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Abstract
Numerical solutions to hyperbolic partial differential equations, involving wave
propagations in one direction, are subject to several specific errors, such as numerical
dispersion, dissipation or aliasing. In the multi-dimensional case, where the waves
propagate in all directions, there is an additional specific error resulting from the
discretization of spatial derivatives along the grid lines. Specifically, waves or wave
packets in the multi-dimensional case propagate at different phase or group
velocities, respectively, along different directions. A commonly used term for the
aforementioned multi-dimensional discretization error is the numerical anisotropy or
isotropy error. In this review, the numerical anisotropy is briefly described in the
context of the wave equation in the multi-dimensional case. Then several important
studies that were focused on optimizations of finite difference schemes with the
objective of reducing the numerical anisotropy are discussed.

1 Introduction
Numerical anisotropy is a discretization error that is specific to numerical approximations
of multidimensional hyperbolic partial differential equations (PDE). This error is often
neglected, and the focus is directed toward the reduction of other types of discretization
errors, such as numerical dissipation, dispersion or aliasing (e.g., Lele [], Tam and Webb
[], Kim and Lee [], Zingg and Lomax [], Mahesh [], Hixon [], Ashcroft and Zhang [],
Fauconnier et al. [] or Laizet and Lamballais []), or toward improving the accuracy of
various time marching schemes (e.g., Hu et al. [], Stanescu and Habashi [], Mead and
Renaut [], Bogey and Bailly [] or Berland et al. []). There are several areas, however,
where the numerical anisotropy can significantly affect the numerical solution based on fi-
nite difference or finite volume schemes (examples include computational acoustics, com-
putational electromagnetics, elasticity or seismology). The numerical anisotropy can be
reduced by using, for example, one-dimensional high-resolution discretization schemes,
multi-dimensional optimized difference schemes, or sufficiently fine grids. However, by
increasing the number of grid points the computational time may increase considerably,
while one-dimensional high-resolution difference schemes may generate spurious waves
at the boundaries of the domain. Oftentimes, optimizations of multi-dimensional differ-
ence schemes are more effective.

High-order finite difference schemes that are optimized in one dimension may not pre-
serve their wave number resolution in multi-dimensional problems. These schemes may
experience numerical anisotropy, because the dispersion characteristics along grid lines
may not be the same as the dispersion characteristics associated with the diagonal di-
rections. Over the years, several attempts to reduce the numerical anisotropy by vari-
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ous techniques were reported. A comprehensive analysis of the numerical anisotropy was
performed in the book of Vichnevetsky and Bowles [] where, among others, the two-
dimensional wave equation was solved using two different finite difference schemes for
the Laplacian operator. A considerable reduction of the numerical anisotropy was attained
by weight averaging the two schemes. A slightly similar approach was previously used by
Trefethen [] who used the leap frog scheme to solve the wave equation in two dimen-
sions. Zingg and Lomax [] performed optimizations of finite difference schemes applied
to regular triangular grids that give six neighbor points for a given node. They conducted
comparisons between the newly derived schemes and conventional schemes that were
discretized on square grids, and found that the numerical anisotropy can be significantly
reduced by using triangular grids. Tam and Webb [] proposed an anisotropy correc-
tion to the finite difference representation of the Helmholtz equation. They derived an
anisotropy correction factor using asymptotic solutions to the continuous equation and
its finite difference approximation.

Jo et al. [], in the context of solving the acoustic wave equation, proposed a finite
difference scheme over a stencil consisting of grid points from more than one direction,
by linearly combining two discretizations of the second derivative operator. A notable re-
duction of the numerical anisotropy was obtained, but the numerical dispersion error was
increased. Hustesdt et al. [] proposed a two-staggered-grid finite difference schemes for
the acoustic wave propagation in two dimensions, where the first derivative operator was
discretized along the grid line and along the diagonal direction. Lin et al. [] explored the
dispersion-relation-preserving concept of Tam and Webb [] in two dimensions to opti-
mize the first-order spatial derivative terms of a model equation that resembles the incom-
pressible Navier-Stokes momentum equation. They approximated the derivative using a
nine-point grid stencil, resulting in nine unknown coefficients. Eight of them were de-
termined by employing Taylor series expansions, while the ninth one was determined by
requiring that the two-dimensional numerical dispersion relation is the same as the exact
dispersion relation.

