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1 Introduction
The fractional Brownian motion (fBm for short) has become an object of intense study,
due to its interesting properties and its applications in various scientific areas including
telecommunications, turbulence and finance. The fBm with Hurst index H ∈ (, ) is a
continuous centered Gaussian process BH = {BH(t), t ≥ }, starting from zero, with co-
variance

RH (t, s) = E
[
BH (t)BH (s)

]
=



[
tH + sH + |t – s|H]

(.)

for all s, t ≥ . For H = 
 , BH coincides with the standard Brownian motion B. BH is nei-

ther a semimartingale nor a Markov process when H �= 
 . The fBm is a suitable generaliza-

tion of the standard Brownian motion, but exhibits long-range dependence, self-similarity
and which has stationary increments. On the other hand, based on the sufficient study of
fBm, many authors have proposed to use more general self-similar Gaussian processes and
random fields as stochastic models. Such applications have raised many interesting the-
oretical questions about self-similar Gaussian processes and fields in general. Therefore,
some other generalizations of the fBm were introduced. However, contrast to the extensive
studies on fBm, there has been little systematic investigation on other self-similar Gaus-
sian processes. The main reason for this is the complexity of dependence structures for
self-similar Gaussian processes which do not have stationary increments.

As an extension of Brownian motion, recently, Bojdecki et al. [] introduced and studied
a rather special class of self-similar Gaussian process. This process arises from occupation
time fluctuations of branching particle systems with Poisson initial condition. This process
is called the sub-fractional Brownian motion (sub-fBm in short). The sub-fBm with index
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H ∈ (, ) is mean zero Gaussian SH = {SH(t), t ≥ } starting from zero, with covariance

CH (t, s) = E
[
SH (t)SH(s)

]
= sH + tH –



[
(s + t)H + |t – s|H]

(.)

for all s, t ≥ . For H = 
 , SH coincides with the standard Brownian motion B. SH is nei-

ther a semimartingale nor a Markov process when H �= 
 , so many of the power techniques

from stochastic analysis are not available when dealing with SH . The sub-fBm has proper-
ties analogous to those of fBm (self-similarity, long-range dependence, Hölder paths), but
it does not have stationary increments. More works for sub-fractional Brownian motion
can be found in Bojdecki et al. [, ], Tudor [–] and Yan and Shen [].

The sub-fractional Brownian motion satisfies the following estimates:

[(
 – H–) ∧ 

]|t – s|H
E

∣∣SH (t) – SH (s)
∣∣ ≤ [(

 – H–) ∧ 
]|t – s|H . (.)

Thus, Kolmogorov’s continuity criterion implies that sub-fBm is Hölder continuous of
order γ for any γ < H on any finite interval. Therefore, if u is a stochastic process with
Hölder continuous trajectories of order β >  – H , then the path-wise Riemann-Stieltjes
integral

∫ T
 ut(ω) dSH (t)(ω) exists for all T ≥  (see Young []). Yan et al. [] have used

the divergence operator to define the stochastic integrals with respect to sub-fBm with
H > / and showed that if f ∈ C(R) and / < H < , then

f
(
SH (t)

)
= f () +

∫ t


f ′(SH(s)

)
dSH (s) + H

(
 – H–)

∫ t


f ′′(SH (s)

)
sH– ds.

In , Shen and Chen [] defined a stochastic integral with respect to sub-fractional
Brownian motion SH with index H ∈ (, /) that extends the divergence integral from
Malliavin calculus, and established versions of the formulas of Itô and Tanaka that hold
for all H ∈ (, /). Tudor [, ] characterized the domain of the Wiener integral with
respect to a sub-fractional Brownian motion SH(s) with index H ∈ (, ) and stochastic
differential equations driven by sub-fractional Brownian motion has also been consider
by Mendy [].

In this paper, we desire to define a stochastic integral with respect to Q-sub-fractional
Brownian motion SH

Q in infinite dimensional space and consider the following stochastic
semilinear delay evolution equation:

{
dX(t) = (AX(t) + f (t, Xt)) dt + g(t) dSH

Q (t),
X(s) = ϕ(s), –r ≤ s ≤ , r ≥ ,

(.)

under suitable conditions on the operator A, the coefficient functions f , g , and the initial
value ϕ. Here SH

Q (t) denotes an Q-sub-fBm with H ∈ (/, ). The purpose of this paper
is to investigate the existence and uniqueness of mild solutions to the stochastic delay
differential equation (.) and to study its longtime behavior as well.

The contents of the paper are as follows. In Section , some necessary preliminaries on
the stochastic integration with respect to sub-fBm are established. Also a technical lemma
which is crucial in our stability analysis is proved. In Section , the existence and unique-
ness of mild solutions are proved. In Section , we prove that a mild solution, when it
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exists, is also a weak solution. In Section , we establish some sufficient conditions ensur-
ing the exponential decay to zero in mean square of the mild solution of our delay model.
In Section , an example is given to illustrate the effectiveness of our results.

