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1 Introduction

Fractional calculus and its implementations have grown in prominence due to their use-
fulness in representing a variety of complex phenomena in science and engineering [1-5].
One of the most important and distinctive issues in fractional calculus is the study of
pantograph-type differential equations. It is a particular class of functional differential
equations with proportional delay. It occurs in a variety of pure and applied mathemat-
ics areas, including quantum physics, electrodynamics, number theory, control systems
and probability. Various researchers have used analytical and numerical methods to in-
vestigate the pantograph-type fractional differential equations (FDEs) [6-9]. Using fixed
point techniques, some researchers proved the existence and uniqueness of the solution
to some nonlinear classes of pantograph-type FDEs with a wider range of boundary con-
ditions [10-15].

Sequential FDEs provide a flexible framework for describing complex systems with mul-
tiple memory-dependent processes. The sequential nature allows for the inclusion of frac-
tional derivatives of various orders, providing a nuanced representation of system dynam-
ics. This representation provides a richer mathematical framework for modelling diverse
physical and engineering systems. This is advantageous in applications such as materials
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science, viscoelasticity and biological systems. Qualitative analysis of sequential FDEs is
found in [16-20].

The generalised fractional derivative is a powerful tool for simulating complex real-
world problems due to its increased precision. The Hilfer fractional derivative is a gener-
alisation of Riemann-Liouville and Caputo fractional derivatives [1]. Sousa and Oliveira
[21] provided the y -Hilfer fractional derivative with respect to another function. The ad-
vantage of the y-Hilfer fractional derivative is the freedom to select the differentiation
operator and the kernel function 1. Boundary value problems (BVPs) provide a natural
framework for capturing real-world conditions and constraints [22—25]. BVPs involving
the v -Hilfer fractional derivative were studied in [26-30].

In [12], a sequential pantograph problem involving the ¢-Caputo derivative was taken
into consideration, and the existence results were studied using Darbo’s fixed point theo-
rem and the measure of noncompactness. Motivated by the above-mentioned works, we

investigate the v -Hilfer sequential pantograph fractional BVP of the form

HpOIV (H P (4 4 (2, %(0))) = g(t, x(8), x(.8), DS x(11)),

1
x(a) =0, x(b) =" wx0;), teS=Iab] @

where HDZ’i"“"p, Hfo"’zzw and HDZ;’S”I'

are the -Hilfer fractional derivatives of order ¢y,
¢, and o respectively, with 0 < @ < ¢1,¢2 < 1 and type 0 < 91,12, 8 <1, w; € R, 6; €
S,8:SXRxRXxR—Randf:S x R — R are continuous functions on a Banach
space.

The article is structured as follows: Sect. 2 presents the fundamental concepts, theorems
and lemmas that support our investigation. In Sect. 3, the solution of BVP (1) is obtained.
The existence and uniqueness of the solution to (1) are established in Sect. 4. In Sect. 5,

an example is given.

2 Preliminaries
Let C([a,b], R) represent the space of all continuous functions from [a,b] — R and

AC([a, b], R) be the space of all absolutely continuous functions from [4,b] — R.

Definition 1 [2] Let (a,b)(—0co < a < b < 00) be a finite or infinite interval of the real line
R and ¥ > 0. Let yr(¢) be an increasing and positive monotone function on (a, b], having a
continuous derivative ¥'(¢) on (a, b). The ¥ -Riemann-Liouville fractional integral Iji‘/’(~)
of a function & € AC"([a, b], R) with respect to another function ¥ on [a,b] is defined
by

. 1 g .
IV h(t) = — f W) (W) - v (9) h(s)ds, t>a>0,
r'@) Ja
where I'(.) represents the gamma function.

Definition 2 [2] Let ¥/'(£) # 0 and ¢ > 0, n € N. The Riemann-Liouville fractional deriva-
tive of order ¥ of a function & € AC"([a, b], R) with respect to another function v is de-
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fined by

8,000 1 d "nw
P (i ) 10

1 n—-9-1
F(n 19)( t)dt) /W ()) h(s)ds,

where n = [¢#] + 1, [¢] represents the integer part of the real number ¢.