Kumar [] derived isotropic finite difference schemes for the first and second deriva-
tives in the context of symmetric dendritic solidification, and obtained a notable reduction
of the numerical anisotropy. Patra and Karttunen [] introduced several finite difference
stencils for the Laplacian, Bilaplacian, and gradient of Laplacian, with the objective of im-
proving the isotropic characteristics. Their stencils consisted of more grid points than the
conventional schemes, but it was shown that the computational cost may decrease with
more than % due to some gain in terms of stability. Stegeman et al. [] applied spec-
tral analysis to evaluate the error in numerical group velocity (both the magnitude and the
direction) of vorticity, entropy, and acoustic waves, using the numerical solution to the lin-
earized Euler equations in two dimensions. They showed that a different measure of the
group velocity error must be used to account for the error in the propagation direction of
the waves. They also stressed that the numerical group velocity is more important than the
numerical phase velocity in analyzing the errors associated with wave propagation. In a se-
ries of papers [–], Sescu et al. proposed a technique to derive finite difference schemes
in the multi-dimensional case with improved isotropy. The optimization performed in
[–] improved the isotropy of the wave propagation and, moreover, the stability re-
strictions of the multi-dimensional schemes in combination with either Runge-Kutta or
linear multistep time marching methods were found to be more effective. They found that
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the stability restrictions are more favorable when using multi-dimensional schemes, even
if they involve more grid points in the stencils. However, this was advantageous for low
order schemes, such as those of second or fourth order of accuracy, but it was also shown
that favorable stability restrictions can be obtained for higher order of accuracy schemes
(sixth or eight) by increasing the isotropy corrector factor. The approach was extended to
prefactored compact schemes by Sescu and Hixon [, ]. Beside reducing the numeri-
cal anisotropy, the new multi-dimensional compact schemes are computationally cheaper
than the corresponding explicit multi-dimensional scheme defined on the same stencil.

In computational electromagnetics, there were many attempts to reduce the numer-
ical anisotropy, by applying various techniques. Berini and Wu [] conducted a com-
prehensive analysis of the numerical dispersion and numerical anisotropy of finite dif-
ference schemes applied to transmission-line modeling (TLM) meshes. They found that,
under certain circumstances, the time domain nodes introduce anisotropy into the disper-
sion characteristics of isotropic media, stressing the importance of developing schemes
with improved isotropy. Gaitonde and Shang [] proposed a class of high-order com-
pact difference-based finite-volume schemes that minimizes the dispersion and isotropy
error functions for the range of wave numbers of interest. Sun and Trueman [] pro-
posed an optimization of two-dimensional finite difference schemes, by considering addi-
tional nodes surrounding the point of differencing. They obtained a significant reduction
in the numerical anisotropy, dispersion error and the accumulated phase errors over a
broad bandwidth. Further optimizations of this scheme were performed in another pa-
per of Sun and Trueman []. Koh et al. [] derived a two-dimensional finite-difference
time-domain method, discretizing the Maxwell equations, to eliminate the numerical dis-
persion and anisotropy. They showed that the new algorithm has isotropic dispersion
and resembles the exact phase velocity, whose isotropic property is superior to that of
other existing schemes. Shen and Cangellaris [] introduced a new stencil for the spatial
discretization of Maxwell’s equations. Compared to conventional second-order accurate
FDTD scheme, their scheme experienced superior isotropy characteristics of the numer-
ical phase velocity. They also showed that the Courant number cab be increased by us-
ing the newly derived schemes. Kim et al. [] derived new three-dimensional isotropic
dispersion-finite-difference time-domain schemes (ID-FDTD) based on a linear combi-
nation of the traditional central difference equation and a new difference equation us-
ing extra sampling points. Among all versions of the proposed finite-difference schemes,
three of them showed improved isotropy of the wave propagation compared to the orig-
inal scheme of the Yee []. Kong and Chu [] introduced a new unconditionally stable
finite-difference time-domain method with low numerical anisotropy in three dimensions.
Compared with other finite-difference time-domain methods, the normalized numerical
phase velocity of their proposed scheme was significantly improved, while the dispersion
error and numerical anisotropy have been reduced.

This review will describe and discuss the numerical anisotropy in the framework of wave
equation and will present some of the most important optimizations of finite difference
schemes in the context of reducing the numerical anisotropy. In Section , the dispersion
error and the numerical anisotropy existing in finite difference discretizations of the wave
equation are introduced and discussed. In Section , several approaches to reduce the
numerical anisotropy, which were developed over the years by various research groups,
are reviewed and discussed. Concluding remarks are included in Section .
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2 Dispersion error and numerical anisotropy
Let us consider the centered finite difference approximation of the spatial derivative, which
contains both the explicit and the implicit (or compact) parts:

Nc∑

k=

αk
(
u′

j+k + u′
j–k

)
+ u′

j =

h

( Ne∑

k=

ak(uj+k – uj–k)