2 Preliminaries
In this section we introduce the sub-fractional Brownian motion as well as the Wiener
integral with respect to it. We also establish some important results which will be needed
throughout this paper.

Let (�,F ,P) be a complete probability space. Now we aim at introducing the Wiener
integral with respect to one-dimensional sub-fBm SH . Fix a time interval [, T]. We denote
by E the linear space of R-valued step functions on [, T], that is, ϕ ∈ E if

ϕ(t) =
n–∑

i=

xiI[ti ,ti+](t),

where t ∈ [, T], xi ∈ R, and  = t < t < · · · < tn = T . For ϕ ∈ E we define its Wiener
integral with respect to SH as

∫ T


ϕ(s) dSH(s) =

n∑

i=

xi
(
SH

ti+
– SH

ti

)
.

Let HSH be the canonical Hilbert space associated to the sub-fBm SH . That is, HSH is
the closure of the linear span E with respect to the scalar product

〈I[,t], I[,s]〉HSH = CH (t, s).

We know that the covariance of sub-fractional Brownian motion can be written as

E
[
SH (t)SH(s)

]
=

∫ t



∫ s


φH (u, v) du dv = CH (s, t), (.)

where φH (u, v) = H(H – )[|u – v|H– – (u + v)H–].
Equation (.) implies that

〈ϕ,ψ〉HSH =
∫ t



∫ t


ϕuψvφH (u, v) du dv (.)

for any pair step functions ϕ and ψ on [, T]. Consider the kernel

nH (t, s) =
–H√

π


(H – 
 )

s/–H
(∫ t

s

(
x – s)H–/ dx

)
I[,t](s). (.)

By Dzhaparidze and Van Zanten [], we have

CH (t, s) = c
H

∫ s∧t


nH (t, u)nH (s, u) du, (.)

where

c
H =


( + H) sin(πH)
π

.
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Property (.) implies that CH (s, t) is non-negative definite. Consider the linear operator
n∗

H from E to L([, T]) defined by

n∗
H (ϕ)(s) := cH

∫ r

s
ϕr

∂nH

∂r
(r, s) dr.

Using (.) and (.) we have

〈
n∗

Hϕ, n∗
Hψ

〉
L([,T]) = c

H

∫ T



(∫ T

s
ϕr

∂nH

∂r
(r, s) dr

)(∫ T

s
ψu

∂nH

∂u
(u, s) du

)
ds

= c
H

∫ T



∫ T



(∫ r∧u



∂nH

∂r
(r, s)

∂nH

∂u
(u, s) ds

)
ϕrψu dr du

= c
H

∫ T



∫ T



∂nH

∂r ∂u
(r, u)ϕrψu dr du

= H(H – )
∫ T



∫ T



[|u – r|H– – (u + r)H–]ϕrψu dr du

= 〈ϕ,ψ〉HSH . (.)

As a consequence, the operator n∗
H provides an isometry between the Hilbert space HSH

and L([, T]). Hence, the process W defined by

W (t) := SH((
n∗

H
)–(I[,t])

)

is a Wiener process, and SH has the following Wiener integral representation:

SH (t) = cH

∫ t


nH (t, s) dW (s)

because (n∗
H )(I[,t])(s) = cHnH (t, s). By Dzhaparidze and Van Zanten [], we have

W (t) =
∫ t


ψH (t, s) dSH(s),

where

ψH (t, s) =
sH–/


(/ – H)

[
tH–/(t – s)/–H – (H – /)

∫ t

s

(
x – s)/–HxH–/ dx

]

× I[,t](s).

In addition, for any ϕ ∈HSH ,

∫ T


ϕ(s) dSH(s) =

∫ T



(
n∗

Hϕ
)
(t) dW (t)

if and only if n∗
Hϕ ∈ L([, T]).

Also denoting L
HSH

([, T]) = {ϕ ∈ HSH , n∗
Hϕ ∈ L([, T])}. Since H > /, we have by
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(.) and Lemma . of [],

L([, T]
) ⊂ L


H
(
[, T]

) ⊂ L
HSH

(
[, T]

)
. (.)

Moreover, the following useful result holds:

Lemma . (Nualart []) For ϕ ∈ L/H ([, T]),

H(H – )
∫ T



∫ T


|ϕr||ϕu||u – r|H– dr du ≤ CH‖ϕ‖

L

H ([,T])

,

where CH = ( H(H–)
B(–H,H– 

 )
)/, with B denoting the beta function.

Next we are interested in considering a sub-fBm with values in Hilbert space and giving
the definition of the corresponding stochastic integral.

Let (U ,‖ · ‖U , 〈·〉U ) and (K ,‖ · ‖K , 〈·〉K ) be two separable Hilbert spaces. Let L(K , U) de-
note the space of all bounded linear operators from K to U . Let Q ∈ L(K , K) be a non-
negative self-adjoint operator. Denote by L

Q(K , U) the space of all ξ ∈ L(K , U) such that
ξQ 

 is a Hilbert-Schmidt operator. The norm is given by

‖ξ‖
L

Q(K ,U) =
∥∥ξQ



∥∥

HS = tr
(
ξQξ ∗).