Definition 3 [21] Let # — 1 < © < n with n € N,[a,b] is the interval such that
—o0o <a<b<ooand iy € C*([a,b], R) are two functions such that ¥ (¢) is increasing
and ¥/(¢) # 0 for all t € [a, b]. The v -Hilfer fractional derivative / DZ;‘) ¥ (.) of a function k
of order ¥ and type 0 < p <1 is defined by

) 1 d
DO () = [P0 1w< ) [P0y
“ Y de) *

where n = [#] + 1, [¢] represents the integer part of the real number ¢ with y = ¢ + p(n—19).

Lemma 1 [2] Let ¢, T > 0. Then we have the following semigroup property:
PPV ) = (), t>a.

Lemma?2 [21]Ifhe C"([a,b],R),n—-1<¥ <nand0<p <landy =19+ p(n-1), then

n —k
117 |//HD19 03 |//h(t) h(t) - Mh[n—k][g—ﬂ)(n—ﬂ)ﬂ/fh(a)
; F(y-k+1) Y

forallt € S, where h'h(t) = ( o ) h(e).

Proposition 3 [2,21] Let® >0,/ > 0and t > a. Then the y-fractional integral and deriva-
tive of a power function are given by

L LY () - (@)1 0) = 5% W (@) - v (@)

2. D (W () - (@) (0) = 7 )(w) ~ Y (@)

3. MDYV (g (1) - ¥ (@) 1(8) = g SWE) - v@) ">y =0+ pn-0).

Lemma4 [30] Letn—-1<¥<nm-1<a<m<nmmneN,0<B<land?® >a+p(m-
a). Ifh e C"™(S,R), then

HDaﬂ‘lfll"//h() 190“/fh()

Lemma 5 (Banach contraction principle) [31] If C is a closed non-empty subset of a Ba-
nach space B, then any contraction mapping U : C — C has a unique fixed point.

Theorem 6 (Krasnosel'skii’s fixed point theorem) [32] Let D be a closed, bounded, convex
and non-empty subset of a Banach space (B, | - ||). Suppose that Uy,Uy are operators from
D to D such that
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1. Uhx +Uyy € D,Vx,y € D;
2. U, is continuous and compact;
3. Uy is a contraction mapping.
Then there exists z € D such that z = Uz + U, z.

3 An auxiliary result
System (1) relies on a lower-order fractional derivative of the state function. Therefore, we

shall conduct the analysis in a special working space given by

J = {xlx(t) € C([a,b), R)," DL x(t) € C([a,b],R)} with the norm

lxll7 = max{sup”x(t)” sup||HD““’ t)||}.

-ps l[’x(t) are continuous implies smoothness

The requirement that functions x(¢) and D}
and regularity. We can verify from [33] that .7 is a Banach space. J also ensures that the
solution is well posed and can be analysed within a rigorous mathematical framework.
For proving the existence results, Krasnosel’skii’s fixed point approach is more suitable
for the above-considered special working space.
To demonstrate the existence and uniqueness of (1), it is essential to prove the following

lemma.

Lemma7 LetO<a<¢,¢2<1,0=<n1,1m,B8 <1, y1=¢1+n1(1-1), 12 =2+ n2(1 - o),
a>0and A\ #0. Then, forg: S x T x I x T = T, f:8 x T — T, the solution of the
sequential pantograph fractional BVP (1) is given by

x(t) = 127 g (£, x(8), x(08), " DLV x (1)) — 177V £ (2, x(t))

WO =v@)" "N sty (n N HPoBY (3 p.

+ TSI |:l§_1 wil g(el,x(e,),x(w,), D} x(k@l))
P1+¢2;Y @
— 127 g(b, x(b), x(1b), "D x(1b)) - § :a)r"z Y (6, %(6)))

+If%‘¢f(b,x(b))}

where

_ WO -y@) Tt s W0) - Yl
- T'(y1 + ) ;w, (1 + ¢2) ) 3)

i=

I‘ll’l;]ﬂ

Proof Using Lemma 2 and applying operator I_;"" on both sides of (1), we have

V(@) -y

b1v H B
o) + 1907 g (6, x(2), x(A2), "DV x(1)).