)
+ O

(
hn), ()

where the grid functions are uj = u(xj) for  ≤ j ≤ N , the derivatives are denoted by a
prime, u′

j, h is the space step, and αk and ak are given coefficients. If Nc =  the scheme is
termed explicit, while compact schemes (also known as implicit or Padé schemes), by con-
trast, have Nc �=  and require the solution of a matrix equation to determine the deriva-
tives along a grid line. Conventionally, the coefficients αk and ak are chosen to provide the
largest possible exponent, n, in the truncation error, for a given stencil width, but in some
instances some of these coefficients are determined to provide improved dispersion char-
acteristics of the scheme. Table  includes some of these weights for various explicit and
compact finite difference schemes: the explicit classical second order scheme (E), the ex-
plicit classical fourth order scheme (E), the explicit classical sixth order scheme (E), the
dispersion-relation-preserving scheme of Tam and Webb [], the compact classical fourth
order scheme (C), the optimized tridiagonal compact scheme of Haras and Ta’asan []
(Haras), the optimized pentadiagonal scheme of Lui and Lele [] (Lui), and the spectral-
like pentadiagonal compact scheme of Lele [] (Lele). The prefactored compact scheme of
Hixon [, ] is also included here in the form

auF ′
j+ + cuF ′

j– + ( – a – c)uF ′
j =


h
[
buj+ – (b – )uj – ( – b)uj–

]
,

cuB′
j+ + auB′

j– + ( – a – c)uB′
j =


h
[
( – b)uj+ – (b – )uj – buj–

]
,

()

where F and B stand for ‘forward’ and ‘backward’, respectively (in a predictor-corrector
time marching framework). For sixth order accuracy, a = / – /(

√
), b =  – /(a),

and c = . The leading order term in the truncation error of a finite difference scheme
depends on the choice of the coefficients and the (n + )st derivative of the function u.

To study the wave number characteristics of finite difference schemes, consider a pe-
riodic domain in real space, x ∈ [, L], with N uniformly spaced points (the spatial step
size is h = L/N ). The discrete Fourier transform of u is given as ûm = 

N
∑N

j= uje–ikmxj with
m = –N/, . . . , N/ – , where the wave number is km = πm/L. The mth component of the
discrete Fourier transform of u′ denoted û′

m is simply ikmûm. Taking the discrete Fourier

Table 1 Weights of the selected spatial finite difference stencils

Stencil α1 α2 a1 a2 a3

E2 0 0 1/2 0 0
E4 0 0 2/3 –1/12 0
E6 0 0 3/4 –3/20 1/60
DRP 0 0 0.770882380 –0.166705904 0.020843142
C4 1/4 0 3/4 0 0
Haras 0.3534620 0 1.5669657/2 0.13995831/4 0
Lui 0.5381301 0.0666331 1.36757772/2 0.823428170/4 0.0185207834/6
Lele 0.5771439 0.0896406 1.3025166/2 0.99355/4 0.03750245/6
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Figure 1 Numerical wave number compared to the analytical wave number.

transform of () implies that

(
û′

m
)

num = iK(kmh)ûm, ()

where the numerical wave number is given as

K(z) =
∑Ne

n= an sin (nz)
 +

∑Nc
n= αn cos (nz)

. ()

Figure  shows the numerical wave number for various explicit and compact schemes,
corresponding to those given in Table . The numerical wave number is compared to the
analytical wave number which is represented by the straight line in Figure . As one can no-
tice, the compact schemes are superior to the explicit schemes; however, compact schemes
are computationally more demanding because large matrices have to be inverted.

In the multi-dimensional case, the numerical wave number and the numerical phase and
group velocity are also dependent on the direction of propagation. Figure  shows the nu-
merical wave number surface for the wave equation in two dimensions, corresponding to
schemes E, E and Hixon as given in Table  and (), respectively. The cone represents the
exact wave number surface, obtained by revolving the straight line from Figure  around
the vertical axis. One can clearly notice the anisotropy in the numerical wave number
surfaces associated with the finite differencing.

A simple way to reveal the numerical anisotropy is by considering the advection equa-
tion in two dimensions,

∂tu = c∇u, ()

with the initial condition u(r, ) = u(r), where r = (x, y) is the vector of spatial coordinates,
c = c(cosα sinα) is the velocity vector (c is a scalar and α the propagation direction angle),
∇ = (∂x∂y)T and u(r, t) and u(r) are scalar functions. A simple semi-discretization of ()
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Figure 2 Numerical wave number surfaces compared to the analytical wave number surface.
(a) Second order explicit scheme (E2); (b) sixth order explicit scheme (E6); (c) sixth order prefactored compact
scheme (Hixon). The cones represent the exact wave number surfaces.

on a square grid is obtained as

dtu = –
c

h
[
cosα(ui+,j – ui–,j) + sinα(ui,j+ – ui,j–)

]
, ()

where h is the grid step. Consider the Fourier-Laplace transform:

ũ(ξ ,η,ω) =


(π )