Then ξ is called a Q-Hilbert-Schmidt operator from K to U .
Let {SH

n (t)}n∈N be a sequence of one-dimensional standard sub-fractional Brownian mo-
tions mutually independent on (�,F ,P). When one considers the following series:

∞∑

n=

SH
n (t)en, t ≥ ,

where {en}n∈N is a complete orthonormal basis in K , this series does not necessarily con-
verge in the space K . Thus we consider a K-valued stochastic process SH

Q (t) given formally
by the following series:

SH
Q (t) =

∞∑

n=

SH
n (t)Q


 en, t ≥ .

If Q is a non-negative self-adjoint trace class operator, then this series converges in the
space K , that is, we have SH

Q (t) ∈ L(�, K). Then we say that the above SH
Q (t) is a K-valued

Q-cylindrical sub-fractional Brownian motion with covariance operator Q. For example,
if {σn}n∈N is a bounded sequence of non-negative real numbers such that Qen = σnen, as-
suming that Q is a nuclear operator in K (that is,

∑∞
n= σn < ∞), then the stochastic process

SH
Q (t) =

∞∑

n=

SH
n (t)Q


 en =

∞∑

n=

√
σnSH

n (t)en, t ≥ ,

is well defined as a K-valued Q-cylindrical sub-fractional Brownian motion.
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Let ϕ : [, T] → L
Q(K , U) such that

∞∑

n=

∥
∥n∗

H
(
ϕQ/en

)∥∥
L([,T];U) < ∞. (.)

Definition . Let ϕ : [, T] → L
Q(K , U) satisfy (.). Then its stochastic integral with

respect to the sub-fBm SH
Q is defined, for t ≥ , as follows:

∫ t


ϕ(s) dSH

Q (s) :=
∞∑

n=

∫ t


ϕ(s)Q/en dSH

n (s)

=
∞∑

n=

∫ t



(
n∗

H
(
ϕQ/en

))
(s) dW (s).

Notice that if

∞∑

n=

∥
∥ϕQ/en

∥
∥

L/H ([,T];U) < ∞, (.)

then in particular (.) holds, which follows immediately from (.).
The following lemma is obtained as a simple application of Lemma ..

Lemma . For any ϕ : [, T] → L
Q(K , U) such that (.) holds, and for any α,β ∈ [, T]

with α > β ,

E

∥
∥∥
∥

∫ β

α

ϕ(s) dSH
Q (s)

∥
∥∥
∥



U
≤ CH(α – β)H–

∞∑

n=

∫ β

α

∥∥ϕ(s)Q/en
∥∥

U ds.

If, in addition,

∞∑

n=

∥∥ϕ(s)Q/en
∥∥

U is uniformly convergent for t ∈ [, T], (.)

then

E

∥∥
∥∥

∫ β

α

ϕ(s) dSH
Q (s)

∥∥
∥∥



U
≤ CH(α – β)H–

∫ β

α

∥
∥ϕ(s)

∥
∥

L
Q(K ,U) ds. (.)

Proof Let {en}n∈N be the complete orthonormal basis of K introduced above. Applying
Lemma . we can obtain

E

∥
∥∥
∥

∫ β

α

ϕ(s) dSH
Q (s)

∥
∥∥
∥



U
= E

∥
∥∥
∥∥

∞∑

n=

∫ β

α

ϕ(s)Q/en dSH(s)

∥
∥∥
∥∥



U

=
∞∑

n=

E

∥
∥∥∥

∫ β

α

ϕ(s)Q/en dSH(s)
∥
∥∥∥



U

=
∞∑

n=

H(H – )
∫ β

α

∫ β

α

∥∥ϕ(t)Q/en
∥∥

U

∥∥ϕ(s)Q/en
∥∥

U
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× [|t – s|H– – (t + s)H–]dt ds

≤
∞∑

n=

H(H – )
∫ β

α

∫ β

α

∥∥ϕ(t)Q/en
∥∥

U

∥∥ϕ(s)Q/en
∥∥

U

× |t – s|H– dt ds

≤ CH

∞∑

n=

(∫ β

α

∥
∥ϕ(s)Q/en

∥
∥/H

U ds
)H

≤ CH (α – β)H–
∞∑

n=

∫ β

α

∥
∥ϕ(s)Q/en

∥
∥

U ds.

The second assertion is an immediate consequence of the Weierstrass M-test. �

Remark . If {σn}n∈N is a bounded sequence of non-negative real numbers such that the
nuclear operator Q satisfies Qen = σnen, assuming that there exists a positive constant kϕ

such that

∥∥ϕ(t)
∥∥

L
Q(K ,U) ≤ kϕ , uniformly in ∈ [, T],

then (.) holds automatically.