Hfo’m:wx(t) +f(t,x(t)) =c

Page 4 of 16
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Again applying operator Iff;‘// on both sides of (1), we have

x(t) =12 g (2, x(8), x(00), T DS x(0t)) — 122V £ (£, x(2))

W@ - y@y - y@)
T(y1 + ) 2 Ty

C1

When x(a) = 0, we get c; = 0. Then the above equation reduces to

= 120 g (£, x(8), x(00), TDEPY x(00)) - 102V f (£, x(8))

(W () - Y (@)t ()
C(y1 + ¢2) ’

C1

Applying the other boundary condition, we get

(W (&) — Y (a)rrort
C(y1+ ¢2)

1¢1+q>2 W (b x(b), HDot B ‘//x(b)) _I;i’%ﬂ/'f(b’x(b)) +C

=Y Wl g (t,x(6:), " DL 2(60) Za}, 12271 (6, %(6,))

i=1
—  (Y6) - p@)n!
+C1i=2160i (i +¢2)
This implies

|:Z 1¢1+¢2 W (9[),HD:;ﬂ;]/fx(9,’)) _ Ifiwz;wg(b,x(b),HD:;ﬁ;wx(b))

= ol 4 1PV f (b, x(b))f (6 x(@i)):|.
i=1
Thus, (2) is satisfied.

Conversely, by direct calculation, we verify that (2) satisfies (1). O

4 Existence and uniqueness results
To verify the existence and uniqueness results, we model our system (1) as a fixed point
problem.

Let us define an operator U : 7 — J by

Ux(t) = 127 g (6,20, x(h0), T DXLV 2 (0)) = 12V £ (£, %(0))

_ 1+¢p-1| "
(w(lf)(ylf(zz;y_ ~ [Zwizf:*‘”””g(ei,x(ei),x(wi),”D‘;‘f;“’x(wi))

i=1

(5)
— 1217 g (b, x(b), x(b), " DXL x(Mb)) Za) 1727 £ (6, %(6)))

+ 1%V f (b, x(b)):| )

Page 5 of 16
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We state the following hypothesis:
(Hy) Letg: S x J x J x J — J be a continuous function, and there exists a constant
0 < K, < 1 such that, for all £ € S and x1, %), %1, %2, %1, %" € R,

g (2,1, %1,21") — (8,22, %0, 20) | < Ko ([|41(8) = %20) | + || #1(2) — % (8) |

+ 2/ () - %2 @) ])-

(Hy) Let f: S x J — J be a continuous function, and there exists a constant 0 < Kr<1
such that, forall t € S and x1,%, € R,

If & x1) —f & x2) || < Kp (1 (8) = x2(2)])-

(Hz) Let g : Sx I x I xJ — Jand f: S x J — J be continuous functions, and
there exist functions o, v > 0 such that, for all £ € S and x,%,4", € R,

lg(t.%. %) | <o),

lF@&%)| < v@.
To simplify the process, let us introduce some notations.

@) -y @)

Ted="rgy ©

N =2K,N; + KeN,,  where (7)

Ny =Y (b,K) + % [Z WY (0, k) + T(b,k)}, (8)
i=1

No =T (b,k) + % [Z 0 Y (0, 5) + Y (b, /})}, ©)
i=1

where k = ¢, + ¢ or ¢ +¢2—oe,/_<:¢>2 or ¢, — .
Uniqueness of solution.

Theorem 8 Assume that (H) and (Hy) are satisfied. Suppose that 2K, N7 + KN, < 1,
where Ky and K, are constants, Ny and N, are given by (8) and (9) respectively. Then system
(1) has a unique solution on S.

