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Abstract
In this paper, we prove that for certain class of initial data, the corresponding solutions
to the 3-D viscous primitive equations blow up in finite time. Specifically, we find a
special solution to simplify the 3-D systems, assuming that the pressure function
p(x, y, t) is a concave function. We also consider the equations on the line x = 0, y = 0.
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1 Introduction
To the best of our knowledge, many researchers devote their studies to some nonlinear
partial differential equations using mathematical physics methods [1–10]. Many works
have investigated the primitive equations of ocean and atmospheric dynamics since the
1990s. In [7–13], the authors have shown the global well-posedness of strong solutions to
primitive systems. In [14], it was shown that for certain class of smooth initial data, the
solutions of the 2-D inviscid primitive equations are blown up in finite time by looking for
a self-similar solution. In [15], the blow-up for the 2-D Prandtl equation in the maximum
norm of ux or uxy was introduced.

It is worth mentioning that it has been proved that for certain class of initial data, the
corresponding solutions of the 3-D primitive equations without viscosity blow up in finite
time by looking for a self-similar solution in [16]. However, we cannot find the self-similar
solution to the viscous system.

In 2023, the corresponding solutions of the 2-D viscous primitive equations were proven
in [17]; the main problem was to solve the viscosity term. In this paper, we study the cor-
responding solutions to the 3-D primitive equations with viscosity. We need not only to
solve the viscosity similarly to the method described in [17] but also to consider the effect
of dimensional changes.

The three-dimensional primitive equations for large-scale oceanic and atmospheric dy-
namics are given by the system of partial differential equations:

ut + uux + vuy + wuz + px – Rv = νH�Hu + ν3uzz, (1.1)
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vt + uvx + vvy + wvz + py + Ru = νH�Hv + ν3vzz, (1.2)

pz + T = 0, (1.3)

Tt + uTx + vTy + wTz = Q + κH�HT + κ3Tzz, (1.4)

ux + vy + wz = 0, (1.5)

with the initial value (u0, v0, T0) and the relevant geophysical boundary conditions. Here,
the horizontal velocity (u, v), the vertical velocity w, the temperature T , and the pressure p
are the unknowns. R is the rotation parameter, νH is the horizontal viscosity parameter,
ν3 is the vertical viscosity parameter, κH is the horizontal diffusion parameter, and κ3 is
the vertical diffusion parameter. Here, �H = ∂xx + ∂yy denotes the horizontal Laplacian
operator.

2 Derivation of the reduced equations
In this section, we try to construct a special solution to the 3-D primitive equations and
get the expression of the term of pressure to simplify the system. Then, we restrict the
reduced equation on the surface x = 0, y = 0.

For simplicity, we take T(x, y, z, t) = 0 and consider the simplified primitive equations
without the Coriolis force

ut + uux + vuy + wuz + px = uzz, (2.1)

vt + uvx + vvy + wvz + py = vzz, (2.2)

pz = 0, (2.3)

ux + vy + wz = 0, (2.4)

in the horizontal channel � = {(x, y, z) : 0 ≤ z ≤ H , (x, y) ∈ D ⊂ R2} and t ∈ [0, T), with
initial and boundary conditions:

(u, v)|t=0 = (u0, v0)(x, y, z), (2.5)

(u, v, w)|z=0 = (u, v, w)|z=H = 0, (2.6)

(u, v)|∂D = (u1, v1). (2.7)

Specifically, we assume that p(x, y, t) is a concave function, with respect to the variable x.
Then, we have

pxx ≥ 0. (2.8)

We construct the solution to the system (2.1)–(2.4) with the structure

(
u(x, y, z, t), k(x, y, t)u(x, y, z, t), w(x, y, z, t)

)
, (2.9)

with u(x, y, z, t) being strictly increasing in 0 ≤ z ≤ H ,

uz > 0. (2.10)
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After the above assumptions, we have

v0 = ku0, v1 = ku1. (2.11)

Plugging the form (2.9) into (2.2) and using (2.1), we get

ukt + u2kx + ku2ky – kpx + py = 0. (2.12)

By differentiating (2.12) with respect to z and using (2.10), we have

kt + 2u(kx + kky) = 0. (2.13)

By differentiating (2.13) with respect to z, we get

(kx + kky) = 0. (2.14)

Combing (2.13) and (2.14), we get kt = 0. Plugging these equations into (2.12) gives the
following

py – kpx = 0. (2.15)

The systems to be studied in this paper can be formulated as follows

ut + uux + vuy + wuz + px = uzz, (2.16)

vt + uvx + vvy + wvz + py = vzz, (2.17)

ux + vy + wz = 0, (2.18)

with initial and boundary conditions:

(u, v)|t=0 = (u0, ku0)(x, y, z), (2.19)

(u, v, w)|z=0 = (u, v, w)|z=H = 0, (2.20)

(u, v)|∂D = (u1, ku1), (2.21)

there uz(x, y), k(x, y) and p(x, y, t) satisfy (2.10), (2.14), and (2.15).