3 Existence and uniqueness of mild solution
We denote by C(a, b; L(�; U)) = C(a, b; L(�,F ,P; U)) the Banach space of all continuous
functions from [a, b] into L(�; U) equipped with sup norm. Let us consider two fixed
real numbers r ≥  and T > . If x ∈ C(–r, T ; L(�; U)) for each t ∈ [, T] we denote xt ∈
C(–r, ; L(�; U)) the function defined by xt(θ ) = x(t + θ ), for θ ∈ [–r, ].

In this section we consider the existence and uniqueness of mild solutions to the follow-
ing stochastic evolution equation with delays:

{
dX(t) = (AX(t) + f (t, Xt)) dt + g(t) dSH

Q (t), t ∈ [, T],
X(t) = ϕ(t), t ∈ [–r, ],

(.)

where SH
Q (t) is the sub-fractional Brownian motion which was introduced in the previous

section, the initial data ϕ ∈ C(–r, ; L(�; U)), and A : Dom(A) ⊂ U → U is the infinitesi-
mal generator of a strongly continuous semigroup S(·) on U , that is, for t ≥ , we have

∥∥S(t)
∥∥

U ≤ Meρt , M ≥ ,ρ ∈R.

f : [, T] × C(–r, ; U) → U is a family of nonlinear operators defined for almost every t
which satisfy:

(f.) The mapping t ∈ [, T] → f (t, ξ ) ∈ U is Lebesgue measurable for all
ξ ∈ C(–r, ; L(�; U)).

(f.) There exists a constant C >  such that for any x, y ∈ C(–r, T ; U) and t ∈ [, T],

∫ t



∥∥f (s, xs) – f (s, ys)
∥∥

U ds ≤ C
∫ t

–r

∥∥x(s) – y(s)
∥∥

U ds.
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(f.)
∫ T

 ‖f (s, )‖
U ds < ∞.

Moreover, for g : [, T] → L
Q(K , U) we assume the following conditions: for the complete

orthonormal basis {en}n∈N in K , we have:
(g.)

∑∞
n= ‖gQ/en‖L([,T];U) < ∞.

(g.)
∑∞

n= ‖g(t)Q/en‖U is uniformly convergent for t ∈ [, T].

Definition . A U-valued process X(t) is called a mild solution of (.) if X ∈ C(–r, T ;
L(�; U)), X(t) = ϕ(t), for t ∈ [–r, ] and for t ∈ [, T], satisfies

X(t) = S(t)ϕ() +
∫ t


S(t – s)f (s, Xs) ds

+
∫ t


S(t – s)g(s) dSH

Q (t) P-a.s. (.)

Notice that, thanks to (g.) and the fact that H ∈ (/, ), (.) holds, which implies that
the stochastic integral in (.) is well defined since S(·) is a strongly continuous semigroup.
Moreover, (g.) together with (g.) immediately imply that, for every t ∈ [, T],

∫ t



∥
∥g(s)

∥
∥

L
Q(K ,U) ds < ∞.

Theorem . Under the assumptions on A and conditions (f.)-(f.) and (g.)-(g.), for
every ϕ ∈ C(–r, ; L(�, U)) there exists a unique mild solution X to (.).

Proof We can assume that ρ > , otherwise we can take ρ >  such that, for t ≥ ,
‖S(t)‖U ≤ Meρt .

We start the proof by checking the uniqueness of solutions. Assume that X, Y are two
mild solutions of (.). Then

E
∥∥X(t) – Y (t)

∥∥
U ≤ tE

∫ t



∥∥S(t – s)
(
f (s, Xs) – f (s, Ys)

)∥∥
U ds

≤ tMeρt
E

∫ t



∥
∥f (s, Xs) – f (s, Ys)

∥
∥

U ds

≤ tMeρtC
∫ t


E

∥∥X(s) – Y (s)
∥∥

U ds

≤ tMeρtC
∫ t


sup

≤τ≤s
E

∥
∥X(τ ) – Y (τ )

∥
∥

U ds,

and therefore, since X = Y over the interval [–r, ], by taking the supremum in the above
inequality,

sup
≤θ≤t

E
∥
∥X(θ ) – Y (θ )

∥
∥

U ≤ TMeρT C
∫ t


sup

≤τ≤s
E

∥
∥X(τ ) – Y (τ )

∥
∥

U ds.

The Gronwall’s lemma implies now the uniqueness result.
Now we prove the existence of solutions to problem (.).



Li et al. Advances in Difference Equations  (2015) 2015:48 Page 9 of 17

First of all, we check that the well-defined stochastic integral possesses the repaired reg-
ularity. To this end, let us consider σ >  small enough. We have

E

∥∥
∥∥

∫ t+σ


S(t + σ – s)g(s) dSH

Q (s) –
∫ t


S(t – s)g(s) dSH

Q (s)
∥∥
∥∥



U

≤ E
∥
∥∥
∥

∫ t+σ



(
S(t + σ – s) – S(t – s)

)
g(s) dSH

Q (s)
∥
∥∥
∥



U

+ E
∥∥
∥∥

∫ t+σ

t
S(t – s)g(s) dSH

Q (s)
∥∥
∥∥



U

:= J + J.