∫ ∞



∫ ∫ ∞

–∞
u(x, y, t)e–i(ξx+ηy–ωt) dx dy dt, ()

where ξ = K cosα and η = K sinα are the components of the wave number and ω is the fre-
quency (K is the wave number magnitude). The application of Fourier-Laplace transform
to () gives the exact dispersion relation:

ω = cK
(
cos α + sin α

)
= cK . ()

The exact phase velocity is given by ce = ω/K = c. By substituting ω in () with (), u(r, t) is
obtained as a superposition of sinusoidal solutions in the plane with constant phase lines
given by x cosα + y sinα – cet = const. As one can notice, the exact phase velocity ce does
not depend on the propagation direction α, which means that the wave propagates with
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Figure 3 Polar diagram of normalized phase velocities as a function of points per wavelength (PPW)
and the direction of propagation. (a) Fourth-order explicit schemes (lowest number of points per
wavelength is 4); (b) sixth-order compact schemes (lowest number of points per wavelength is 3).

the same phase velocity in all directions (it is isotropic). Moreover, the exact group velocity
defined as ge = ∂ω/∂K = c is the same as the exact phase velocity because the dispersion
relation is a linear function of K .

We now apply the same Fourier-Laplace transform to the numerical approximation ()
and obtain the numerical dispersion relation in the form

ω =
c
h
[
cosα sin(Kh cosα) + sinα sin(Kh cosα)

]
. ()

The numerical phase velocity will be given as

cn =
ω

K
=

c
Kh

[
cosα sin(Kh cosα) + sinα sin(Kh cosα)

]
. ()

The constant phase lines are expressed by the equation x cosα + y sinα – cnt = const
and move with the phase velocity cn. The numerical anisotropy is revealed in () by the
dependence of the numerical phase velocity on the propagation direction angle α. In ad-
dition, the numerical group velocity is different from the numerical phase velocity (while
previously, in the continuous case, they were the same),

gn = ∂Kω = c
[
cos α cos(Kh cosα) + sin α cos(Kh sinα)

]
, ()

which is also dependent on the propagation direction. This directional dependence of both
phase and group velocities defines the numerical anisotropy. As an illustration, Figure 
shows polar diagrams for two typical schemes, the fourth order explicit E and the sixth
order compact C schemes, revealing the numerical anisotropy (the circle of radius  in
Figure  represents the exact solution).

3 Reduction of the numerical anisotropy
In this section, several attempts to reduce the numerical anisotropy, performed by various
research groups over the years, are briefly reviewed. The optimizations of the schemes
are grouped according to the mathematical model: wave equation, Helmholtz equations,
advection equation, Maxwell equation, and dendritic solidification equations.



Sescu Advances in Difference Equations  (2015) 2015:9 Page 8 of 17

3.1 Wave equation
Although the behavior of the numerical anisotropy was often reported in various one-
dimensional optimizations of finite difference schemes, one of the first systematic at-
tempts to specifically reduce the numerical anisotropy in finite difference schemes was
introduced by Trefethen [] in the framework of wave equation. To illustrate Trefethen’s
approach, let us consider the two-dimensional wave equation in the form

∂ttu = ∂xxu + ∂yyu, ()

defined in R × [,∞), with appropriate initial and boundary conditions. Using the
Fourier-Laplace transform, it is ease to find the exact dispersion relation in the form
ω = ξ  + η, where ω is the frequency and (ξ ,η) is the wave number vector. Equation
() was discretized by Trefethen [] on a Cartesian grid, using second order accurate
schemes for both temporal and spatial derivatives as

un+
ij – un

ij + un–
ij =

k

h

(
un

i+,j + un
i–,j + un

i,j+ + un
i,j– – un

i,j
)

()

which was labeled LF. Then the same scheme was used to discretize (), except the
spatial derivatives were approximated along the diagonal directions with the space step√

h; the latter discretization was termed LF. It was found that the weighted averaging
/LF +/LF provided a low numerical anisotropy in the order of (

√
ξ  + ηh). Slightly

the same approach was used by Vichnevetsky [] who corrected the numerical isotropy
of the wave propagation in two dimensions using either the linear advection equation or
the wave equation.

In a series of papers, Sescu et al. [–] proposed a technique to derive explicit multi-
dimensional finite difference schemes for wave equation and Euler equations. By using
the transformation matrix between two orthogonal reference frames, one aligned with the
grid line and the other along the diagonal direction, the multi-dimensional finite difference
scheme was obtained as

(∂xu)i,j =


h( + β)

ν=M∑

ν=–M

aν

(
Eν

x +
β


Dx

)
· ui,j, ()

where the multi-dimensional space shift operator Eν
x · ui,j = ui+ν,j (see Vichnevetsky and

Bowles [] for one dimension) is used. The coefficients an are those from the classical
centered explicit schemes. The operator Dν

x · was defined as Dν
x · = (Eν

xEν
y + E–ν

x Eν
y )· The pa-

rameter β is called isotropy corrector factor (ICF). The application of the Fourier trans-
form to the multi-dimensional schemes gives the numerical wave number