Proof Consider the operator Ux(¢) defined in (5).
Let sup,.s llg(£,0,0,0)| = M; < 00, sup,.s |f(t,0)|| = M < 0o and set

J=lxeT s <r}, r> NIM%AW

J, is a bounded, closed and convex subset of 7.
Step 1: U T, C T,
For any x € J,, t € S, using (H;), we have

le(t.%2x) | < Ke(J+@] + [2@)] + [« @) + M,
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[f )] < K (Jx@)]) + M.
Then, we obtain

[t

< I || g (8, 2(0), (00, 1 DEPY 50t | + 102

f(Lx0)]

+ M |:Z w; I¢1+¢2 W ”g 9,,96(9 ), x(06)), HDZ;ﬁ;T//x()LQi)) ”

| Al
+ IV | o(b,x(b), x(Ab), DXV x(0B)) | + Zw1¢2 Y f (0 209) |
2 o)

T (b, -1) |+
< <2Kg (T(b, b1+ o) + % {Z WY (O b1 + o) + T (b, + ¢2)D
i=1

b, - &
e <m,, )+ % [} 0T (0 82) + Y (b, @)D } Ixll7
i=1

| A

; (T(b, R [Z (O ) + Y (b, ¢2)DM
i=1

Y (b, -~ “
v (T(b, b+ gy 4 L2714 E D {Zwmeml +¢2)+ T(b,br + ¢2)DM1
i=1

and

["D5 (o)
<1277V | o (8,20, x(00), T DLV x(0.0)) | + 127V | (£,20)) |

TEyri+¢2-1)

o 1) [Z I¢1+¢2 ou/f”g 0;,%(0;), x(16;), HD"‘ﬁ‘/’x(/\Oi)) H

F 1079 | g (b, x(b), %(ub), " DIV 1 (00)) | + D iV | (0 %(6) |

i=1

+¢“wwwﬂww}

< {21<g<r(b,¢1 e [Zwmeml Fo— )
i=1

YT,y +¢2-1)

Y (b, 1 +¢2—a):|)+1(f<’f(h,¢2—ot)+ e

X |:Z ;Y (0,2 — ) + Y (b, P> —Ol):|) } lxll 7 + (T(b: dr+dr—)

i=1



Aly et al. Boundary Value Problems (2024) 2024:56 Page 8 of 16

Y,y +¢2—-1)

T [ZwiT(9i1¢l +¢y—a)+Y(b,¢ +¢2—Ol):|>M1
i1

+ (T(b, ¢ — ) + Thy+d -1 yii(fz -1 |:

ZwiT(Qir¢2 —a)+ (b, ¢y - 06):|>M2~

i=1

Thus, [Ux|l 7 < Nllxll 7 + NiMy + NoMy < 7.
This implies 4.7, C J,.
Step 2: U is a contraction.
For any x,y € J, and for each ¢t € S, using (H;), we have
”L{x(t) —Uy(t) H

<27 | g (8, x(8), x(08), T DEFY x(08)) — g (8, 9(8), y(00), T DSV y(28)) |

+12>+2;¢ ||f(t,x(t)) —f(t,y(t)) ” + w [Z wi15+1+¢z;¢
i=1

X ||g(9i,x(9i),x(kéi),HDZ;ﬁ”/'x(AQi)) —g(@i,y(é’,-),y(kel-),HDZ;ﬂ;‘l'y()»Oi)) ||
+ IV | g (b, x(D), 2(1b), " D x(1b)) - g (b, y(b), y(1b), " DS y(3)) |

+ 3 od V(6o %(6) £ (6 7(60) | + 1277 £ (b,%(5)) —f (b,3(0)) H}
i=1

T(br it ¢2 - 1)

=Y (b, 1+ $2)2K,llx = yll 7 + Y (b, p2)Krllx = yll 7 + Y

X [Z @i (03 p1 + $2)2K, llx = yll 7 + Y (b, 1 + $2)2K, || =yl 7

i=1

m
+ ZwiT(QMbZ)Kfﬂx -yllg + Y (b, ¢2)Krllx —J’||J:|

i=1

b, - “
< {2Kg<T(b,¢1 +) + % [Z OO b1+ $2) + Y (b, 61 + @)D
i=1

Y(b, -1) |«
K (T(b, o) + % {Z T (008 + (b, @)D } Il -yll7
i=1

and
| DeF Us(e) - "D Uy ()|

(br V1 +¢2 - 1)

< {ZKg(T(b,¢1 +¢y—a)+ Y Py |:Zth(9i,¢1 +¢y—)
i-1

Y,y +¢2—-1)

+T(b,¢1+¢2—a)i|)+Kf<T(b,¢2—a)+ N

x [Zwm(@,@ —~a)+ T (b,¢2 —a)D } =l 7.