Applying inequality (.) to J, we obtain

J ≤ CHtH–
∫ t



∥∥S(t – s)
(
S(σ ) – Id

)
g(s)

∥∥
L

Q(K ,U) ds

≤ CHtH–Meρt
∫ t



∥
∥(

S(σ ) – Id
)
g(s)

∥
∥

L
Q(K ,U) ds → 

when σ →  thanks to the Lebesgue majorant theorem, since, for every s fixed,

S(σ )g(s) → g(s),
∥∥S(σ )g(s)

∥∥
L

Q(K ,U) ≤ Meρσ
∥∥g(s)

∥∥
L

Q(K ,U).

Applying now (.) to J, we have

J ≤ CHσ H–Meρσ

∫ t+σ

t

∥∥g(s)
∥∥

L
Q(K ,U) ds → 

when σ → . Therefore the stochastic integral belongs to the space C(–r, T ; L(�; U)).
We denote X =  and define by recurrence a sequence {Xn}n∈N of processes as

{
Xn(t) = S(t)ϕ() +

∫ t
 S(t – s)f (s, Xn–

s ) ds +
∫ t

 S(t – s)g(s) dSH
Q (s), t ∈ [, T],

Xn(t) = ϕ(t), t ∈ [–r, ].
(.)

The sequence (.) is well defined, since X =  ∈ C(–r, T ; L(�; U)) and given Xn– ∈
C(–r, T ; L(�; U)), let us check that Xn ∈ C(–r, T ; L(�; U)) as well. To this end, let us
consider σ >  sufficiently small. Then

∥
∥Xn(t + σ ) – Xn(t)

∥
∥

U ≤ 
∥∥
∥∥

∫ t



(
S(t + σ – s) – S(t – s)

)
f
(
s, Xn–

s
)

ds
∥∥
∥∥



U

+ 
∥
∥∥
∥

∫ t+σ

t
S(t + σ – s)f

(
s, Xn–

s
)

ds
∥
∥∥
∥



U

:= I + I.

On the one hand,

EI ≤ Mteρt
E

∫ t



∥
∥(

S(σ ) – Id
)
f
(
s, Xn–

s
)∥∥

U ds → 
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when σ →  thanks to the Lebesgue majorant theorem, since, for each s fixed,

S(σ )f
(
s, Xn–

s
) → f

(
s, Xn–

s
)
,

∥
∥S(σ )f

(
s, Xn–

s
)∥∥

U ≤ Meρσ
∥
∥f

(
s, Xn–

s
)∥∥

U

and

E

∫ t



∥∥f
(
s, Xn–

s
)∥∥

U ds ≤ CE

∫ t

–r

∥∥Xn–(s)
∥∥

U ds + E

∫ t



∥∥f (s, )
∥∥

U ds

due to conditions (f.) and (f.) and the fact that Xn– ∈ C(–r, T ; L(�; U)).
On the other hand,

I ≤ σMeρσ

∫ t+σ

t

∥
∥f

(
s, Xn–

s
)

– f (s, )
∥
∥

U ds + σMeρσ

∫ t+σ

t

∥
∥f (s, )

∥
∥

U ds

≤ σMeρσ C
∫ t+σ

–r

∥
∥Xn–(s)

∥
∥

U ds + σMeρσ

∫ t+σ

t

∥
∥f (s, )

∥
∥

U ds,

so that

EI ≤ σMeρσ C
∫ t+σ

–r
E

∥∥Xn–(s)
∥∥

U ds + σMeρσ

∫ t+σ

t

∥∥f (s, )
∥∥

U ds → 

when σ → .
Next, we want to show that {Xn}n∈N is a Cauchy sequence in C(–r, T ; L(�; U)).
Firstly, for t ∈ [, T] and n ∈N, since Xn = Xn– on [–r, ], we have

∥∥Xn+(t) – Xn(t)
∥∥

U ≤ tMeρtC
∫ t



∥∥Xn(s) – Xn–(s)
∥∥

U ds

and this implies

E
∥∥Xn+(t) – Xn(t)

∥∥
U ≤ tMeρtC

∫ t


sup

≤τ≤s

∥∥Xn(τ ) – Xn–(τ )
∥∥

U ds.

Defining

Gn(t) = sup
≤θ≤t

E
∥∥Xn+(θ ) – Xn(θ )

∥∥
U ,

we obtain

Gn(t) ≤ k
∫ t


Gn–(s) ds, ∀n ≥ 

for k = TMeρT C. Consequently, by iteration we can obtain for ∀t ∈ [, T],

Gn(t) ≤ kn–Tn–

(n – )!
G(T), ∀n ≥ .

