {y ∈K : ‖y‖ < λ}, for λ > , ∂�λ = {y ∈K : ‖y‖ = λ}.
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Theorem . Assume that there exist two different positive numbers r and R such that f
satisfies condition (H) at r and condition (H) at R. Then the FBVP () has at least one
positive solution y ∈K satisfying min{r, R} ≤ ‖y‖ ≤ max{r, R}.

Proof We know that T : K →K, and T is completely continuous. Without loss of general-
ity suppose that r < R. Note that for y ∈ ∂�r , we have ‖y‖ = r, so that condition (H) holds
for all y ∈ ∂�r . Then

(Ty)(t) ≤
b+∑
s=

G(b + ν, s)f
(
s + ν – , y(s + ν – )

)

≤ Ar
b+∑
s=

G(b + ν, s)

= r,

i.e., we have ‖Ty‖ ≤ ‖y‖ for y ∈K ∩ ∂�r .
Note that for y ∈ ∂�R, we have ‖y‖ = R, so condition (H) holds for all y ∈ ∂�R. Since

[ b–ν
 ] + ν ∈ [ b+ν

 , (b+ν)
 ],

(Ty)
([

b – ν



]
+ ν

)
=

b+∑
s=

G
([

b – ν



]
+ ν, s

)
f
(
s + ν – , y(s + ν – )

)

≥ 


[ (b+ν)
 –ν+]∑

s=[ b+ν
 –ν+]

G
([

b – ν



]
+ ν, s

)
f
(
s + ν – , y(s + ν – )

)

≥ BR


[ (b+ν)
 –ν+]∑

s=[ b+ν
 –ν+]

G
([

b – ν



]
+ ν, s

)

= R,

i.e., we have ‖Ty‖ ≥ ‖y‖ for y ∈K ∩ ∂�R.
By Lemma . that T has at least one fixed point, say, y ∈ �R\�r . This function y(t) is

a positive solution of () and satisfies r ≤ ‖y‖ ≤ R. The proof is complete. �

Theorem . Assume that conditions (H), (H), and (H) hold. Then the FBVP () has at
least two positive solutions y and y with  < ‖y‖ < p ≤ ‖y‖.

Proof Suppose that (H) holds. Since f > B, there exist ε >  and  < r < p such that

f (t, y) ≥ (B + ε)y,  ≤ y ≤ r, t ∈ [ν – , b + ν]Nν– .

Let r ∈ (, r). Thus for y ∈ ∂�r , we have

(Ty)
([

b – ν



]
+ ν

)
≥

b+∑
s=

G
([

b – ν



]
+ ν, s

)
(B + ε)y

≥ (B + ε) · 


‖y‖
[ (b+ν)

 –ν+]∑
s=[ b+ν

 –ν+]

G
([

b – ν



]
+ ν, s

)
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> B · 


‖y‖
[ (b+ν)

 –ν+]∑
s=[ b+ν

 –ν+]

G
([

b – ν



]
+ ν, s

)

= r,

from which we see that ‖Ty‖ > ‖y‖ for y ∈K ∩ ∂�r .
On the other hand, since f∞ > B, there exist η >  and R >  such that

f (t, y) ≥ (B + η)y, y ≥ R, t ∈ [ν – , b + ν]Nν– .

Choose R > max{R, p}. For y ∈ ∂�R , since y(t) ≥ 
‖y‖ > R for b+ν

 ≤ t ≤ (b+ν)
 , we have

(Ty)
([

b – ν



]
+ ν

)
≥

b+∑
s=

G
([

b – ν



]
+ ν, s

)
(B + η)y

≥ (B + η) · 


‖y‖
[ (b+ν)

 –ν+]∑
s=[ b+ν

 –ν+]

G
([

b – ν



]
+ ν, s

)

> B · 


‖y‖
[ (b+ν)

 –ν+]∑
s=[ b+ν

 –ν+]

G
([

b – ν



]
+ ν, s

)

= R,

from which we see that ‖Ty‖ > ‖y‖ for y ∈K ∩ ∂�R .
For any y ∈ ∂�p, from (H), we have f (t, y) < Ap, t ∈ [ν – , b + ν]Nν– , then

(Ty)(t) =
b+∑
s=

G(t, s)f
(
s + ν – , y(s + ν – )

)

≤
b+∑
s=

G(b + ν, s)Ap

= p,

from which we see that ‖Ty‖ ≤ ‖y‖ for y ∈K ∩ ∂�p.
Therefore, by Lemma ., we complete the proof. �

By the proof of Theorem ., we obtain the following corollary.

Corollary . Assume that (H) and (H) hold, (H) is replaced by (H∗
). Then the FBVP ()

has at least two positive solutions y and y with  < ‖y‖ < p ≤ ‖y‖.

Theorem . Suppose that conditions (H), (H), and (H) hold, f >  for t ∈ [ν – ,
b + ν]Nν– . Then the FBVP () has at least two positive solutions y and y with  < ‖y‖ <
p < ‖y‖.