i=1

Thus, [[Ux - Uyll 7 < KN+ KeNo)llx =yl 7
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Since 2K, N7 + Ky N> < 1, the operator U is a contraction.
Therefore, by Lemma 5, we conclude that ¢/ has a unique fixed point, which is the unique
solution of (1) on S. O

Existence of solution.
Theorem 9 Assume that (Hy), (Hy) and (Hj) are satisfied. Suppose that [2Kz(N; —
T (b, 1) + Kr(Ny = Y (b,1))] < 1, where L = ¢1 + ¢ or 1 + ¢p2 — 0, L = ¢ 0r ¢ — &, Ky and K,
are constants, N1 and N are given by (8) and (9) respectively. Then system (1) has at least

one solution on S.

Proof Let sup,. 7 lo ()| = lo|l, sup,c 7 [v(®)] = [v].
Also define a bounded subset 7, of 7, where J, = {x € J : ||x|| < p} with

p=Mllol| +Najv].
Let us define the operators U; and U, on J, for t € S asU = U, + U, where
Unx(2) = 27 g (£, x(8), x(08), T DU x(00)) - 172V £ (£, x(8)),

sz(t)z—T(t’yTI? [Z L2 (6, %(60),2(18,), M DL x(06)

— 1219V g(b, x(b), x(1b), "D x(1b)) Zwlﬁ’z (6, %(6,))

¢z ‘/’f(b x(b) ):|

Step 1: Uyx + Uy € J,.
Foranyx € J,, t € S, we obtain

L (2) + Uy () |

Y (b, -1 |«
=T ¢+ P)loll+X(b,g)lv + % |:Z @i Y (6 ¢1 + )llo ]|
-1

Y (b, g1+ P)lloll+ Y X0 gVl + Y (b, ¢>2)|IVI|]

i=1

b, - "
< {non <m, b+ 62) + % [Z 0T O b1 + 2) + T (b, +¢2)]>
i=1

F vl (T(b, R [Z 0O d) + T @)D }

i=1

and

| DY thxe) + M D Uy )|
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T(b’ Vit ¢2 - 1)

=Y (bd1+dr—a)lo]l + X (b,dr— )]l + Y

X |:ZwiT(9i>¢l +dr—a)llol+Y(b,¢1+ 2 —a)lo] + sz’T(ez‘»@ —a)[v]

i=1 i=1
+ Y (b, ¢ - W)||V||]

Yby+¢—1)

§||0||(T(b,¢1+¢2—01)+ Py

[Zwm(@,d)l +¢r—a)
i=1

Y(by+¢2-1)

+T(b,¢1+¢2—a):|)+||v||<T(b,¢2—a)+ Y

X |:Za)iT(95,¢2 —0[) + T(b,(,bz —0[):|).
i=1

Thus, |[Uyx + Uyl 7 < Nilloll + Na|vll < p.

Step 2: U; is completely continuous.

To prove U is continuous and compact on 7,,

let x,, be a sequence and x,, — x as 1 —> o0 in J,. Then, for ¢ € S, we have

|t (2) - Uy (0) |
<27 | g (t,%(0), %, (18), DL, (11)) - g (£, 2(0), x(00), T DY x(0.0)) |
1 16 30) £ (020)|

<Y (b, p1 + $2)2K;[|xn — x| 7 + Y (b, $2)Kr [0 — x| 7

— 0 asnm— o
and
|7 D Uy, () = DS U () |
<127 | g (8, 2,(8), 2, (61), DIV x,(M0)) - (£, 2(0), x(.8), DL x(0.0)) |

I (62a(0) ~f (6.2(0) |
<Y (b, 1 + 2 — ) 2K, ||x, — xll 7 + Y (b, 2 — ) K|l — x| 7

— 0 asn— o0.
Now, consider
”le(tz) - Ux(ty) H

— 1) ; / _ P1+da—1 H e B
! / (F<¢1+¢2)‘“5)(‘”“2) ¥©)" " g (5,509, "D 4(9))

1 , $r-1 2 1 /
VO v oa09) s+ [ ()

- 2
x [(W(82) = ()™ = (W) — v (9)) " g (s, x05), DS x(s))