Since Xn+(t) = Xn(t), ∀t ∈ [–r, ], the last estimate implies that {Xn}n∈N is a Cauchy se-
quence in C(–r, T ; L(�; U)).
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Finally, we check that the limit X of the sequence {Xn}n∈N is a solution of (.). But this
is straightforward, taking into account that Xn is defined by (.) and that f satisfies (f.),
so that, in particular, when n → ∞,

E

∥
∥∥
∥

∫ t


S(t – s)

(
f
(
s, Xn–

s
)

– f (s, Xs)
)

ds
∥
∥∥
∥



U
≤ tMeρtC

∫ t


E

∥∥Xn–(s) – X(s)
∥∥

U ds → ,

and therefore X is the unique (mild) solution of (.). �

4 Existence of weak solutions
In this section we prove that the mild solution to system (.) is also a weak solution. First
of all we recall the definition of weak solution according to Da Prato and Zabczyk [].

Definition . An U-valued process X(t), t ∈ [–r, T] is called a weak solution of (.) if
X(t) = ϕ(t), for t ∈ [–r, ], and for all ξ ∈ D(A∗) and all t ∈ [, T],

〈
X(t), ξ

〉
U =

〈
ϕ(), ξ

〉
U +

∫ t



(〈
X(s), A∗ξ

〉
U +

〈
f (s, Xs), ξ

〉
U

)
ds

+
∫ t



〈
g(s), ξ

〉
U dSH

Q (s) P-a.s.

Theorem . Under the assumptions of Theorem ., the mild solution of (.) is also a
weak solution.

Proof For each ξ ∈ D(A∗) it follows that

E

[∣∣
∣∣

∫ t



〈
X(s), A∗ξ

〉
U ds –

∫ t



〈
S(s)ϕ(), A∗ξ

〉
U ds –

∫ t



∫ s



〈
S(s – τ )f (τ , Xτ ), A∗ξ

〉
U dτ ds

–
∫ t



∫ s



〈
S(s – τ )g(τ ), A∗ξ

〉
U dSH

Q (τ ) ds
∣∣
∣∣

]

≤
∫ t


E

[∣
∣∣
∣
〈
X(s), A∗〉

U –
〈
S(s)ϕ(), A∗ξ

〉
U –

∫ s



〈
S(s – τ )f (τ , Xτ ), A∗ξ

〉
U dτ

–
∫ s



〈
S(s – τ )g(τ ), A∗ξ

〉
U dSH

Q (τ )
∣
∣∣
∣

]
ds

=
∫ t


E

[∣
∣∣∣

〈
X(s) – S(s)ϕ() –

∫ s


S(s – τ )f (τ , Xτ ) dτ

–
∫ s


S(s – τ )g(τ ) dSH

Q (τ ), A∗ξ
〉

U

∣
∣∣
∣

]
ds

= .

Thus, for a.e. ω ∈ �, we have

∫ t



〈
X(s), A∗ξ

〉
U ds =

∫ t



〈
S(s)ϕ(), A∗ξ

〉
U ds +

∫ t



∫ s



〈
S(s – τ )f (τ , Xτ ), A∗ξ

〉
U dτ ds

+
∫ t



∫ s



〈
S(s – τ )g(τ ), A∗ξ

〉
U dSH

Q (τ ) ds. (.)
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Now we use the fact that, for ∈ D(A∗), d
dt S∗(t)ξ = S∗(t)A∗ξ . We can obtain

∫ t



〈
S(s)ϕ(), A∗ξ

〉
U ds =

∫ t



〈
ϕ(), S∗(s)A∗ξ

〉
U ds =

〈
S(t)ϕ() – ϕ(), ξ

〉
U .

On the other hand, using Fubini’s theorem we have

∫ t



∫ s



〈
S(s – τ )f (τ , Xτ ), A∗ξ

〉
U dτ ds

=
∫ t



∫ t

τ

〈
I(,s](τ )f (τ , Xτ ), S∗(s – τ )A∗ξ

〉
U ds dτ

=
∫ t



〈
S(t – τ )f (τ , Xτ ) – f (τ , Xτ ), ξ

〉
U dτ .

Finally,

∫ t



∫ s



〈
S(s – τ )g(τ ), A∗ξ

〉
U dSH

Q (τ ) ds

=
∫ t



∫ t

τ

〈
I(,s](τ )g(τ ), S∗(s – τ )A∗ξ

〉
U ds dSH

Q (τ )

=
∫ t



〈
g(τ ), S∗(t – τ )ξ – ξ

〉
U dSH

Q (τ )

=
∫ t



〈
S(t – τ )g(τ ), ξ

〉
U dSH

Q (τ ) –
∫ t



〈
g(τ ), ξ

〉
U dSH

Q (τ ).