(ξh)∗opt =


( + β)

M∑

n=–N

an

{
enIξh +

β


[
enI(ξ+η)h + enI(ξ–η)h]

}
. ()

Then the numerical dispersion relation corresponding to two-dimensional wave equa-
tion was considered in the form ω – [(ξh)∗

opt + (ηh)∗
opt] = , and the ICF was determined

by minimizing the integrated error between the phase or group velocities defined along
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the x and the x = y directions. Two curves in wave number-frequency space were con-
sidered: one was the intersection between the numerical dispersion relation surface and
η =  plane, and the other was the intersection between the numerical dispersion relation
surface and the ξ = η plane. These two curves were superposed in the (Kh,ω) plane, where
Kh = [(ξh) + (ηh)] 

 . Assuming that the equations of the two curves in (Kh,ω) plane are
ω = ω(Kh,β) and ω = ω(Kh,β), the integrated error between the phase velocities was
then calculated on a specified interval as C(β) =

∫ η

 |c(Kh,β) – c(Kh,β)|d(Kh), where
c(Kh,β) and c(Kh,β) are the numerical phase velocities. The minimization was done by
equating the first derivative of C(β) or G(β) with zero, which provided the value of ICF, β .

Sescu et al. [, ] conducted a comprehensive stability analysis of the multi-dimen-
sional schemes combined with either linear-multistep or multistage time marching
schemes, and obtained several noteworthy results. For the Leap-Frog scheme applied to
the advection equations, it was shown that the stability restriction corresponding to multi-
dimensional schemes differs from the corresponding stability restriction via conventional
schemes by the factor (β + )/(β + ), where β is the isotropy corrector factor. The con-
clusion was that the stability restrictions corresponding to multi-dimensional schemes
are more convenient compared to the conventional schemes. For an arbitrary direction of
the convection velocity with |cx| ≥ |cy|, the stability restriction for conventional stencils
was given by σx + σy ≤ CFL, where σx = k|cx|/h and σy = k|cy|/h. For multi-dimensional
stencils the stability restriction was given by ( + β)σx + σy ≤ CFL( + β) (where, for ex-
ample, CFL is , . or . corresponding to E, E or E scheme, respectively).
Adams-Bashforth and Runge-Kutta time marching schemes in combination with con-
ventional and multi-dimensional schemes were also analyzed, and it was found that the
multi-dimensional schemes provide less restrictive stability limits.

3.2 Helmholtz equation
Tam and Webb [] performed an anisotropy correction of the finite difference represen-
tation of the Helmholtz equation,

∇p + ξ p = f , ()

where p is the pressure perturbation, ∇ is the Laplacian operator, f is the source distribu-
tion (e.g., a monopole), ξ = π/λ is the wave number, and λ is the acoustic wavelength. Tam
and Webb [] showed that the finite difference discretization of the Helmholtz equation,

pi+,j – pi,j + pi–,j

h +
pi,j+ – pi,j + pi,j–

h + ξ pi,j = fi,j ()

with five grid points per wavelength introduces significant numerical anisotropy (equally
spaced grid is assumed in both the x- and y-direction, and the spatial step is denoted as
before by h). They constructed an anisotropy correction factor using asymptotic solutions
to the continuous equation () and its finite difference approximation () as

pa(r, θ )rij→∞ =
(

π

ξ

)
π

ir/ ei(ξr–π/)F̄
(
ᾱs, β̄+(ᾱs)

)
+ O

(
r–/) ()
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and

pn(rij, θij)rij→∞ =
eiKijrij

r/
ij

[
G

(
θij +

G(θij

rij

)
+ O

(
r–/

ij
)]

, ()

respectively, where (rij, θij) are polar coordinates, Kij = αs(θij) cos θij + βs(θij) sin θij (with αs

and βs being the wave number components from the Fourier transform), and G(θij) and
G(θij) are functions depending on αs, βs, θ , and the Fourier transform F̄ of the source term
(for more details see () and () in Tam and Webb []). The anisotropy corrector factor
was then defined by the ratio between the absolute values of the two,

D(θ , ξh) =
|pa|
|pn| . ()

The correction factor is independent of the distribution of sources, meaning that it can
be computed once and for all types of sources. A significant reduction of the anisotropy
error was obtained.