Page 10 of 16
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- st)[(w(tz) () = (v(t) - w<s))¢2‘11f(s,x(s))) ds

C(¢2)
1 P1+¢2 b1+
= For e V@ - v @)+ () - v(a)
- (¥ () = v @) ] e (t.x(0),20.0, " D 5(00)) | - r(@l )

x [2(¥(8) - (1) + (¥ (t2) - ¥ (@) = (¥ (81) - ¥ (@) ]| f (:2(2) |

— 0 astp,— 1
and

|7 DV Uy () — DL Uy ()|
1
<
T (1 +dr—a+1)
— (W(t) - v @)™ 7] g(6,2(0), x(00), DY x(00)) |

1
" T(pp—a+1)

- (¥(t) - (@)™ ] (6. 20) |

— 0 as tp — .

[200(62) = ()™ 4 (9 (02) - wr (@)

[2(¥(82) - ¥ (82))™ + (¥ (82) - ¥ (@)™

Thus, ||Uhx(ty) —Uix(t1) |7 — O as &, — t1,1.e. U1 J, is equicontinuous.
Hence, U, is completely continuous on 7, by the Arzela—Ascoli theorem [34].
Step 3: U, is a contraction.

For any %,y € J, and for each ¢t € S, using (H;), we have
||Z/{2x(t) - Z/{zy(t) ||

> 00 1 + $2)2Kllx ~ yll 7 + Y (b, b1 + ¢2)

i=1

- YT y1+¢2—1)
- | A

x 2K |lx — yll 7 + ZwiT(Qi,@)Kfﬂx -yllg + Y (b, d2)Kr|lx —J’||.7i|
i1
YT,y +¢2—-1)

Y |:Z w; Y (0, ¢1 + ¢2) + T (b, 1 + ¢2):|
i1

< {21<g

b, - "
+ 1@% [Z 0T O ) + (b, @)} } -
i=1

and

| D5 tox(e) = D try ()|

YT,y +¢2-1)

N |:ZwiT(9i,¢1+¢2—Ol)+T(b:¢1+¢2—Ol):|
-1

< {2Kg
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YTy +¢2—-1)

+Kf |A|

[Zwﬁ(&-,dn ~a)+ Y (b¢» —a)] } lx = yll.7-
i=1

Thus, [Uyx ~Unyll 7 < [2KgN1 =Y (5, 1)) + KN = Y (B, )]l = ¥l 7-
Since [2K, (N7 — Y (b,1)) + Kf(N> — Y (b,1))] < 1, the operator U, is a contraction.
Therefore, by Theorem 6, we conclude that BVP (1) has at least one solutionon §. O

5 Application

This section contains an example to demonstrate our results. Equation (1) can be found in
various fields, including biology, physics and engineering, to model systems with memory
effects and non-local dependencies; for instance, in describing the viscoelastic behaviour
of the material that captures both internal dissipation and external influences. The linear
viscoelastic Kelvin—Voigt model that describes the behaviour of materials exhibiting both
elastic and viscous properties could be expressed using a sequential pantograph fractional

differential equation.

Example 1 Consider the ¥ -Hilfer sequential type pantograph fractional BVP

2,

HDE S DI u(0) 4 (e, 5(0) = 60,5008, P DG x(0),

. (10)
x(0) =0, x(1) = Y0 (Z5)* (), telo,1],

where g and f are given by
H % % sin ¢
g(t,x(t),x(kt), o x(kt))
tZ |x(t)| t ‘ <1t>' 2e—t|HD4 6Slnt (it”
= + x| —t)|+ ,
5—sin®we 8+ x(t)|  2(t+10) 4 |HD1’5’Smtx(zt)| +24

1 |x(2)]
(t+2)2+91+|x0)|

f(tr x(t)) =

Herepr =3, ¢o=%,m=1,m=2,a=1,=%,a=0,b=1,m=3,w;=(75)",0,= 1%
¥ (t) = sint, ¥'(¢) = cos t. Using the data, we evaluate y; = 0.5500, y, = 0.8200, A ~ 1.0066,
N7 ~3.5153 and N, ~ 4.3360.