Therefore by (.) for a.e. ω ∈ �, it follows that

∫ t



〈
AX(s), ξ

〉
U ds =

∫ t



〈
X(s), A∗ξ

〉
U ds

=
〈
S(t)ϕ() – ϕ(), ξ

〉
U +

∫ t



〈
S(t – τ )f (τ , Xτ ) – f (τ , Xτ ), ξ

〉
U dτ

+
∫ t



〈
S(t – τ )g(τ ), ξ

〉
U dSH

Q (τ ) –
∫ t



〈
g(τ ), ξ

〉
U dSH

Q (τ )

=
〈
X(t) – ϕ(), ξ

〉
U +

∫ t



(〈
X(τ ), A∗ξ

〉
U +

〈
f (τ , Xτ ), ξ

〉
U

)
dτ

+
∫ t



〈
g(τ ), ξ

〉
U dSH

Q (τ ).

Consequently, it follows that almost surely

〈
X(t), ξ

〉
U =

〈
ϕ(), ξ

〉
U +

∫ t



(〈
X(s), A∗ξ

〉
U +

〈
f (s, Xs), ξ

〉
U

)
ds +

∫ t



〈
g(s), ξ

〉
U dSH

Q (s),

which means that X(t) is the weak solution to (.). �

5 Exponential decay of solutions in mean square
In this section we investigate the exponential stability of the mild solutions to (.). We
impose the following conditions:
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Condition  The operator A is a closed linear operator generating a strongly continuous
semigroup S(t), t ≥ , on the separable Hilbert space U and satisfies

∥
∥S(t)

∥
∥

U ≤ Me–λt , ∀t ≥ , where M ≥ ,λ > .

Condition  There exists a constant C ≥  such that for any x, y ∈ C(–r, T ; U) and for all
t ≥ ,

∫ t


ems∥∥f (s, xs) – f (s, ys)

∥∥
U ≤ C

∫ t

–r
ems∥∥x(s) – y(s)

∥∥
U ds for all  ≤ m ≤ λ

and
∫ ∞


eλs∥∥f (s, )

∥
∥

U ds < ∞.

Condition  In addition to assumptions (g.) and (g.), assume

∫ ∞


eλs∥∥g(s)

∥∥
L

Q(K ,U) ds < ∞.

The following theorem shows the exponential decay to zero in mean square, with an ex-
plicit exponential decay rate γ .

Theorem . In addition to Conditions -, assume that the mild solution X(t) of system
(.) corresponding to initial function ϕ ∈ C(–r, ; L(�; U)), exists for all t ≥ –r, and that

λ > CM. (.)

Then there exists a constant γ >  such that

lim sup
t→∞

(

t

)
logE

∥∥X(t)
∥∥

U ≤ –γ .

In other words, every mild solution exponentially decays to zero in mean square.

Proof By (.) we can choose an θ >  such that γ = λ – θ – CMλ– > . Then for this γ

we have

E
∥∥X(t)

∥∥
U ≤ E

∥∥S(t)ϕ()
∥∥

U + E
∥∥∥
∥

∫ t


S(t – s)f (s, Xs) ds

∥∥∥
∥



U

+ E
∥
∥∥∥

∫ t


S(t – s)g(s) dSH

Q (s)
∥
∥∥∥



U
.

Therefore, by Condition  and Lemma . we have

E
∥∥X(t)

∥∥
U ≤ E

∥∥S(t)ϕ()
∥∥

U + M
∫ t


e–λ(t–s) ds

∫ t


e–λ(t–s)

E
∥∥f (s, Xs)

∥∥
U ds

+ CH MtH–
∫ t


e–λ(t–s)∥∥g(s)

∥
∥

L
Q(K ,U) ds
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≤ Me–λt
E

∥∥ϕ()
∥∥

U +

λ

M
∫ t


e–λ(t–s)

E
∥∥f (s, Xs)

∥∥
U ds

+ CH MtH–
∫ t


e–λ(t–s)∥∥g(s)

∥
∥

L
Q(K ,U) ds

and

eλt
E

∥∥X(t)
∥∥

U ≤ M
E

∥∥ϕ()
∥∥

U +

λ

M
∫ t


eλs

E
∥∥f (s, Xs)

∥∥
U ds

+ CHMtH–
∫ t


eλs∥∥g(s)

∥
∥

L
Q(K ,U) ds.

Then, for the chosen parameter θ , we obtain

e(λ–θ )t
E

∥
∥X(t)

∥
∥

U ≤ Me–θ t
E

∥
∥ϕ()

∥
∥

U +

λ

M
∫ t


e(λ–θ )s

E
∥
∥f (s, Xs)

∥
∥

U ds

+ CHMtH–e–θ t
∫ t


eλs∥∥g(s)

∥∥
L

Q(K ,U) ds.

On the one hand, Condition  ensures the existence of a positive constant C such that

CHMtH–e–θ t
∫ t


eλs∥∥g(s)

∥∥
L

Q(K ,U) ds ≤ C for all t ≥ ,

hence,

e(λ–θ )t
E

∥∥X(t)
∥∥

U ≤ C + M
E

∥∥ϕ()
∥∥

U +

λ

M
∫ t


e(λ–θ )s

E
∥∥f (s, Xs)

∥∥
U ds.