3.3 Advection equation
Gaitonde and Shang [] proposed a class of high-order compact difference-based finite-
volume schemes which minimized the dispersion and isotropy error functions for the
range of wave numbers of interest. The starting point was the one-dimensional advection
equation,

∂tu + ∂xf = , f = cu, c >  ()

which was discretized using a finite volume approach as

dtūi + f̄i+/ – f̄i–/ = , ()

where ū is the average value of u inside a cell, ū = /h
∫ xi+/

xi–/
u dx, and f̄ is the flux function

approximating f , which is dependent on the values of ū from neighbor cells. The recon-
struction can be done by considering a primitive function v =

∫ x
 which must be discretized

at the cell interface. Gaitonde and Shang [] considered a five-point compact stencil in
the form

αvi–/ + vi+/ + αvi+/ = b
vi+/ – vi–/

h
+ a

vi+/ – vi–/

h
, ()

where α, a, and b are constants which determine the order of accuracy of the scheme.
Using Taylor series expansions, they sacrificed the order of accuracy of the schemes by
writing a and b as functions of α,

a =
( + α)


, b =

– + α


()

The spectral function associated with the scheme () is given as

Â(w) =
i(a sin(w) + b sin(w)/)

 + α cos w
, ()
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where w = πξh/L is the scaled wave number. The dispersion error is associated with the
imaginary part of the spectral function, wd(w) = Im(Â(w)). A scaled isotropy wave number
was defined as

wi(w, θ ) = cos(θ )wd
(
w cos(θ )

)
+ sin(θ )wd

(
w sin(θ )

)
, ()

where θ is the angle that the direction of propagation makes with the x-axis. An isotropy
error function was defined by Gaitonde and Shang [] in the form

Ei(α, wmax) =
∫ wmax



∫ π/


|wi – w|dθdw ()

which was minimized to find the value of αopt that gives the lowest numerical anisotropy.
Numerical examples confirmed a considerable reduction of the isotropy error.

Sescu and Hixon [, ] extended the previous optimization performed in [] to
prefactored compact finite difference schemes [, ] applied to the advection equation.
The prefactored compact schemes are defined on a three-point stencil and can return
up to eight orders of accuracy (see equations ()). They can be used within a predictor-
corrector type time marching scheme framework (MacCormack []), because the nu-
merical derivatives are determined by sweeping from one boundary to the other, in both
directions. Following the same analysis as in the case of explicit schemes, the multi-
dimensional prefactored compact schemes were obtained as

uF ′
i,j =

α

 + β

[
uF ′

i+,j +
β


(
uF ′

i+,j– + uF ′
i+,j+

)]

+


h( + β)

[
bui+,j – eui,j +

β


(bui+,j+ + bui+,j– – eui,j)

]
, ()

uB′
i,j =

α

 + β

[
uB′

i–,j +
β


(
uB′

i–,j– + uB′
i–,j+

)]

+


h( + β)

[
eui,j – bui–,j +

β


(eui,j – bui–,j+ – bui–,j–)

]
()

for fourth order of accuracy, and

uF ′
i,j =

α

 + β

[
uF ′

i+,j +
β


(
uF ′

i+,j– + uF ′
i+,j+

)]

+


h( + β)

[
bui+,j – eui,j – fui–,j

+
β


(bui+,j+ – fui–,j– + bui+,j– – fui–,j+ – eui,j)

]
, ()

uB′
i,j =

α

 + β

[
uB′

i–,j +
β


(
uB′

i–,j– + uB′
i–,j+

)]

+


h( + β)

[
bui+,j – eui,j – bui–,j

+
β


(fui+,j+ – bui–,j– + fui+,j– – bui–,j+ – eui,j)

]
()
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for sixth order of accuracy. β is the isotropy corrector factor (ICF) and its magnitude can
be determined by minimizing the dispersion error corresponding to the wave-front prop-
agating along a grid line and the wave-front propagating along a diagonal direction.

Using Fourier analysis, the numerical wave numbers and the numerical dispersion re-
lation corresponding to the two-dimensional wave equation were found. The individual
(forward or backward) numerical wave number has both real and imaginary parts: the real
part of the forward operator is equal to the real part of the backward operator, and the
imaginary parts are opposite. As a result, in a MacCormack predictor-corrector scheme
the overall imaginary part is zero. The real parts of the numerical wave numbers corre-
sponding to multi-dimensional schemes, for derivatives along the x-direction, were given
by

Re
[
(kh)∗m

]
=


 + β

{
fm(ηx) +

β


[
fm(ηx + ηy) + fm(ηx – ηy)

]}
, ()

where m =  for fourth and m =  for sixth order of accuracy, f(ηx) =  sinηx/( + cosηx),
f(ηx) = ( sinηx + sin ηx)/( +  cosηx), ηx = ξh, ηy = ηh, and ξ and η are the compo-
nents of the wave number.