(i) Uniqueness of solution

For x1,%1, %), %0, %2,%5, € J and t € [0, 1], we have

”g(t,xlyx_lyxl/) _g(trx2rx_2rx2/) H

)s

< 12 ||x1(t —xa(8)]| + |1 (8) = %2 ®) || + |1 (

Hf(t x1) —f(t, xz)“ =< 13(”961(73 —x(t) ”)

Comparing with (H;) and (H3), we observe that K, = and Ky =
We find that Q = 2K, N, + KpN; 2~ 0.9194 < 1.
Thus, the hypothesis of Theorem 8 is satisfied, and system (10) has a unique solution on

S.



Aly et al. Boundary Value Problems (2024) 2024:56 Page 13 of 16

Table 1 €2 for different values of ¢1 and ¢,

Q

t G1+pr=12 d1+pr=13 d1+dr=14 d1+¢r=15 d1+dr=16
0 0 0 0 0 0

0.1 04546 0.2998 0.2064 0.1480 0.1102
0.2 0.5594 04170 0.3192 0.2506 0.2015
0.3 0.6350 0.5072 04125 03412 0.2867
04 0.6960 0.5830 0.4942 04238 0.3673
0.5 0.7478 0.6487 0.5673 0.4997 0.4433
0.6 0.7925 0.7065 0.6329 0.5694 0.5145
0.7 0.8314 0.7575 0.6918 0.6331 0.5805
0.8 0.8653 0.8022 0.7442 0.6906 0.6409
09 0.8945 0.8412 0.7904 0.7417 0.6951
1 09194 0.8746 0.8302 0.7862 0.7428

v 1 16 6,+0,

Figure 1 Representation of the impact of fractional order ¢, ¢, on

The numerical results of Q2 for various values of ¢ € [0,1] and ¢1, ¢, € (0, 1) are shown
in Table 1.

We observe that for an increase in time, 2 increases, and for an increase in order, 2
decreases. Clearly, €2 is less than 1. The results are graphically presented in Fig. 1.

(ii) Existence of solution

For x,x,x € J and t € [0, 1], we have

—t

(e ) | = o5+ 5t
40 2(t+10) 12
1

“f(t;x) “ = m

Hypothesis (H3) is satisfied.

We find that A = Q — [2K,Y(b, 1 + ¢2 — ) + K Y (b, 3 — )] 7 0.6995 < 1.

Thus, the hypothesis of Theorem 9 is satisfied, and system (10) has at least one solution
onS.

The numerical results of A for various values of ¢ € [0,1] and ¢4, ¢, € (0,1) are shown
in Table 2.

We observe that for an increase in time, A increases, and for an increase in order, A
decreases. Clearly, A is less than 1. The results are graphically presented in Fig. 2.
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Table 2 <2 for different values of ¢1 and ¢,

A

t G1+pr=12 d1+pr=13 d1+dr=14 d1+¢r=15 d1+dr=16
0 0 0 0 0 0

0.1 04106 0.2628 0.1752 01217 0.0880
0.2 04876 0.3545 0.2648 0.2032 0.1602
0.3 0.5385 04213 0.3361 02732 0.2263
04 0.5770 04750 0.3966 0.3355 0.2877
0.5 0.6078 0.5200 0.4493 03918 0.3448
0.6 0.6331 0.5584 0.4956 04425 0.3975
0.7 0.6544 0.5913 0.5364 0.4882 0.4458
0.8 0.6722 0.6196 0.5722 0.5289 0.4895
09 0.6871 0.6438 0.6032 0.5648 0.5285
1 0.6995 0.6642 0.6296 0.5957 0.5624

Figure 2 Representation of the impact of fractional order ¢, ¢, on A

6 Conclusion

In this research, the ¥ -Hilfer sequential-type pantograph fractional BVP was identified. In
a special working space, the existence and uniqueness of a solution to the BVP were inves-
tigated. The Krasnosel’skii’s fixed point theorem was used to analyse the existence result,
and the Banach contraction principle was used to study the uniqueness result. We have
developed an example to interpret our findings. To further illustrate, a graphical analysis
was also performed. In the future, the study can be extended to investigate the coupled

system of sequential FDEs, and the stability of the solution can be analysed.
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