Proof Suppose that (H) holds. Since f  < A, one can find ε >  (ε < A) and  < r < p such
that

f (t, y) ≤ (A – ε)y,  ≤ y ≤ r, t ∈ [ν – , b + ν]Nν– .
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Let r ∈ (, r), for y ∈ ∂�r , we get

(Ty)(t) =
b+∑
s=

G(t, s)f
(
s + ν – , y(s + ν – )

)

≤
b+∑
s=

G(b + ν, s)(A – ε)r

< Ar

b+∑
s=

G(b + ν, s)

= r,

from which we see that ‖Ty‖ < ‖y‖ for y ∈ ∂�r .
On the other hand, since f ∞ < A, there exist  < σ < A and R >  such that

f (t, y) ≤ σy, y ≥ R, t ∈ [ν – , b + ν]Nν– .

Let M = max(t,y)∈[ν–,b+ν]×[,R] f (t, y), then  ≤ f (t, y) ≤ σy + M,  ≤ y < +∞. Let R >
max{p, M

A–σ
}, for y ∈ ∂�R , we have

‖Ty‖ ≤
b+∑
s=

G(b + ν, s)f
(
s + ν – , y(s + ν – )

)

≤ (
σ‖y‖ + M

) b+∑
s=

G(b + ν, s)

= (σR + M) · 
A

< R.

Therefore, we have ‖Ty‖ ≤ ‖y‖ for y ∈ ∂�R .
Finally, for any y ∈ ∂�p, since 

 p ≤ y(t) ≤ p for b+ν
 ≤ t ≤ (b+ν)

 , we have

(Ty)
([

b – ν



]
+ ν

)
=

b+∑
s=

G
([

b – ν



]
+ ν, s

)
f
(
s + ν – , y(s + ν – )

)

> B · 


p
[ (b+ν)

 –ν+]∑
s=[ b+ν

 –ν+]

G
([

b – ν



]
+ ν, s

)

= p = ‖y‖,

from which we see that ‖Ty‖ > ‖y‖ for y ∈K ∩ ∂�p.
By Lemma ., the proof is complete. �

From the proof of Theorem ., we get the following corollary.

Corollary . Assume that (H) and (H) hold, (H) is replaced by (H∗
). Then the FBVP

() has at least two positive solutions.
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From the proof of Theorem . and ., we get some theorems and corollaries.

Theorem . Suppose that condition (H) and (H) are satisfied. Then the FBVP () has at
least one positive solution.

Corollary . Suppose that (H) holds. Also assume that f = +∞, f ∞ = . Then the FBVP
() has at least one positive solution.

Theorem . Suppose that (H) and (H) hold. Then the FBVP () has at least one positive
solution.

Corollary . Suppose that (H) holds. Also assume that f  = , f∞ = +∞. Then the FBVP
() has at least one positive solution.

4 Some examples
In this section, we present some examples to validate our main conclusions. In the fol-
lowing examples, we take ν = 

 and b = . A computation shows that A ≈ .,
B ≈ ..

Example . Consider the following Caputo fractional difference boundary value prob-
lem:

⎧⎨
⎩� 


C y(t) = – 

 et–( 
 y 

 (t + 
 ) + 

 y 
 (t + 

 )),

y(– 
 ) = �y( 

 ) = �y(– 
 ) = ,

()

where f (t, y) = 
 et– 

 ( 
 y 

 + 
 y 

 ), thus f = f∞ = +∞. Taking p = , we get

f (t, y) ≤ 


(



· 

 +




· 



)
= . < Ap

for  ≤ y ≤ p and ν –  ≤ t ≤ b + ν . All conditions in Corollary . are satisfied. Applying
Corollary ., the FBVP () has at least two positive solutions y and y such that  < ‖y‖ <
 < ‖y‖.

Example . Consider the following boundary value problem:

⎧⎨
⎩� 


C y(t) = –( + cos(t + 

 ))y(t + 
 )e–y(t+ 

 ),

y(– 
 ) = �y( 

 ) = �y(– 
 ) = .

()

Let f (t, y) = ( + cos t)ye–y, then f  = f ∞ = . We choose p = , when 
 p ≤ y ≤ p and

b+ν
 ≤ t ≤ (b+ν)

 , we get

f (t, y) ≥ ( – )pe–p ≈ .p ≥ Bp.

All conditions in Corollary . are satisfied. Thus, the FBVP () has at least two positive
solutions y and y such that  < ‖y‖ <  < ‖y‖.
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Example . Consider the following boundary value problem:

⎧⎨
⎩

� 


C y(t) = – 
 y(t + 

 )( + 
+y(t+ 

 )
),

y(– 
 ) = �y( 

 ) = �y(– 
 ) = ,

()

where f (t, y) = 
 y( + 

+y ), it is easy to compute that f ∞ = . < A and f = . >
B, which yields the condition (H). By Theorem ., the FBVP () has at least one positive
solution.

Example . Consider the following boundary value problem:

⎧⎨
⎩� 


C y(t) = –f (t + ν – , y(t + ν – )),

y(– 
 ) = �y( 

 ) = �y(– 
 ) = ,

()

where f (t, y) = 
+t · y

e–y+e–y+ , it is easy to compute that f  ≈ . < A and f∞ ≈
. > B. Thus, the conditions (H) and (H) hold. Applying Theorem ., we can find
that the FBVP () has at least one positive solution.

Remark If f (t, y) = h(t)g(y), our conclusions hold also.
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