In terms of numerical stability, more efficient stability restrictions were obtained as in
the case of multi-dimensional explicit schemes. For example, multi-dimensional MacCor-
mack schemes were found to provide a stability restriction in the form

[
σx( + β)

]/ + σ /
y ≤ ( + β)/

ξmax
, ()

if |cx| ≥ |cy|, and

σ /
x +

[
σy( + β)

]/ ≤ ( + β)/

ξmax
, ()

if |cy| ≥ |cx|. For diagonal directions, with respect to the grid (|cx| = |cy| = |c|), the stability
restriction becomes

σ ≤ ( + β)
ξ /

max[ + ( + β)/]/ . ()

It is obvious that the right hand side of () is greater than /(ξmax)/ when β > , and
it goes to /(ξmax)/ when β → ∞. This generated more efficient stability restrictions by
using multi-dimensional compact schemes. Test cases showed that the multi-dimensional
compact schemes were more efficient for both the fourth and the sixth order accurate
schemes.

3.4 Maxwell equations
Sun and Trueman [] performed an optimization of finite difference schemes applied
to the Maxwell equations, in terms of reducing the dispersion and isotropy errors. For
brevity, we show here the numerical dispersion relations (for finite differencing represen-
tations of the Maxwell equations, see (), (), and () in Sun and Trueman []):

(
sin(ωk/)

ck

)

=
(

w
sin(βak/)

h
+ ( – w)

sin(βak/)
h

)

()
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corresponding to a grid line, and

(
sin(ωk/)

ck

)

= 
(

w
sin(βdk/)

h
+ ( – w)

sin(βdk/)
h

)

()

corresponding to the diagonal direction, where w is a weighting factor, βa is the numerical
phase constant along the grid line, βd is the numerical phase constant along the diagonal
direction, ω is the frequency, and k is the time step (an equally spaced grid is considered
again). The optimization in terms of reducing the numerical anisotropy was done by elim-
inating the time step terms in () and () to obtain

wi =
√

 sin(βdk/)/(h) – sin(βak/)/(h)
[sin(βak/)/h – sin(βak/)/(h)] –

√
[sin(βdk/)/h – sin(βdk/)/(h)]

. ()

This optimal weight wi is a function of mesh density only, and is not dependent on the
time step size or the frequency of the signal. This method theoretically provides a uniform
phase velocity in all directions. Further optimizations of this scheme were performed in
another paper of Sun and Trueman [].

Koh et al. [] derived a two-dimensional finite-difference time-domain method, dis-
cretizing the Maxwell equations, to eliminate the numerical dispersion and anisotropy.
The proposed scheme is given as

d
t Hn

x,i,j+/ = –
k

μh
dyEn

x,i,j+/,

d
t Hn

y,i+/,j = –
k

μh
dxEn

y,i+/,j,

d
t En+/

z,i,j +
σk
ε

[
En+

z,i,j + En
z,i,j

]
=

k
εh

dxHn+/
y,i,j –

k
εh

dyHn+/
x,i,j ,

()

where d
t is the central difference operator with respect to time,

dpfq =
(

 –
α



)
dpfq +

α


(
d

pfq+ + d
pfq–

)
()

with p or q being either x or y, and

d
x fi,j = fi+/,j – fi–/,j, d

y fi,j = fi,j+/ – fi,j–/, ()

where f is a generic function. In (), E is the electric field, H is the magnetic field strength,
σ , μ, and ε are the conductivity, the permeability, and the permittivity, respectively, of the
domain, k is the time step, and h is the spatial step in all directions. For nonconductive
media, σ = , the numerical dispersion relation can be obtained as


h C+C×

(
α –


C+

)

–


h

(
C×
C+

– C+

)
–


(ck) sin

(
ωk


)
, ()

where C+ = sin(ξh/) + sin(ηh/), C× = sin(ξh/) sin(ηh/), and ξ and η are the com-
ponents of the wave number. Equation () is a quadratic equation in α, and the solution
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is given as

α =


C+

[
 –

√

 –
hC+

C×

(


h C+ –


(ck) sin
(

ωk


))]
. ()

An optimal value for α, achieving an isotropic numerical phase velocity, can be simply
estimated as the mean value of α over the azimuthal angles, and it was found that it remains
constant (approximately, .) for a wide range of grid sizes, and it is insensitive to the
value of the Courant number.