On the other hand, in view of Condition , there exists another positive constant C such
that

∫ t


e(λ–θ )s

E
∥∥f (s, Xs)

∥∥
U ds ≤ C

∫ 

–r
e(λ–θ )s

E
∥∥ϕ(s)

∥∥
U ds + C

∫ t


e(λ–θ )s

E
∥∥X(s)

∥∥
U ds

+ 
∫ t


e(λ–θ )s∥∥f (s, )

∥
∥

U ds

≤ C + C
∫ 

–r
E

∥∥ϕ(s)
∥∥

U ds + C
∫ t


e(λ–θ )s

E
∥∥X(s)

∥∥
U ds.

Thus, we obtain

e(λ–θ )t
E

∥∥X(t)
∥∥

U ≤ C + Mλ–C + CMλ–
∫ 

–r
E

∥∥ϕ(s)
∥∥

U ds

+ CMλ–
∫ t


e(λ–θ )s

E
∥
∥X(s)

∥
∥

U ds

= C + CMλ–
∫ t


e(λ–θ )s

E
∥∥X(s)

∥∥
U ds,

where C is a suitable positive constant. Therefore, Gronwall’s lemma implies that

e(λ–θ )t
E

∥∥X(t)
∥∥

U ≤ CeCMλ–t .
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Consequently,

E
∥
∥X(t)

∥
∥

U ≤ Ce(CMλ––λ+θ )t = Ce–γ t .

The proof is complete. �

Remark . A remarkable fact is that the decay rate γ is independent of H . Indeed, in the
case of considering a Q-Brownian motion, i.e., the case H = /, instead of our sub-fBm
SH

Q , the condition on λ would be exactly (.) (to check this assertion, it is enough to take
into account the isometry for classical Wiener integrals). In other words, whenever the
stochastic integral is well defined, and under Conditions -, the rate of the exponential
decay to zero in mean square is insensitive to the parameter H .

Remark . Theorem . remains true if we replace the first part of Condition  by Con-
dition  below.

Condition  For any x ∈ C(–r, T ; U),

∫ t


ems∥∥f (s, Xs)

∥
∥

U ≤ C + C
∫ t

–r
ems∥∥X(s)

∥
∥

U ds for all  ≤ m ≤ λ.

6 An example
In this section, an example is provided to illustrate the obtained theory.

Let K = L(,π ) and en =
√


π

sin(nx), n ∈ N. Then {en}n∈N is a complete orthonormal

basis in K . Let U = L(,π ) and A = ∂

∂x with domain D(A) = L
(,π ) ∩ L(,π ). Then

it is well known that Au = –
∑∞

n= n〈u, en〉U en for any u ∈ U , and A is the infinitesimal
generator of a strongly continuous semigroup of bounded linear operators S(t) : U → U ,
where S(t)u =

∑∞
n= e–nt〈u, en〉U en and for ∀t ≥ , ‖S(t)‖U ≤ e–t . In order to define the

operator Q : K → K , we choose a sequence {σn}n≥ ⊂ R
+ and set Qen = σnen, and assume

that tr(Q) =
∑∞

n=
√

σn < ∞. Define the process SH
Q (s) by

SH
Q (t) =

∞∑

n=

√
σnSH

n (t)en,

where H ∈ (/, ) and {SH
n }n∈N is a sequence of two-sided one-dimensional sub-fractional

Brownian motions mutually independent.
Then we consider the following stochastic evolution equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

du(t, x) = [ ∂

∂x u(t, x) + b(t) · u(t, x(t – r))] dt
+ g(t) dSH

Q (t), t ∈ [, T], x ∈ [,π ],
u(t, ) = u(t,π ) = , t ∈ [, T],
u(t, x) = ϕ(t, x), t ∈ [–τ , ], x ∈ [,π ],

(.)

where r >  and b, g : R+ → R are continuous functions such that g satisfies Condition 
above and b satisfies

∫ ∞


eλs∣∣b(s)

∣
∣ ds < ∞.
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Observe that the fact
∫ ∞

 eλs|b(s)| ds < ∞ implies that b(t) is bounded for all t ≥ . Denote
by b the smallest upper bound of the b. Taking

f (t,ϕt)(η) = sin(t) · ϕ(ηt).

Thus, for any x, y ∈ C(–r, T ; U), and for all t ≥ , one has

∫ t



∥
∥f (s, xs) – f (s, ys)

∥
∥

U ds ≤ b


∫ t

–r

∥
∥x(s) – y(s)

∥
∥ ds

and

∫ t


ems∥∥f (s, xs) – f (s, ys)

∥∥
U ds ≤ b



∫ t

–r
ems∥∥x(s) – y(s)

∥∥
U ds.

Then we can check that there exists a unique mild solution to (.) according to Theo-
rem ..

If we assume, in addition, that

b
 <




,

then any mild solution to (.) decays exponentially to zero in mean square.
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