Lemma 2.1 If (u, v, w)(x, y, z, t) is the classical solution to (2.16)–(2.21), then v(x, y, z, t) =
k(x, y)u(x, y, z, t). See Lemma 2.1 in [16].

Therefore, studying the problem (2.16)–(2.21) is equivalent to studying the following
reduced problem for only two unknown functions u and w

ut + uux + ku · uy + wuz + px = uzz, (2.22)

ux + (ku)y + wz = 0, (2.23)
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with initial and boundary condition

(u, w)|z=0 = (u, w)|z=H = 0, (2.24)

u|∂D = u1, (2.25)

u|t=0 = u0(x, y, z). (2.26)

In addition, we impose the following condition

u(x, y, z, t) = –u(–x, y, z, t); w(x, y, z, t) = w(–x, y, z, t);

p(x, y, t) = p(–x, y, z, t).
(2.27)

By differentiating equation (2.22) with respect to x, we obtain

utx + u2
x + uuxx + (ku)xuy + ku · uxy + wxuz + wuxz + pxx = uzzx. (2.28)

By averaging (2.28) with respect to the z variable over [0, H] and multiplying 1
H , we obtain

1
H

∫ H

o

[
utx + 2u2

x + 2uuxx + (ku · u)xy – uzzx
]

dz + pxx = 0. (2.29)

Thus,

1
H

∫ H

o

[
ut + 2uux + (ku · u)y – uzz

]
dz + px = C(y, t) (2.30)

for some function C(y, t). Due to (2.28), we know that px and u are odd functions, with
respect to the variable x, then

C(y, t) = 0, (2.31)

and consequently

px = –
1
H

∫ H

0

[
ut + 2uux + (ku · u)y – uzz

]
dz. (2.32)

Substituting (2.32) into system (2.22), we obtain the closed system

ut + uux + ku · uy + wuz – uzz = –
1
H

∫ H

0

[
ut + 2uux + (ku · u)y – uzz

]
dz. (2.33)

By differentiating with respect to x, we have

utx + u2
x + uux + (ku)xuy + ku · uxy + wxuz + wuxz – uzzx

=
1
H

∫ H

0

[
utx + 2u2

x + 2uuxx + (ku · u)yx – uxzz
]

dz. (2.34)
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Let us consider the restriction of the evolution of equation (2.34) on the surface x = 0,
y = 0. Since u is an odd function, and w is an even function, with respect to the variable x,
we have

u(0, 0, z, t) = 0; wx(0, 0, z, t) = 0. (2.35)

This, together with (2.34), implies

utx(0, 0, z, t) +
(
ux(0, 0, z, t)

)2 –
∫ z

0
ux dz · uxz(0, 0, z, t)

=
1
H

∫ H

0

[
utx(0, 0, z, t) + 2

(
ux(0, 0, z, t)

)2 – uxzz
]

dz. (2.36)

Denoting by

a(z, t) = –ux(0, 0, z, t), (2.37)

we obtain

at = a2 + azz –
∫ z

0
a dz · az –

1
H

∫ H

0

(
–at + 2a2 + azz

)
dz, (2.38)

with the initial and boundary conditions

a(z, 0) = a0(z), a(0, t) = 0, a(H , t) = 0. (2.39)

In particular, due to equations (2.8) and (2.32), we have

f (t) =
1
H

∫ H

0

(
–at + 2a2 + azz

)
dz ≤ 0. (2.40)

3 Main result and the proof
In this section, we will give Lemma 3.1 and the main result.

Lemma 3.1 Define

F(a) =
∫ H

0
a2 dz, E(a) =

∫ H

0

(
1
2

a2
z –

1
4

a3
)

dz, G = –
E

Fβ
, (3.1)

where β ∈ (1, 5
4 ). Let a0 be nonnegative, compactly supported initial data such that E(a0) <

0, azz(0, t) = 0 and azz(H , t) = 0. Then, there exists a finite time T such that either

lim
t→T

max
z

a = +∞, (3.2)

or at least one of the following results

lim
t→T

az(0, t) = +∞, (3.3)

lim
t→T

az(H , t) = +∞. (3.4)
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Remark 3.1 Using Lemma 2.1, we reduce the system (2.1)–(2.7) to the system (2.22)–(2.26)
with two unknown functions and three variables. Then, we consider the problem on the
surface x = 0 and y = 0. So, the proof of Lemma 3.1 takes the same method as in [17].

Theorem 3.1 Assuming that pxx ≥ 0 and the conditions (2.10) and (2.27) are satisfied, we
can get Lemma 3.1. Then, smooth solutions to (2.16)–(2.21) do not exist globally in time.

Remark 3.2 In the Lemma 3.1, a(z, t) = –ux(0, 0, z, t), so the blowup is in the norm of ux

or uxy.

4 Conclusions
This study has shown that the 3-D primitive equations with viscosity blow up on the sur-
face x = 0 and y = 0. In this paper, we consider the simplified equations. We plan to solve
unreduced systems in the future.
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