Kim et al. [] derived new three-dimensional isotropic dispersion-finite-difference
time-domain schemes (ID-FDTD) based on a linear combination of the traditional cen-
tral difference equation and a new difference equation based on the extra sampling points.
They used the same scaling factors as for the two-dimensional case to attain the isotropic
dispersion and the exact phase velocity. Based on the weighting factors, seven different
FDTD schemes were formulated, including the Yee scheme []. Among the seven pro-
posed FDTD schemes, three showed improved isotropy of the dispersion compared to
the dispersion of the Yee scheme. For the sake of brevity, the complete expressions of the
schemes are not included here (see Kim et al. [] for more details), and only the nu-
merical dispersion relation is briefly presented. Plane wave solutions were introduced in
discretized forms as

En
i,j = EeI(nωk–ξ ih–ηjh–ζkh), ()

Hn
i,j = HeI(nωk–ξ ih–ηjh–ζkh), ()

where I =
√

–, ω is the frequency, (ξ ,η, ζ ) is the numerical wave number vector, and E

and H are constant vectors. After inserting () and () into the discretized form of
the Maxwell equations (see () in Kim et al. []), the matrix equations are obtained as
CH = StεE, CE = SiμH where

C =

⎡

⎢⎣
 –Kz Ky

Kz  –Kx

–Ky Kx 

⎤

⎥⎦ ()

and Kp = Sp/h[α(Pp – Qp) – βQp/ + ] (p being either x, y or z), Sx = sin(ξh/), Sy =
sin(ηh/), Sz = sin(ζh/), Px = SySz, Py = SxSz, Pz = SxSy, Qx = S

y + S
z , Qy = S

x + S
z ,

Qz = S
x + S

y , and St = sinωk//k. The eigenvalue equation was obtained as

(
C + S

t μεI
)

= , ()

and the numerical dispersion relation was obtained by vanishing of the associated deter-
minant,

S
t

c


= K
x + K

y + K
z , ()

where c = /√εμ. The isotropy correction was performed by defining the values of the
weighting factors α and β , which unlike the two-dimensional case are not unique. Kim
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et al. [] used the scaling factor from the two-dimensional case, and they modified the
numerical dispersion relation to estimate the weighting factors.

3.5 Dendritic solidification
Kumar [] derived isotropic finite difference schemes for the first and second derivatives
in the context of symmetric dendritic solidification. The first derivative was discretized as

(∂xu)I,i,j =


h

[



(ui+,j+ – ui–,j+) +



(ui+,j – ui–,j) +



(ui+,j– – ui–,j–)
]

, ()

which involves grid points not only along the x-direction, but also along the y-direction.
The Taylor expansion of the scheme () can be written as (∂xu)I,i,j = ( + h/∇)(∂xu)i,j,
where the leading order term involves the Laplacian only, implying no directional depen-
dence. The second derivative was discretized as

(∂xxu)I,i,j =


h

[



(ui+,j+ – ui,j+ui–,j+) +




(ui+,j – ui,j + ui–,j)

+



(ui+,j– – ui,j– + ui–,j–)

]
, ()

where the Taylor expansion is given by (∂xxu)I,i,j = ( + h/∇)(∂xxu)i,j, it being again a
function of the Laplacian only. The conventional cross derivative (∂xyu)I,i,j was found to
be intrinsically isotropic according to the criterion developed by Kumar []. The Lapla-
cian can be obtained by combining the isotropic derivatives along the x- and y-directions,
(∇u)i,j = (∂xxu)I,i,j + (∂yyu)I,i,j. A significant reduction of the numerical anisotropy was ob-
tained by using these schemes. Shen and Cangellaris [] exploited further this approach
to develop new isotropic finite-difference time-domain schemes modeling electromag-
netic wave propagation.

4 Concluding remarks
The numerical anisotropy in finite difference discretizations of partial differential equa-
tions was discussed and reviewed. In some instances, the numerical anisotropy can be
neglected, and the focus is directed toward other types of one-dimensional errors, such as
numerical dispersion, dissipation or aliasing. These errors can be analyzed in the context
of one-dimensional difference equations, while the extension to multi-dimensional dis-
cretizations is straightforward. By increasing the accuracy of one-dimensional schemes
or by increasing the number of grid points in the grid, the isotropic characteristics of the
waves in the multi-dimensional case can be improved. These two practices, however, are
not always effective since an increase in accuracy may require larger stencils which may
introduce spurious waves at the boundaries of the domain, while by increasing of the reso-
lution of the grid one may increase the computational time. It is necessary then to analyze
the schemes in the multi-dimensional case and design specific optimizations with the spe-
cific objective of reducing the numerical anisotropy, and at the same time of conserving
the dispersion characteristics of the corresponding one-dimensional schemes. Various at-
tempts to reduce the numerical anisotropy in finite differencing applied to various model
equations were presented and discussed.
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Future directions should focus on optimizations of existing compact finite difference
schemes in terms of reducing the numerical anisotropy, or derivations of novel com-
pact schemes with low numerical anisotropy. Optimizations and derivations of finite vol-
ume schemes (in terms of reducing the numerical anisotropy) applied to either struc-
tured or unstructured grids should also be taken into account, especially in the framework
of wave propagation problems. Filtering schemes, as applied, for example, in large eddy
simulations to separate the small scales from the large scales, may experience numerical
anisotropy since they are effective at high wave number ranges. Optimizations of such fil-
ters in terms of reducing the numerical anisotropy is also another future area of research.
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